
ORIGINAL PAPER

Propagation of ion-acoustic localized mode excitations and their
modulational instability analysis in electron–positron–ion plasmas

C Lavanya*

Department of Physics, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal,

Tamilnadu 637205, India

Received: 03 December 2019 / Accepted: 25 May 2020

Abstract: The modulational instability of ion-acoustic waves (IAWs) in an unmagnetized multicomponent plasma is

investigated, including a hot positrons, hot isothermal electrons and cold ions. Employing the reductive perturbation

technique, the nonlinear Schr€odinger equation (NLSE) is derived. The effects of positron concentration and temperature

ratio of electron to positron significantly modify the modulational instability and its growth rate. Results show that

increasing the strength of these parameters leads to localization of IAWs. Further, the exact traveling wave solutions are

studied using a modified extended tanh function method. The relevance of theoretical results may be beneficent in

understanding the localized electrostatic disturbances in space and astrophysical situations where electron–positron–ion

plasmas are present.
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1. Introduction

Nowadays, the study of electron–positron–ion (e–p–i)

plasmas has been a growing interest because of its potential

applications in astrophysical and laboratory observations

[1, 2]. An e–p–i plasma is a fully ionized gas which con-

sists of positrons and electrons. The occupancy of electron–

positron (e–p) is also well known as pair plasmas. It pos-

sess indistinguishable masses and definite charge. The

theoretical investigation of nonlinear structures in space,

astrophysical and in laboratory multicomponent plasma has

received a great deal of attention in plasma physics. The

study of wave dynamics in e–p–i plasma is one of the most

consequential aspects for plasma physicists, because of its

extensive applications. The electron–positron plasmas are

thought to be created naturally by pair production in high

energy process happening in various astrophysical situation

such as neutron stars [3], active galactic nuclei [4], pulsar

magnetosphere [5], solar atmosphere [6], laboratory plas-

mas [7], semiconductor plasmas [8], relativistic jets that

stream from the nuclei of quasars [9] and other inertial

confinement fusion schemes [10] disclosed the

phenomenon of nonlinear structures such as soliton, vor-

tices, shocks and envelope holes etc. The e–p plasmas have

also been generated in the laboratory by the use of modern

positron trapping technique. The longer lifetime of the

positron plays an important role in laboratory [11, 12] and

astrophysical [13] plasmas due to the admixture of elec-

trons, ions and positron. The study of wave motion in an e–

p–i plasmas are completely distinct from those of two-

component e–p plasma. According to that, the investigation

of e–p–i plasmas are momentous to know the nature of

linear and nonlinear properties of plasma waves [14–16].

Due to the plentiful existence of ions in numerous astro-

physical plasmas, the e–p–i plasma has thought a great deal

of theoretical consideration taking into account of positron

concentration on the plasma dynamics [17–19].

The propagation of nonlinear waves especially solitary

waves in e–p–i plasma is very attractive because of their

theoretical aspect and also their applications. Solitons are

single-pulse structures which are developed when nonlin-

earity balances with dispersion effects [20].

During the last few years, many researchers investigated

the nonlinear propagation of waves in e–p–i plasmas.

Berezhiani and Tskhakaya [21] comprehended the envel-

ope solitons in e–p–i plasma by the propagation of elec-

tromagnetic waves. Nonlinear dynamics of ion-acoustic
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solitary waves in e–p–i plasmas have been furnished by

Popel et al. [9]. They showed that the system supports

positive potential ion-acoustic solitons with a reduction in

amplitude under the impact of positron concentration. The

nonlinear theory of IAWs in e–p–i plasmas have been

analyzed by Dubinov and Sazonkin by employing pseu-

dopotential technique [22]. Furthermore, the formation of

ion-acoustic envelope solitary wave structures and modu-

lational instability analysis in respect of parallel modula-

tion of the carrier wave is investigated in magnetized and

unmagnetized e–p–i plasma [23, 24]. The nonlinear prop-

agation of ion-acoustic solitary wave for the weakly rela-

tivistic regime in an unmagnetized plasma composed of

Boltzmann positrons, non-extensive electrons and rela-

tivistic ions have been theoretically and numerically

explained by Hafez et al. [25].

The modulational instability (MI) is a natural phe-

nomenon arising from the interplay of linear dispersion or

diffraction and the nonlinear self-interaction of wave fields.

