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Abstract

Herein, the fabrication of novel pure and Zr-do@ (Zr:SnQ) films via sol-gel spin
coating process for Schottky barrier diode (SBD)l@pation has been reported. Phase and size
analysis were carried out through X-ray diffractiand Scherrer rule was used to determine
crystallite size, which is noticed between 2 toni. The SEM study reveals that the fabricated
films contain very fine sphere-like grains. Theiogittransmittance of Zr:SnQhin films reveals
that the grown films possess high transmittanceckvis good for optoelectronics. The values of
energy gap for all Zr:Sngfilms were estimated between 3.90 to 3.96 eV. dbeonductivity
analysis showed that Sp@iims possess higher electrical conductivity awB% of Zr. The
barrier heights®g) and ideality factor (n) of the fabricated SBDsr&vealculated from both J-V
and Cheung’s method. Better performance was nofaredr (8 wt.%):SnQ/p-Si SBD.
Keywords: Zr-doped Sng optical properties; Schottky barrier diode; eleel properties,
barrier height.
1. Introduction

The systems based on metal & semiconductor (MSjigumation are recognized as
Schottky barrier diodes (SBDs) of MS-type. Initvabrk on them was reported by Schottky [1].
These structures play a very significant role ectbnic devices and optoelectronic applications
[2]. Interfacial layers (insulator, oxide and polgTh are implanted between metal and
semiconductor to form metal-insulator/oxide/polyrsemiconductor (MIS/MOS/MPS) system
of SBDs [3-5]. The quality and efficiency of MIS/MBIMPS configurations of SBDs are reliant
on numerous constraints, like fabrication of iraedf quality, thinness/homogeneousness, content
of dopant, substrate temperature, applied voltagees, and shunt resistances éRd Ry), etc.

[1-6]. Owing to scientific interest in electrondevices, researchers are currently focused on



improving the quality of SBDs with metal oxidesgchuas tin oxide (Snf) [7], ZnO [8], ALO3
[9], WOs3 [2] and MoO3 [10]. Among them SnQs an outstanding material because of its
tuneable, morphological, structural and electnraperties [11].

SnQ is a pertinent material in many industrial and owgrcial applications, owing to its
wide energy gap (& 3.6 eV) [9], high optical transmittance, excetlelectrical conductivity,
high chemical & mechanical firmness than other M&sparent films [12, 13]. In general, SO
belongs to the semiconductor family of n-type aféE in its oxygen-vacancy form and plays
the role of an insulator in stoichiometric form [1htrinsically undoped Sn£thin films have
lower carrier density and mobility, hence they hdow electrical conductivity [15]. Many
researchers have tried to enhance the propertitee @nQ material through doping, annealing,
and deposition techniques [16-18]. Among themyaatioping is an approach to increasgt®/
advance the electrical conduction behaviour ofttie films [19]. Many processes to attain the
films like CVD [20], chemical bath deposition (CBI21], spin-coating [22] and spray pyrolysis
[23] are available currently. Among these, spinticmpis a better route to cast Snés well as
several other advanced materials films [24-26% #asy to operate at low reaction temperatures,
relatively inexpensive and simple deposition precesincrease pinhole-free and almost fully
covered surface-quality thin films [27, 28].

Several dopants, such as Cu, Zn, Mg, Ag, In, Zr, @0 and Sb are incorporated with
SnG to enhance various properties of metal oxides BfY), Among these, Zr (n-type) is a
suitable dopant to obtain a good-quality interfadéger in SBDs. Because of Siits ionic
radius (0.69 A) is smaller than that ofZ0.72 A). Hence, Z¥ ions are substitution to $tions
in the crystal matrix [15, 31-33]. Therefore, Zrpdmt is a very suitable dopant to enhance the

properties of metal oxide-based interfacial layeiSchottky barrier diode [34]. In recent very



few reports on Zr:SnPfilms fabrication and investigation is reportelleli Zhang et al. spin-
coated the Zr@sSnO(Zr = 0, 1, 3, 5, 7, 18t.%) films and investigated their structure-
morphology-electrical properties and noticed imgaeonductivity and lowermost resistivity of
SnG [32], Reddy et al. developed Zr@Sn@r = 0, 1.5, 3, 4.5, and 6 at%) layer for theseun
solar cell via spray pyrolysis [15], Noh et al. oeged the tailoring of the electronic nature of
SnG NPs via Zr doping synthesized through precipitatioute for competent perovskite solar
cells [35]. Rammutla et al. prepared Y&Zr@ Snianocrystals via sol-gel process and inspected
for structure & vibrational constraints [31], Go&ldtishnan et al. used spray pyrolysis route to
prepare Zr@Sn9(Zr = 0 to 5 at.%) films and studied [33], Paubétfabricated Zr@SnQZr =

