#### About the College

Vivekananda College of Arts and Sciences for Women established hailed (Autonomous) was and into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna Prof.Dr. M. KARUNANITHI, B.Pharm. M.S., Ph.D., D.Litt. sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode Namakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 19 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A+' for its successful performance.

As an Autonomous Institution, academic professionals of the college farm Curriculum and Syllabi in consultation with all its stakeholders to cater the needs the young women to fulfill the women empowerment and present Industrial needs the local benefits. The students are empowering with confidence and required to face the society.

#### **Quality Policy**

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with wellequipped infrastructure to all the rural women.

#### **Our Vision**

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and

1

technological service to the nation.

#### **Our Mission**

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

#### M.Sc. (Physics)

#### SCOPE OF THE COURSE

M.Sc. (Physics), the recent developments in Physical sciences, has been included in the enriched syllabus to meet out the present day needs of academic and research, institutions and industries. The program expects serious commitment of the student to take-up challenging students' schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of two years and equips a student with knowledge, ability, skills and other qualities required for a professional accountant.

The uniqueness of the program is its content and topic coverage, the teaching methodology and the faculty. The syllabus has been designed at a level equal to that of professional courses. The teaching methodologies include classroom lectures, industrial visits, orientation, internship, case study and research work. Focus is also on developing soft skills of the students. For Core subjects, Outsource Guest Lectures by Industrialists and Professional Men will be arranged to enable the students to get wider exposure.

#### SALIENT FEATURES

- ✓ Course is specially designed for a higher level Career Placement.
- ✓ Special Guest lecturers from Industrialists will be arranged.
- Exclusively caters to students interested in pursuing higher studies.
- ✓ Special Industry Orientations and Training are parts of the Degree Course.

✓ Project work is included in the syllabus to enhance conceptual, analytical & deductive skills.

### **OBJECTIVES OFTHE COURSE**

- ✓ The new syllabus throws light on the recent and emerging areas of Physics
- Enable the students understand Physics and make them more relevant to the society.
- Develop the analytical ability in students so that they are become objective solving problems.
- $\checkmark$  Help the students learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- Enable the students to go to higher levels of learning Physics.
- ✓ Improve the employability of the students.
- To inspire the students to apply their knowledge gained for the development of society in general.

### ELIGIBILITYFORADMISSION

Candidates seeking admission to the first year Degree course (M.Sc. Physics) shall be required to have passed an Under Graduate degree, i.e. B.Sc. (Physics or Applied Sciences) of the Periyar University or an examination of some other University accepted by the syndicate as equivalent there to shall b permitted to be eligible.

#### **DURATION OFTHE COURSE**

The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The First semester will consist of the period from July to November and the Second semester from December to March.

The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.

Each subject will have five hours of lecture per week apart from

practical training at the end of each semester.

## CONTINUOUSINTERNAL ASSESSMENT

The performance of the students will be assessed continuously and the Internal Assessment Marks will be asunder:

|                        | Total | = 25Marks |
|------------------------|-------|-----------|
| Attendance             |       | - 5Marks  |
| Assignment             |       | - 5Marks  |
| Seminar                |       | - 5Marks  |
| Average of three Tests |       | -10 Marks |

## The distribution of attendance marks is given as follows,

| 76-80 %  | - 1 Mark  |
|----------|-----------|
| 81-85 %  | - 2 Marks |
| 86-90 %  | - 3 Marks |
| 91-95 %  | - 4 Marks |
| 96-100 % | - 5 Marks |

## **QUESTION PAPERPATTERN:**

Question Paper Pattern for the Examinations

Time:3Hours

Maximum Marks: 75

**Part-A** Answer all the questions (Objective Type)

(10x1=10 Marks)

Part-B Answer all the following questions (Either or Type)

(7x5=35 Marks)

**Part – C** Answer any three questions (out of five)

(3 x 10 = 30 Marks)

# PASSING MINIMUM

In the University Examinations, the passing minimum shall be 40 % out of 75 Marks for theory (38 marks) and 40% out of 60 marks for practical (24 Marks).

### ELIGIBILITYFOR EXAMINATION

A candidate will be permitted to appear for the University Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. Itshallbeopentograntexemptiontoacandidateforvalidreasonssubjectto conditions prescribed.

# CLASSIFICATION OFSUCCESSFULCANDIDATES

Successful candidates passing the examination of Core Courses (main and allied subjects) and securing marks

- a. 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the course at first appearance itself.
- b. 60% and above but below 75 % shall be declared to have passed the examinations in first class without Distinction.
- c. 50% and above but below 60% shall be declared to have passed the examinations in second-class.
- d. All the remaining successful candidates shall be declared to have passed the examinations in third-class.
- e. Candidates who pass all the examinations prescribed for the course at the first appearance itself and within a period of three consecutive academic years from the year of admission only will be eligible for University rank.