MI is a primordial process concerted with the growth of

perturbations on continuous wave background. MI has

been increasing interest in fluid dynamics [26], nonlinear

optics [27], Bose–Einstein condensates [28], plasma phy-

sics [29] and various fields. The study of modulational

instability of the ion-acoustic waves (IAWs) is one of the

noteworthy phenomena in plasma physics. Its basic

mechanism involves the slow modulation of a monochro-

matic plane wave, resulting in the creation of localized

pulses, which are described by nonlinear Schr€odinger

equation (NLSE). Tremendous attention has been paid to

the investigation of the modulational instability of soliton

in the case of nonlinear Schr€odinger (NLS) equation due to

their stable wave propagation. MI of monochromatic IAWs

was first experimentally studied by Watanabe [30]. In

recent years MI has been subjected to wide research, and

its occurrence has been examined with respect to different

wave modes in nonlinear and dispersive plasmas. The

nonlinear, dispersive media has been a well-known phe-

nomenon for the localization of wave energy. There are

different theoretical studies have been examined on the MI

of various wave modes [31]. Chawla et al. [32] reported

the modulational instability of ion-acoustic waves con-

sisting of warm adiabatic ions in a collisionless e–p–i

plasma. The propagation of large amplitude IAWs in col-

lisionless plasma consists of isothermal positrons, warm

adiabatic ions and two temperature distribution of electrons

were reported by Jain and Mishra [33]. Kourakis et al. [34]

explained the nonlinear propagation of modulated elec-

trostatic wave packets containing pair plasmas by

employing a two-fluid plasma model. Tiwari et al. [35]

reported the ion-acoustic dressed solitons in a three-com-

ponent plasma containing hot electrons, cold ions and

positrons. Nejoh [36] presented the large-amplitude ion-

acoustic waves in an electron–positron–ion plasma under

the influence of ion temperature. Jehan et al. [24] addres-

sed that the oblique modulation of ion-acoustic waves and

the formation of envelope soliton in a collisionless e–p–i

plasma. It is found that the stability regions are changed by

the presence of positron component for small angle of

propagation with the direction of modulation.

Verheest and cattaert described the large amplitude

soliton by the propagation of electromagnetic waves in e–

p–i plasmas [37]. The propagation of nonlinear amplitude

modulation of ion-acoustic wave in unmagnetized plasma

in the presence of warm ion have been studied by Mah-

mood et al. [38]. The result shows that both positron

density and ion temperature play a vital role in the for-

mation of dark and bright envelope solitary wave struc-

tures. Gill et al. [39] studied the ion-acoustic solitary

waves in three-component magnetized e–p–i plasma under

the influence of positron concentration and q-nonextensive

electrons.

More recently Ghosh et al. [40] investigated the dynamic

behavior of ion acoustic waves in an unmagnetized plasma

consisting of q-nonextensive electrons and positron by

employing the bifurcation mechanism of planar dynamical

systems through direct approach. They found that the exis-

tences of both solitary and periodic waves and their rele-

vance to the physical parameters. Saha et al. [41] addressed

the dynamic structures of ion acoustic waves in electron–

positron–ion magnetoplasmas whose constituents are

superthermal electrons and positrons. Applying the Hirota

direct method to the Kadomtsev-Petviashvili (KP) equations

the propagation of two-soliton and three-soliton waves are

obtained. Maji et al. [42] investigated the oblique collision

of two ion-acoustic waves (IAWs) in a three component

plasma system composed of electrons, positrons and ions

using Hirota direct method. The effects of the ratio of elec-

tron temperature to positron temperature and the ratio of the

number density of positrons to that of electrons on the phase

shifts are studied. Samanta et al. [43] studied the ion acoustic

waves in two species plasma in the presence of external static

magnetic field and kappa distributed electrons. By employ-

ing bifurcation theory of planar dynamical systems to the ZK

equation. They found that the system supports solitary wave

solutions and periodic travelling wave solutions. To the best

of our knowledge, no theoretical study has been carried out

on the examination of modulational instability and the exact

traveling wave solutions for the system consisting of a hot

positron, cold ions, hot isothermal electrons in an unmag-

netized e–p–i plasmas by deriving the nonlinear Schr€odinger

equation. The intention of the present interpretation is to

make a detailed study on the occurrence of modulational

instability and growth rate in e–p–i plasmas including both

the effects of positron concentration and the ratio of electron

temperature to the positron.
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The manuscript is structured as follows. In Sect. 2, the

analytical model is addressed and by using the reductive

perturbation technique a nonlinear Schr€odinger equation is

derived. The modulational instability analysis is pursued in

Sect. 3. In Sect. 4, a traveling wave soliton solutions are

obtained by employing modified extended tanh function

method. Results and discussion are presented in Sect. 5 and

6 is devoted to conclusions.

2. The model equations

Here consider a multicomponent plasma system consisting

of hot positrons, cold ions and hot isothermal electrons.