1, 2 and 3 at.%) via sol-gel and inspected theiictire & opto-electrical nature [34]. The
outcomes in these reports revealed that the piepest SnQ are enhanced by Zr addition to its
matrix. Zr also acts a major and fascinating raleaitering/enhancing the key properties of
several other materials like; o3, CuO, ZnO, BjTi30q,, TiO, etc. [36-40]. These reports
indicate that Zr is a good element to doped in $ewoh improving the properties from the
application’s point of view. Since, the above citegorts revealed that the casting of Sfilins

by taking 0, 2, 4, 6 and 8 wt.% ZgCAs Zr doping agent and their Al/Zr:S#i@Si SBD via a
spin-coating process has not been reported soHfance, here the authors aim to develop
Zr:SnQ, films and Al/Zr:SnQ/p-Si SBD thru spin coater and inspect the consezpseof Zr on
structure-morphology-opto-electrical behaviour amhferred. The outcomes propose that the
developed diode if useful in SBD based devices.

2. Investigational tools

2.1 Development of films



Zirconium chloride (ZrG) in 0, 2, 4, 6 and 8 wt.% as Zr basis and 0.1 MroflV) chloride
pentahydrate (Sngl5H,0) were taken in 5 diverse vessels containing ethsolvent beneath
the rigorous stirring at room temperature for 24These final products were coated on well-
eviscerated thru spin-coater functioning at 2500/88 s, and subsequently annealed for 1h at
773 K.

2.2 Device development method

Schottky barrier diode (SBDs) devices of Al/ZriCanwere fabricated on p-type silicon
wafer with plane (1 0 0). The p-Si substrate wal-eleaned with HSO, and HO.in the ratio of
1:2. The layer of Si@from the surface of Si was detached by HREHsolution in the ratio of
1:10, this was further washed by water. The abogationed sol-gel spin-coating process was
employed for Zr:Snexhin film formation on the Si wafer. The coatedrfd annealing was done
at 773 K for 1 h. Using thermal evaporation techeigaluminium (Al) was coated on the
Si/Zr:SnG samples with a pressure of ATorr [41].
3. Outcomes and Discussion
3.1. Phase authentication and microstructure studies

XRD profiles of pure Sn@and Zr:SnQthin films are publicized in Fig. 1 obtained by
employing the XRD X’PERT-PRO setup possess radiatib CuK,;, A = 1.54056 A, which
confirms the tetragonal crystal structure (JCPDS, AL-1445) [15, 42]. This result indicates
that there is no significant alteration in thedgtinal crystal of Sn{xhin film after exposure to
Zr content. However, the peak intensity decreas#l imcreasing Zr content, which shows peak
broadening effect. The broad peaks signify low disien crystallites in grown films, hence. The

mean crystallites size (D) of Zr:Sp@ims was obtained by [43, 44]:

0.89A
D= 3 cos6 (1)




Values of D of Zr:Sn@films decreased with rising the Zr content inintwhich in the
range of 5.13 - 2.2 nm. Noh et al, also observedDhvalue for pure ~ 2.600.39 and for
Zr@SnQ ~ 2.17+ 0.64nm [35]. Zhang et al. reported the D values betwkto 8 nm when Zr
is doped in Sn® Reddy et al. notice the D reduction of Shen doped with Zr [32]. Further,
by egs. (2-4) [42] , the no. of dislocationg, (strain €) and fault of stacking (SF) of pure ShO

and Zr:SnQ films were estimated and given in Table 1.
§ == )

g= ——_F 3)

D sin® tan0

SF = [L] B ()