The nonlinear dynamics of the ion-acoustic solitary waves

in such a plasma system is governed by the following set of

equations [44].

on

ot
þ o

ox
ðnuÞ ¼ 0; ð1Þ

ou

ot
þ u

ou

ox
¼ � o/

ox
; ð2Þ

o2/
ox2

¼ ne � pnp � ð1� pÞn; ð3Þ

ne ¼ expð/Þ; ð4Þ
np ¼ expð�r/Þ; ð5Þ

For small /

ne ¼ 1þ /þ /2

2
þ /3

6
þ � � � ; ð6Þ

np ¼ 1� r/þ r2/2

2
� r3/3

6
þ � � � ð7Þ

where p ¼ np0
ne0

and r ¼ Te
Tp
.

In the above equations, n and u represents the density

and fluid velocity of the ion component, np and ne are the

density of positron and electron respectively. At equilib-

rium the densities of electron component, positron com-

ponent and ion component are represented as ne0, np0 and

n0 respectively. / denotes the electrostatic potential and p

is the fractional concentration of positron with respect to

electron in the equilibrium state. r represents the temper-

ature ratio of electron to positron. From Eq. (3), the elec-

tron and positron density distributions are considered to

obey the Maxwell Boltzmann type. From Eqs. (1)–(5),

velocity(u), potential(/), time(t) and space variable(x) have

been normalized by the ion sound velocity Cs, thermal

potential Te
e , inverse of the ion-plasma frequency x�1

pi and

electron Debye length kDe ¼
�

�0Te
4pn0e2

�1
2 respectively. The

normalized equilibrium densities of ion density(n), electron

densityðneÞ and positron density ðnpÞ can be indicated as

n0, ne0 and np0 respectively. Te and Tp are the temperatures

of electron and positron fluid respectively.

2.1. Derivation of the NLS equation

To investigate the modulational instability of ion acoustic

solitary waves in electron–positron–ion plasma, we now

follow the standard reductive perturbation theory to the

model Eqs. (1)–(5) and construct a NLS equation [45, 46].

The independent variables are stretched as

n ¼ �ðx� vgtÞ; s ¼ �2t; ð8Þ

where � is a small parameter and vg is the group velocity of

the wave in the x direction. The dependent variables are

expanded as

n ¼ 1þ
X1

n¼1

�n
X1

l¼�1
n
ðnÞ
l ðn; sÞ exp½iðkx� xtÞl�;

u ¼
X1

n¼1

�n
X1

l¼�1
u
ðnÞ
l ðn; sÞ exp½iðkx� xtÞl�;

and

/ ¼
X1

n¼1

�n
X1

l¼�1
/ðnÞ
l ðn; sÞ exp½iðkx� xtÞl�; ð9Þ

where n, u, / satisfy the reality condition A
ðnÞ
�l ¼ A

ðnÞ�
�l and

the asterisk superscript denotes complex conjugate. k and x
represents the carrier wavenumber and frequency

respectively. Substituting the expressions given in

Eqs. (8) and (9 into Eqs. (1)–(5) and collecting the terms

in the different powers of �, we can establish the nth-order

reduced equations. The derivative operators in the above

equations can be represented as follows:

o

ot
! o

ot
� �vg

o

on
þ �2

o

os
;

o

ox
! o

ox
þ �

o

on
: ð10Þ

For the first order (n ¼ 1) with l ¼ 1 equations read

� ixnð1Þ1 þ iku
ð1Þ
1 ¼ 0;

� ixuð1Þ1 þ ik/ð1Þ
1 ¼ 0;

�ðk2 þ 1þ prÞ/ð1Þ
1 þ ð1� pÞnð1Þ1 ¼ 0: ð11Þ

From Eq. (11), we can get the first order quantities in terms

of /ð1Þ
1 as

n
ð1Þ
1 ¼ A1/

ð1Þ
1 ; u

ð1Þ
1 ¼ A2/

ð1Þ
1 ð12Þ

where,
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A1 ¼
k2 þ 1þ pr

1� p
;A2 ¼

x
k

h k2 þ 1þ pr
1� p

i
:

The equations for l ¼ 1 give rise to the following linear

dispersion relation for the IAWs. The dispersion relation

expresses the relation between the wave vector k and the

frequency x respectively.

x2 ¼ k2ð1� pÞ
k2 þ 1þ pr

: ð13Þ

For the second-order (n ¼ 2) reduced equations with l ¼ 1,

we obtain

n
ð2Þ
1 ¼ðk2 þ 1þ prÞ/ð2Þ

1

1� p
� 2ik

1� p

o/ð1Þ
1

on
;

u
ð2Þ
1 ¼ 1

ik

�
ix

hðk2 þ 1þ prÞ/ð2Þ
1

1� p
� 2ik

1� p

o/ð1Þ
1

on

i

þ
�
vgA1 � A2

�o/ð1Þ
1

on

�
;

/ð2Þ
1 ¼ 1

h
x2ðk2 þ 1þ prÞ þ kðp� 1Þ

�
ik

h
� 2x2k þ xvgA1ðp� 1Þ

þ xA2ð1� pÞ þ vgA2kðp� 1Þ

þ kð1� pÞ
�
o/ð1Þ

1

on
:

ð14Þ

Whereas the second order approximation n ¼ 2 with the

first harmonic l ¼ 1, we deduce the following compatibility

condition

vg ¼
dx
dk

¼ k

x

h 1þ pðr� 1� prÞ
ðk2 þ 1þ prÞ2

i
: ð15Þ

The component of l ¼ 2 for the second order (n ¼ 2)

reduced equations find the second order harmonic

quantities.

n
ð2Þ
2 ¼ B1j/ð1Þ

1 j2; uð2Þ2 ¼ B2j/ð1Þ
1 j2;/ð2Þ

2 ¼ B3j/ð1Þ
1 j2: ð16Þ

The third order (n ¼ 3) equations for the zeroth harmonics

(l ¼ 0) expressed as

n
ð2Þ
0 ¼ B4j/ð1Þ

1 j2; uð2Þ0 ¼ B5j/ð1Þ
1 j2;/ð2Þ

0 ¼ B6j/ð1Þ
1 j2; ð17Þ

where

B1 ¼
ð4k2 þ 1þ prÞB3 þ 1

2
ð1� r2pÞ

p� 1
;

B2 ¼
1

2x

�
x2

k

�
k2 þ 1þ pr

1� p

	2

þ 2kB3

�
;

B3 ¼ � 1

2

�
x2ðpr2 þ pþ k4 þ 2k2ð1þ prÞ þ 2prÞ
ðp� 1Þðx2ð4k2 þ 1þ prÞ � k2pþ k2Þ

�
;

B4 ¼
ðr2p� 1Þ � ð1þ prÞB6

p� 1
;

B5 ¼
vg
�
�B6ð1þ prÞ þ ðr2p� 1Þ

�

p� 1
þ 2ðk2 þ 1þ prÞ2x

ð1� pÞ2k
;

B6 ¼
1

p� 1þ v2gð1þ prÞk2ðp� 1Þ
h
vgk

2ðp2r2 � pr2 � pþ 1Þ þ 4xk3ð1þ prÞ

þ 2xk þ 4xkprþ 2xkp2r2 � 2x2k4

� 4x2k2prð1þ prÞ

� 2x2 � 4x2pr� 2x2p2r2
i
:

Finally, by using the above derived expressions for the

third order (n ¼ 3) and l ¼ 1 component, we get the

following nonlinear Schr€odinger equation:

i
o/
os

þ R
o2/

on2
þ Sj/j2/ ¼ 0; ð18Þ

where / ¼ /ð1Þ
1 for simplicity. The dispersion coefficient R

is given by

R ¼ 1

ðk2 þ 1þ prÞk3x2ðk2 þ 1þ prÞ � k þ prÞ
h
�4vgk

3prw2 � 4vgk
3x2

� 3vgkx
2 � 2vgk

3prþ 2xk2prþ 2k3x3

þ 2vgk
3p� vgk

5x2 þ 2vgk
5 � 2xk2p2r

þ 2vgk
3p2rþ 2k5x3 � 2xk4p� 2xk2p

þ 2v2gk
2x� p2r2x3k þ 2xk4p� 2vgk

6x2

2vgk
4x2 � 3vgkx

2p2r2 þ 2vgk
4x2pr

þ 4v2gk
2xprþ 4v2gk

4xprþ vgk
2p2r2x2

þ 2v2gk
2xp2r2 � 2prx3k � x3k � 2k3x3

� k5x3 � 2vgk
5 � x3k4 þ 2vgk

2prx2

� 6vgkx
2prþ vgk

2x2 þ 2vgk
4x2 þ 2prx3

þ x3 � 2vgk
4x2prþ p2r2x3 � 2vgk

3

þ 2xk2 þ vgk
6x2 þ 4v2gk

4xþ 2v2gk
6x

i
;

and the nonlinear coefficient S is
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S ¼ � 1

2xðp� 1Þ2
h
2kxvgp

2r2 � 2kxvgpr
2 þ 6x2

þ 2kxvg � 8k2x2B3 þ 5x2p2r2

� x2pr2 þ 8x2k2prþ 9x2k2

þ 2kxvgB6 � 2kxvgB6p

� 2kxvgp� 2kxvgpþ 8k2x2B3p

þ 2x2B3p
2r� 2x2B3pr� 2x2B6p

2r

þ 2x2B6prþ 9x2prþ 2k2B3p
2 � 4k2B3p

� 2kxvgB6p
2rþ 2kxvgB6pr� 2x2B3

þ 2x2B3pþ 2x2B6 � 2x2B6p� x2pþ 4x2k4

þ 2k2B3

i
:

3. Modulational instability analysis to the NLS

equation

In order to examine the modulational instability profile of

the ion-acoustic wave in e–p–i plasma, we consider the

plane wave solution for Eq. (18) in the form

/ ¼ /0exp½iðknþ xsÞ�; ð19Þ

where /0 is the constant real amplitude. The real wave

number (k) with ðxÞ as real frequency of the wave solution.
Substituting the above solution in Eq. (18), we obtain the

appropriate nonlinear (perturbation) dispersion relation.

x ¼ S/2
0 � Rk2: ð20Þ

From Eq. (20), one can infer that the plane wave is

nonlinear and the principle of superposition fails. In order

to examine the MI of the carrier wave, we apply small

perturbation of Eq. (19) which takes the form.

/ ¼ ½/0 þ d/ðn; sÞ�exp½iðknþ xsÞ�; ð21Þ

where d/ is the small amplitude perturbation. Accordingly,

the perturbed field grows exponentially, the steady state

solution undergoes unstable. Substituting Eq. (21) into

Eq. (18) and neglecting terms with higher orders of the

perturbation amplitude, we get the linearized equation as.

id _/� xd/þ R½d/nn þ 2ikd/n � k2d/�
þ S½2/2

0d/þ /2
0d/

�� ¼ 0;
ð22Þ

where the asterisk represents the complex conjugate. We

seek for solutions of Eq. (22) in the form

d/ ¼ g1exp½iðQn� XsÞ� þ g�2exp½�iðQn� X�sÞ�; ð23Þ

where Q and X are the modulational wave number and real

perturbation frequency, g1 and g�2 are the complex constant

amplitudes. Equation (23) represents a combination of

progressive and regressive waves. Inserting Eq. (23) into

Eq. (22) results in a set of two homogeneous equations,

which are equivalent to the matrix equation
�
X� xþ Rð�Q2 � 2kQ� k2Þ þ Sð2/2

0Þ
�
g1

þ S/2
0g2 ¼ 0;

�
�X� xþ Rð�Q2 þ 2kQ� k2Þ þ Sð2/2

0Þ
�
g2

þ S/2
0g1 ¼ 0;

ð24Þ

and the associated matrix can be expressed as,

Xþ A B
B � Xþ D

� 	
g1
g2

� 	
¼ 0

0

� 	
; ð25Þ

where

A ¼� xþ R
h
� Q2 � 2kQ� k2

i
þ S

h
2/2

0

i
;

B ¼S/2
0;

D ¼� xþ R
h
� Q2 þ 2kQ� k2

i
þ S

h
2/2

0

i
:

From Eq. (25) the following nonlinear dispersion relation

for the amplitude modulation of ion acoustic wave is

derived

X ¼ D� A

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ DÞ2 � 4B2

q

2
: ð26Þ

Equation (26) possesses both the real and imaginary values

of X. The real part of X represents a frequency shift

relative to the uniform modes and the imaginary part of X
determines the growth rate of the modulation of wave

number Q. The stability of the nonlinear wave is

determined by imaginary of X. It is apparent from this

relation that if ImX[ 0 the wave will be modulational

unstable otherwise it is stable. The stability nature of the

wave is determined by the imaginary part of X. It is

interesting to note from Eq. (26) that when

ðAþ DÞ2 [ 4B2, the wave is modulational stable due to

the frequency of the wave is real for all the Q. On the other

hand, the wave packet is modulational unstable when ðAþ
DÞ2\4B2 because of the negative value for all the

modulated wave number(Q) respectively. The MI gain

gðXÞ is generally defined as gðXÞ ¼ �ImðXÞ, and thus the

instability growth rate is obtained as

gðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 � ðAþ DÞ2

q

2
: ð27Þ

where Im represents the imaginary part and the appearance

of localized solitary structures exists only when the
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constant amplitude is undergoing unstable wavepacket.

When X\0, the steady-state solution becomes unstable.

Since the perturbation grows exponentially with the

intensity given by the growth rate or MI gain. The study of

linear stability analysis can predict the instability region in

parameter space and shows qualitatively how the amplitude

of a modulation sideband produces the onset of the

instability.