45(3 tan0)2
The calculated values of the defect factors deedceagth higher concentration of Zr.
SnG film with 8 wt.% of Zr show &, € and SF values ~ 0.63 x ¥Qines/nf, 0.87 x 10°

lines/nt, 1.975, respectively. This confirms that the Zzdrporated Snthin films reduce the

defect factors.
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Fig. 1 XRD of SnQ thin films with various concentrations of Zr dopan



Table 1: Structural properties of Sn@hin films with various concentrations of Zr dopan

Zrin o FWHM D  &x10"  ex10°
weoe  290) d(A)  hkl (radians) (nm) lines/nf lines/nf SFx10°
26.6846 4.484 111 3.34 3.18 0.989 1.090 2.415
0 33.855 4.187 101 2.65 3.46  0.833 1.001 2.605
51.83 3.407 211 1.76 453  0.480 0.766 2.919
27.014 3.300 110 5.12 275 1.321 1.250 2.782
2 34.27 2616 101 4.86 295  1.147 1.162 3.049
52.244 1.751 211 3.64 419  0.568 0.817 3.144
27.222 3275 110 3.10 454  0.485 0.755 1.693
4 34.488 2.600 101 3.63 3.95 0.641 0.868 2.290
52.484 1.743 211 2.32 6.57 0.231 0.522 2.017
27.604 3231 111 3.04 4.63  0.465 0.740 1.673
6 34.871 2572 101 3.63 3.95  0.640 0.867 2.307
52.954 1.729 211 3.64 420  0.561 0.815 3.185
27.725 3.217 111 3.58 3.94 0644 0.871 1.975
8 34.991 2564 101 3.32 432 0.535 0.794 2.115
52.834 1.732 211 2.93 521  0.368 0.658 2.563

3.2 Morphological study

Fig. 2 demonstrates the FE-SEM (Model: JEOL JEM (210nmages of different
concentrations of Zr-incorporated Sgtikdn films. Regular-shaped sphere-like grains withgh
surface morphology were observed in 21fins as uncovered in Fig. 2(a). Grain size was
slightly reduced in the case of 2 wt.% of Zr:Stih film surfaces (Fig. 2(b)). Figure 2(c) shows
that the grain size of 4 wt.% of Zr:SpQilm was further decreased. In higher doping
concentrations of 6 and 8 wt.% of Zr:Sn@ery fine nano-sized grains were detected as shown
in Fig. 2(d)-(e). This directs that the Zr contstrongly interrupts the grain growth and density
of SnGQ films. FESEM images revealed that the grown filpgssess compact nanograins at
higher Zr contents. Increasing doping content camneiase stress in the Sn@rains, which will

disturb the grain growth process and decreaseublkeation agent in the system [15]. Reddy et

7



al. also observed same type of grain size lessamrng5, 3.0. 4.5 and 6 at.% Zr content addition

to SnQ films readied by Spray process [15].
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Fig. 2 FE-SEM images of Sn{hin films with different concentration of Zr. (&Q, (b) Zr(2
wt.%):SnQ, (c) Zr(4 wt.%):Sn@, (d) Zr(6 wt.%):SnQ, (e) Zr(8 wt.%):Sn@ and (f) EDAX
spectra of Zr(8 wt.%):SnQhin film.

3.2 Evaluation of energy gap (Eg)



Fig. 3 (a) & (b) displays the optical absorptiondaimansmittance density profiles of
Zr:SnQ, films over the wavelength region of 300-900 nm rded via Lambda 35 UV-Vis
spectrometer. It shows that the absorption/tranange value of Zr:Sn{s larger compared to
SnQ films in the visible region of 355-530 nm is owitgythe densification of the grain growth
in the latter [45]. A minute non-systematic shidtirs visible in absorbance of films with Zr
doping. The films are noticed to have good transmde values viz. ~ 67% (see fig. 3(b)) and
low absorbance (see fig. 3(a). A higher opticalaptson is noticed for Sngfilms doped with 2
wt.%. To inveterate the Zr impact og ¥#alue of Sn@, the Tauc’s relation is used [46, 47]:

(ahv)™ = A (hv — Eg) (5)
here symbols are well-recognized [48] and transitio is 2 for Sn@ semiconductors. Here,

coefficient to absorptiomd was obtained by [49]:

a = (2303 2200a0ce)

thickness ©)
The optical  of SnGQ and Zr:SnQ@films was obtained from plot of Tauc’s as revealedrig.
3(c). Alteration in values of gw.r.t. Zr content can be assessed thru straighioseof graph
extrapolation with bandgap energy axis. It can &éensthat the value ofyHies between 3.90
from 3.96 eV for Zr concentration from 2 to 8 wt. &d the highest value was noticed for 8
wt.% Zr:SnQ film this might be due to increasing defects amdr density of localized states
in ZrO, thin films. The Eg values are in accord with Sv@ich are lied between 3.6 to 4.0 eV
[35]. Such F alteration in Sn@thru Zr contents doping was also noticed by Zhengl. and
observed between 3.88 to 3.95 eV [32], Reddy etaiced the lessening of;fom 3.94 to 3.68
eV on doping of Zr into sprayed Sp@ims from 1.5 to 6.0 wt.% [15] etc. The inter-CB

absorption absence is a owe to key features of ad assembly, establishing as a great inner

gap within the CB which eradicates transitions irs Yegion [50, 51]. According to Moss—



Burstein shift, generation of more conduction etmt$ pushes the Fermi level to higher

energy. These gvalues are in correlation to prior documented ¢625
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Fig. 3 (a) Optical absorbance spectra, (b) Transmittance spantd (b) Tauc’s §hv)? vs. h]

plot of Zr:SnQ thin films.
3.3 Direct current (dc) electrical study

Electrical analysis of different concentrationsZofdoped Sn@films was done over the
303-473K temperature region using two probe metlidghley source meter Model: 6517-B).
Fig. 4 shows the nature of conductivity of dg/() for Zr:SnQ films, the graph revealed that the
04c IS rising with rise of temperature as well as @ntent in Sn@ The 8.0 wt.% of Zr-doped
SnG film has higher electrical conducting nature owtngZ** ions in the SH and G ions,
which create trap centres in the Sr@éttice [53]. This generates new mobile electronSnG

lattice, which raise the electrical conductivity303 K. At room temperature, pure and 8 wt.% of

10



Zr-doped Sn@thin films with correspondingsy. values are 6.80 x 10 and 5.41 x 18,

respectively. The Arrhenius equatiand) is expressed as [54]:
-E
0 = 0, exp (ﬁ) (7
here K stand for energy of activation, and the other sig; recognized well [55]. The role of

temperature in Zr:Snfilms is publicized in Fig. 5. The la§) vs 1/T plot (see Fig. 5) was

linearly fit to straight line indicates that thetigation energy decreased with temperature.
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Fig. 5 Plot of In(cqc) vs. 1/T of the Snthin films for different dopant concentration of. £a)
SnQ, (b) Zr(2 wt.%):Sn@, (c) Zr(4 wt.%):Sn@and (d) Zr(6 wt.%):Sn®
3.5 SBD study
The 1 vs. V values of different concentrations afdoped Al/Zr-Sn@/p-Si SBDs were
executed beneath the dark state at 303 K usingtal&e source meter (6517-B). The total | of

SBD is stated as [56, 57]:

=10 [exp (557) = 1] @)

where V, |, b, q and T are the applied voltage between -3V & #@¥rent, drip current at V=0,

charge (1.602 x I C) and temperature [58]:
I, = AA*T?exp (_kq—q;B) 9)
B
The ideality factor (n) has been expressed by:

n= 2 (Ge) (10)

Barrier height @) was identified by relation:

5 = “lin (AI—TZ) (11)

here A stand for effective Richardson constraint for pTBie estimated n antly along with b
values are given in Table 3 and noticed to rise dexine, correspondingly with rising the Zr
content in Sn@ Also thereverse saturation current value is lessening ft@62 to 1.050 nA on
rising of Zr into Sn@ matrix. By putting the developed device in dark th(l)-V study was
carried out for different Zr content fused Al/Zr@Guip-Si diode as presented in Fig. 6. Device
ideality (n) improves from 3.21 to 2.78 of Al/Zr:Sglp-Si diode compared to Al/SnRP-Si. As
the n value is > 2 indicates charge carriers diiéigecombining centers in over dynamic region.