4. Description of modified extended tanh function

(METF) method

The study of exact traveling wave solutions has played a

widespread role in nonlinear phenomena governing the

nonlinear partial differential equations. It appears in vari-

ous fields of science such as solid-state physics, fluid

dynamics, plasma physics, optical fibers, chemical kine-

matics, geochemistry, fluid dynamics, chemical physics,

elastic physics and so on. Solitons are the solutions of a

spacious class of weakly nonlinear dispersive partial dif-

ferential equations explaining the physical systems. It is

arisen by the effect of nonlinear and dispersive terms in the

medium. In recent years various substantial methods have

been elucidated to inspect the exact solutions of nonlinear

equations, such as Hirota direct method [47], tanh sech

method [48], B€acklund transformation method [49],

homogeneous balance method [50], F-expansion method

[51], (G0/G) expansion method [52], Jacobi elliptic func-

tion method [53] were employed to find the solution for

dispersive and dissipative problems. Several authors put

much effort to seek exact soliton solutions to nonlinear

partial differential equations. Tanh method is one of the

most powerful direct methods for establishing the wave

solution of nonlinear partial differential equations

(NLPDE). This method was firstly reported by Mal-

fliet [54]. Later, Fan [55] has developed the extended tanh

function method and found out the traveling wave solutions

that cannot be obtained by the tanh function method.

Recently, using the modified extended tanh method the

new exact traveling wave solutions have developed by El-

Wakil et al. [56]. To illustrate the basic concepts of the

modified extended tanh-function method (METF), we

consider a following nonlinear PDEs as follows

Fðu; un; us; unn; . . .Þ ¼ 0; ð28Þ

when we look for its traveling wave solutions, the first step

is to introduce the wave transformation uðn; sÞ ¼ uðcÞ, c ¼
nþ cs or c ¼ n� cs and to change the Eq. (28) to an

ordinary differential equation (ODE) of the form:

Fðu; uc; ucc; . . .Þ ¼ 0: ð29Þ

The next crucial step is that we propose the following

series expansion for a solution of Eq. (29)

uðcÞ ¼ a0 þ
XN

i¼1

ðaiui þ
XN

i¼1

biu
�iÞ; ð30Þ

and

du
dc

¼ bþ u2; ð31Þ

where b is a parameter to be resolved and the positive

integer N can be found by balancing the highest order

linear term with the nonlinear terms in (29). Substituting

Eqs. (30–31) into Eq. (29) and then setting zero to all the

coefficients of ui, we can obtain a system of algebraic

equations, from which the constants ai, bi, b, c (where

i ¼ 0; . . .N) are obtained explicitly. Fortunately, the Riccati

equation admits several types of solutions: (a) If b\0

u ¼ �
ffiffiffiffiffiffiffi
�b

p
tanhð

ffiffiffiffiffiffiffi
�b

p
cÞ;

�
ffiffiffiffiffiffiffi
�b

p
cothð

ffiffiffiffiffiffiffi
�b

p
cÞ

�

(b) If b ¼ 0:

u ¼ �1

c
; ð32Þ

(c) If b[ 0

u ¼
ffiffiffi
b

p
tanð

ffiffiffi
b

p
cÞ;

�
ffiffiffiffiffiffiffi
�b

p
cotð

ffiffiffi
b

p
cÞ

�

4.1. Application of description method to NLS

equation

To study the exact traveling wave solutions of the non-

linear Schr€odinger equation given in Eq. (18), we consider

a plane wave transformation in this form:

/ðn; sÞ ¼ PðcÞ þ iMðcÞ: ð33Þ

Applying the transformation /ðn; sÞ ¼ /ðcÞ, c ¼ n� cs to
Eq. (18), we obtain the following differential equation

� icPc �Mc þ RPcc þ iRMcc þ SP3ðcÞ
þ iSP2ðcÞMðcÞ þ iSM3ðcÞ
þ iSM2ðcÞPðcÞ ¼ 0:

ð34Þ

Separating real and imaginary parts of the equation

Mc þ RPcc þ SP3ðcÞ þ SM2ðcÞPðcÞ ¼ 0; ð35Þ

�cPc þ RMcc þ SP2ðcÞMðcÞ þ SM3ðcÞ ¼ 0: ð36Þ

The solution can be expressed as
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PðcÞ ¼ a0 þ
XN

i¼1

ðaiui þ biu
�iÞ; ð37Þ

MðcÞ ¼ b0 þ
XN

j¼1

ðcju j þ dju
�jÞ: ð38Þ

Substituting u0ðcÞ ¼ bþ u2 and balancing the highest

order linear term with the nonlinear term we get the value

of N as 1. So, the solution takes the form:

PðcÞ ¼ a0 þ a1uþ b1u
�1: ð39Þ

MðcÞ ¼ b0 þ c1uþ d1u
�1: ð40Þ

Upon substituting Eqs. (39–40) in the ordinary differential

Eqs. (35–36) will yield a system of algebraic equations

with respect to ai, bi, ci, di and b. The system of equations

is futher solved by using symbolic computation and we

obtain

a1 ¼
1

18

h6b20SRa
2
0 � 2b40SR� b20c

2 � 3a20c
2

cb0a
2
0S

i
;

b1 ¼
6Sa20b0c

2b20SRþ c2
;

c1 ¼ �
h2b20SRþ c2

3a0Sc

i
; d1 ¼ 0; b ¼ �6b20S

2a20
2b20SRþ c2

:

ð41Þ

Then by inserting Eq. (41) in Eqs. (39–40) and the solution

recasts:

PðcÞ ¼ a0 þ a1

h
�

ffiffiffiffiffiffiffi
�b

p
tanh

� ffiffiffiffiffiffiffi
�b

p
ðn� csÞ

�i

þ b1

h
�

ffiffiffiffiffiffiffi
�b

p
tanh

� ffiffiffiffiffiffiffi
�b

p
ðn� csÞ

�i�1

;

MðcÞ ¼ b0 þ c1

h
�

ffiffiffiffiffiffiffi
�b

p
tanh

� ffiffiffiffiffiffiffi
�b

p
ðn� csÞ

�i
:

ð42Þ

Hence solutions of Eq. (33) turn out to be

Fig. 1 Snapshots of stability/instability region in the (K, Q) plane with the choices of parameters /0 ¼ 1:8, x ¼ 0:04. Along with r ¼ 0:5
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/ ¼ a0 þ
6b20SRa

2
0 � 2b40SR� b20c

2 � 3a20c
2

18cb0a
2
0S

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

tanh
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

ðn� csÞ
ii

þ 6Sa20b0c

2b20SRþ c2

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

�

tanh
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

ðn� csÞ
ii�1

þ i
h
b0 �

2b20SRþ c2

3a0Sc

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

tanh
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b20S

2a20
2b20SRþ c2

s

ðn� csÞ
iii

:

ð43Þ

where Eq. (43) represents the traveling wave solutions of

Eq. (18) which describes the propagation of ion acoustic

soliton.

5. Results and discussion

In this model of plasma, I have studied the modulational

instability analysis of ion-acoustic solitary waves in an

electron–positron–ion plasma considering the effects of

positron concentration (p) and the ratio of electron temper-

ature to positronðrÞ respectively. Figures 1 and 2 show the

stability/instability zone of the growth rate of the

wavenumber (k, Q) plane for different values of relevant

plasma parameters for the solution of Eq. (27). From

Fig. 1(a-c) we can obviously note that, for any fixed arbitrary

Fig. 2 Snapshots of stability/instability region in the (K, Q) plane with the choices of parameters /0 ¼ 1:8, x ¼ 0:04. Along with p ¼ 0:1
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values of /0 ¼ 1:8, x ¼ 0:004 and r ¼ 0:5, the instability

growth rate is shown to suppress with increasing positron

concentration. Figure 2 demonstrates that the effect of r on

the stability/instability region of the growth rate of IAWs

when the other parameters are fixed. Thus, the ratio of

electron temperature to positron ðrÞ plays a crucial role to

Fig. 3 The modulational instability gain of Eq. (27) for the parametric values of /0 ¼ 1:8, x ¼ 0:04 when r ¼ 0:5
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change the stability of the wave packets. The group disper-

sive coefficient (R) and the nonlinear coefficient (S) depend

on a number of physical parameters such as positron

concentration and the ratio of electron temperature to posi-

tron. Thus, these physical parameters are expected to sig-

nificantly influence the stability characteristics of the

Fig. 4 The modulational instability gain of Eq. (27) for the parametric values of /0 ¼ 1:8, x ¼ 0:04 when p ¼ 0:1
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modulated ion-acoustic wave. Therefore, it is important to

study the dependence of the stability profile of themodulated

ion-acoustic waves on various physical parameters. From

plot (a) in Fig. 3, it is found that for any fixed arbitrary values

of /0 ¼ 1:8, x ¼ 0:004 and r ¼ 0:5, the localized soliton

excitation is obtained. Further increasing the positron con-

centration the unstable zone is suppressed as depicted in

Fig. 3(b, c). From this plot, we can observe that the presence

of positron concentration plays amarvelous role to generates

a stable wave. As is widely known, the driving force of the

ion-acoustic wave is offered by the ion inertia and the

increasing positron concentration (p) implies the depopula-

tion of ions. The corresponding 2d plot is also inspected in

Fig. 3(a–c). As obvious from the plot, the amplitude of the

solitary wave decreases with increasing the value of p. This

situation indicates that the soliton energy decreases with an

increasing p. From Fig. 4, for a definite value of p ¼ 0:1 and

keeping the other parameters constant and for r ¼ 0:5 leads

to the evolution of localized solitary wave structures. Further

increasing the controlling parameter r from 1.7 to 2.5, the

amplitude of the soliton is abruptly decreased. FromFig. 4, it

is evident that for a selected set of parameters the region of

the instability is decreased. The corresponding 2d plot is

exploited in Fig. 4(a–c). The interesting finding from this

investigation is that the soliton energy is decreased due to the

effects of both the physical parameters p and r. To obtain

more information about the modulational instability, we plot

in Fig. 5(a, b) themodulational instability growth rate, under

the influence of p and r. Figure 5(a) portrays that the growth

rate gðXÞ as functions of Q with different values of ðpÞ ¼
0:06 (solid line), 0.09 (dashed line) and 0.25 (dotted line). It

is obvious that as the value of p increases the growth rate is

Fig. 5 Snapshots of stability/instability region in the (K, Q) plane with the choices of parameters /0 ¼ 1:8, x ¼ 0:04. Along with (a) r ¼ 0:5
and (b) p ¼ 0:1

Fig. 6 Variation of the frequency x against the wave number (k) for different values of p with (a) r ¼ 0:09 and different values of r with

(b) p ¼ 0:5
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gradual decreases. Apparently, as p increases, both ampli-

tude andwidth are observed to decrease. In Fig. 5(b), depicts

that the variation of gðXÞ with respect to wavenumber Q for

various values of r ¼ 0:5 (solid line), 1.7 (dashed line) and

2.5 (dotted line) with constant values of /0 ¼ 1:8, x ¼
0:004 and r ¼ 0:5. This result shows that an increase of r the
growth rate of instability is diminished. It is found that the

amplitude and width of the soliton decrease with an increase

of r. Physically, the increasing of the ðrÞ lead to dissipate the

energy from the system and reduce the nonlinearity that

makes the IAWs amplitude shorter. So the positron con-

centration (p) and the ratio of electron temperature to posi-

tron r can be recognized to suppress of theMI growth rate of

our considered plasma model.

The dispersion relation for IAWs (Eq. 20) to propagate

in plasma medium is presented in Fig. 6. Figure 6(a) de-

picts that variation of frequency (x) versus wave number

(k) for different values of p. It is clear from Fig. 6(a) that an

Fig. 7 Snapshots of anti-soliton excitations and its contour plots (a–c) for Eq. (43) with respect to the positron concentration (p). Other
parameters are taken as x ¼ 0:8, k ¼ 0:03, c ¼ 0:05, a0 ¼ 0:8, b0 ¼ 0:1 and r ¼ 0:05
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increase in the value of p would lead to decrease in the

value of the x. On the other hand, higher values of the r
result in lower frequency values at constant values of p ¼
0:5 is shown in Fig. 6(b). Figure 7 indicates the profile of

the exact traveling wave solutions of Eq. (43) by choosing

the parametric values x ¼ 0:8, k ¼ 0:03, c ¼ 0:05,

a0 ¼ 0:8, b0 ¼ 0:1 and r ¼ 0:05. Upon increasing the

positron concentration the solution takes the form of anti-

soliton structure. Also, the enhancement in the positron

concentration causes some fluctuations in the amplitude of

the soliton which is shown in Fig. 7(b, c). A similar effect

is witnessed in Fig. 8 for different values of electron

temperature to a positron (r). Figure 8(a) portrays that for

r ¼ 0:05, the solution exhibits antisoliton structures. Fur-

ther increasing the value of ðrÞ the amplitude of the soliton

is changed as depicted in Fig. 8(b, c). This seems that the

increase in positron concentration (p) and the ratio of

Fig. 8 Snapshots of antisoliton excitations and its contour plots (a–c) for Eq. (43) with respect to the ratio of electron temperature to positron

ðrÞ. Other parameters are taken as x ¼ 0:8, k ¼ 0:03, c ¼ 0:05, a0 ¼ 0:8, b0 ¼ 0:1 and p ¼ 0:1
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electron temperature to a positron (r) change the amplitude

of the IAWs system.

6. Conclusions

In this paper, I have considered a multicomponent plasma

consisting of hot positrons, cold ion and hot isothermal

electrons. Using the reductive perturbation technique, the

NLS equation has been derived. Themodulational instability

of ion-acoustic waves and localized excitations in electron–

positron–ion plasmas have been studied under the influence

of positron concentration and the ratio of electron tempera-

ture to positron. Furthermore, the growth rate of instability

has been analyzed. It is observed that the stability of these

solitary structures strongly depend on both the parameters p

and r. According to modified extended tanh-function

method (METF) the exact traveling wave solutions are

obtained. The effects of the physical parameters inaugurates

the antisoliton excitations. It is also manifested that the

significance of plasma parameters affect the amplitude and

width of the soliton. From this analysis we can conclude that

the present results will bemeaningful in studying the features

of nonlinear excitations in space and astrophysical plasmas

in the presence of electron–positron–ion plasmas.
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