The value of ideality factor is dependent on thplied bias voltage, barrier inhomogeneity as

12



well as surface states, depletion layer width, edieic value of interfacial layer, and the
thickness of interfacial layeA thin Zr:SiO, layer at interface affects the recombination of
charge in the region of space charge, their nofetmity & layer thickness may be the cause of

getting larger n values of the device [59, 60].

In (I) Amphere

1D

—8—Al/ SnD,/ p-Si
=8 Al/Zr(2 wt.%): $n0,/ p-Si
~&-al/ Zr(4 wt.%): Sn0 / p-Si
—8—Al/Zr(6 WLY%): SnO,/ p-5i
—8—Al/7r(8 wL%): Sn0 / p-Si

2 4

s o2 a1 4123
Voltage (V)
Fig. 6 Plot of In(l) vs. V of the Sngthin films for various dopants of Zr in the Al/AnQy/p-Si.

Fig. 7 shows the metal-semiconductor contacts ef SBDs for a) Before contact b)
Thermal equilibrium after contact c) under forwdnads d) under negative bias condition e)
Energy level diagram of Al/Zr:Sndp-Si diode. In thermal equilibrium (Fig. 7b), fibre carriers,
the apparent barrier height (BH) from metal to sEmductor is higher than semiconductor to
metal. Therefore, the value of BH calculated framwiard bias I-V measurement is always lower
than the reverse bias C-V measurements (frémv€V plot). When metal and semiconductor
contacted, the majority holes in p-Si passed tbetfof metal and similarly electrons passed the

front of p-Si until their Fermi energy level becasreame level. In this way, the interior electric

13



field occurs from metal to semiconductor. After ttheth the conductance and VB become
curvature towards upside but the energy band ofcegmuctor unchanged with decreasing of
acceptor atoms (N (Er= kT/g.Ln (Ny/Na)). Under forward bias (Fig. 7 c), interior and exxial
electric field has opposite direction and so tefektric field decreases. But, under reverse bias
both interior and external electric field are ie ttame direction and so the total electric field is

higher than the forward bias region
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Fig. 7. Metal-p-type semiconductor contact a) Befaeontact, b) Thermal equilibrium after
contact c¢) under forward bias d) under negatives lmanditions (e) Energy level diagram of
Al/Zr:SnO,/p-Si diode.
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The calculatedbg of the fabricated SBDs have been increased fr@550to 0.96 eV.
This improvement in values dfg is might be owed to that electrons at large soale plentiful
energy to overcome the barrier in Zr:Snidms. Better performance was achieved at 8 wtf% o
Zr content in Zr:Sn@p-Si SBD. § decreases with Zr content in the $rilin film and signify
trapping of electrons at the boundaries of graihsckv are accumulated through doping ions.
Reduction of barrier heightbg) with the incorporation of doping content is ctedito improved
charge carrier, which increases the Fermi levellangrs the barrier height [61-64]. Further, the
values of series resistancegRn and®g evaluated from I-V data using Cheung’'s equations.
Generally, J-V method is applied to the linear oegiat low bias region of the In(l)-V
characteristics, whereas Cheung'’s function is agption-linear region in the high bias region of

the In(l)-V characteristics. It is defined by tledldwing relations [65-69]:

dli‘:n = jRs + n(%) (12)
H() =V - n (‘%T) In(:L) (13)
H(I) = JRs + ndg (14)

Fig. 8(a) displays a plot of dVv/dIn(l) versus | fifferent Zr concentration of Sp@hin
films. Form the Eqgn.(12), the series resistancg 4Rd ideality factor (n) values can be identified
by linear region of the plot fitted on the slopéuweaand nkT/q as the y-axis intercept values. A
plot of H(I) vs. | (Fig. 8(b)) yields n andg as the intercept on the y axis and the second
determination of Ras the slope (using Egn. (14)). From H(l) versukd ®g and R values are
reported in Table. 2. Interestingly, the n @remain almost the same or slightly varies with Zr
concentration of Snfocompared to the I-V method. The series resistaabges are calculated
using the plots of dVv/dIn(l) Vs | and H(l) Vs I. &lZr influences on the series resistance values.

The resistance values are given in Table. 2.rbited that the Zr concentration increases from 2

15



to 8 wt.% the resistance value varied from 8.46.8% (KQ cm). Moreover, the series resistance

value decreases for Zr concentration device fonh eawvice.

08
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0.2 4
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Fig. 8 (a) plot of dv/dIn(l) versus | and (b) H@é¢rsus | for various dopants of Zr.

Table 2 Calculated values of series resistance, (Rend®g from I-V data using Cheung’s

equations.

Reverse . . . Series resistance {R
saturation Barrier Height ¢g) eV Ideality factor (n) (KQ cm)
Device Structure Current (f)

innA -V Cheung’s -V Cheung’s dv/din(l) H(I)
AlISnGfp-Si 1.652 0.73 0.74 3.21 3.19 8.45 8.98
Alf2 wt. % of Zr:SnQ/p-Si 1.583 0.77 0.79 3.21 3.195 7.98 8.84
All4-wt. % of Zr:SnQ/p-Si 1.402 0.83 0.84 3.01 2.99 7.55 8.21
Al/6 wt. % of Zr:SnQ/p-Si 1.208 0.89 0.93 2.85 2.80 6.34 7.65
Al/8 wt. % of Zr:SnQ/p-Si 1.050 0.96 0.98 278 2.76 6.25 7.24
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4. Conclusion
Different Zr concentrations added Sriims were facilely accomplished thru sol-gel spin

coater processing and characterized for ZrfmSi SBDs. XRD analysis reveals is no
transformation in the tetragonal crystal system Sttt film; even Zr(8 wt.%):Sn&xhin films
exhibited better performance as Al/Zr:Sf®Si SBDs. The Scherrer rule was employed to
determine crystallite size and noticed between 3 tam. FE-SEM analysis indicates that Zr
content strongly interrupts the growth of graingl @mhance the compactness/density of .SnO
films. The low absorbance/high transmittance ingisagoof quality films for applications in
optoelectronic. The energy gap was estimated betBe®0 to 3.96 eV for Zr:Sndfilms. The
Zr:SnQ; films with 8 wt.% of Zr have higher electrical ahrctivity ~ 7.8 x10 Q' cm™* as
shown by dc electrical study. The ideality fact@ue of the fabricated SBDs was noticed
between 3.21-2.78 and barrier heighbg)(of the fabricated SBDs increased from 0.855 860.
eV. The values of n andg evaluated from Cheung’s equations is comparabitebéhan J-V
method. The 8 wt.% of SBDs exhibited a minimum eatd series resistance in both dVv/dIn(l)
and H(l) vs. I. From all the above results, it @bblke concluded that the fabricated MIS diodes
are highly appropriate for optoelectronic applioati
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Figure captions

Fig. 1 XRD of SnQ thin films with various concentrations of Zr dopan

Fig. 2 FE-SEM images of SnQhin films with different concentration of Zr. (&§nQ, (b) Zr(2
wt.%):SnQ, (c) Zr(4 wt.%):Sn@, (d) Zr(6 wt.%):SnQ, (e) Zr(8 wt.%):Sn@and (f)
EDAX spectra of Zr(8 wt.%):Sngxhin film.

Fig. 3 (a) Optical absorbance spectra and (b) Tauelkv”® vs. h] plot of Zr:SnQ thin films.

Fig. 4 Temperature dependence of electrical conductofithe Zr-doped Sngxhin films. (a)
SnQ, (b) Zr(2 wt.%):Sn@, (c) Zr(4 wt.%):Sn@and (d) Zr(6 wt.%):Sn®

Fig. 5 Plot of In(ogo) vs. 1/T of the Sngithin films for different dopant concentration of. Za)
SnQ, (b) Zr(2 wt.%):Sn@, (c) Zr(4 wt.%):Sn@and (d) Zr(6 wt.%):Sn®

Fig. 6 Plot of In(l) vs. V of the Sngxthin films for various dopants of Zr in the Alf:3nGy/p-
Si.

Fig. 7. Metal-p-type semiconductor contact a) Befeontact, b) Thermal equilibrium after

contact c) under forward bias d) under reverse doaslitions.

Fig. 8 (a) plot of dVv/dIn(l) versus | and (b) H@é¢rsus | for various dopants of Zr.
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