#### **COMMENCEMENT OF THESE REGULATIONS**

These regulations shall take effect from the academic year 2023 - 2024 (i.e for the students who are to be admitted to the first year of the course during the academic year 2023 - 2024 and thereafter.

# SYLLABUS FRAME WORK 2023 – 2024 Onwards (Revision)

Г

| SEMESTER- I     |                                                                  |                                               |         |        |      |               |               |               |
|-----------------|------------------------------------------------------------------|-----------------------------------------------|---------|--------|------|---------------|---------------|---------------|
| Subject<br>Code |                                                                  | Subject Title                                 | Hrs     | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P1PHC01       | Core – I                                                         | Mathematical<br>Physics                       | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P1PHC02       | Core – II                                                        | Classical<br>Mechanics and<br>Relativity      | 5       | 4      | 3    | 25            | 75            | 100           |
| 23P1PHC03       | Core – III                                                       | Linear and<br>Digital ICs and<br>Applications | 5       | 4      | 3    | 25            | 75            | 100           |
| 23P1PHDE01      | Elective – I*                                                    | Materials<br>Science                          | 4       | 3      | 3    | 25            | 75            | 100           |
| 23P1PHCP01      | Practical                                                        | Practical – I                                 | 6       | 3      | 4    | 40            | 60            | 100           |
| 23P1PHPC01      | Professional<br>Competency<br>Course                             | Semiconductor<br>devices                      | 2       | 2      | 3    | 25            | 75            | 100           |
| 23P1PHAC01      | Soft Skill – I<br>Ability<br>Enhancement<br>Compulsory<br>Course | Laser Physics<br>and its<br>Applications      | 2       | 2      | 3    | 25            | 75            | 100           |
| Total           |                                                                  |                                               | 30      | 22     | 22   | 190           | 510           | 700           |
|                 |                                                                  | SEM                                           | ESTER - | II     |      |               |               |               |
| Subject<br>Code |                                                                  | Subject Title                                 | Hrs     | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P2PHC04       | Core - IV                                                        | Statistical<br>Mechanics                      | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P2PHC05       | Core - V                                                         | Quantum<br>Mechanics –I                       | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P2PHDE02      | Elective – II*                                                   | Physics of<br>Nanoscience<br>and technology   | 4       | 3      | 3    | 25            | 75            | 100           |
| 23P3PHDE03      | Elective – III*                                                  | Medical Physics                               | 4       | 3      | 3    | 25            | 75            | 100           |

| 23P2PHCP02      | Practical                                                         | Practical - II                                  | 6       | 3      | 4    | 40            | 60            | 100           |
|-----------------|-------------------------------------------------------------------|-------------------------------------------------|---------|--------|------|---------------|---------------|---------------|
| 23P2PHS01       | Skill<br>Enhancement<br>Course – I                                | Electronics in daily life                       | 2       | 2      | 3    | 25            | 75            | 100           |
| 23P2PHAC02      | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | Solar Physics                                   | 2       | 2      | 3    | 25            | 75            | 100           |
| Total           |                                                                   |                                                 | 30      | 21     | 22   | 190           | 510           | 700           |
|                 |                                                                   | SEMI                                            | ESTER - | III    |      | 1             | 1             | 1             |
| Subject<br>Code |                                                                   | Subject Title                                   | Hrs     | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P3PHC06       | Core - VI                                                         | Quantum<br>Mechanics –II                        | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P3PHC07       | Core - VII                                                        | Spectroscopy                                    | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P3PHC08       | Core - VIII                                                       | Electromagnetic<br>Theory                       | 5       | 4      | 3    | 25            | 75            | 100           |
| 23P3PHDE04      | Elective – IV*                                                    | Choose any one<br>from the<br>Elective list III | 4       | 3      | 3    | 25            | 75            | 100           |
| 23P3PHCP03      | Core<br>Practical - III                                           | Practical – III                                 | 6       | 4      | 4    | 40            | 60            | 100           |
| 23P3HR01        | Common<br>subject                                                 | Human Rights                                    | 1       | 1      | 3    | 25            | 75            | 100           |
| 23P3PHS02       | Skill<br>Enhancement<br>Course – III                              | Scientific<br>Research<br>Process               | 2       | 2      | 3    | 25            | 75            | 100           |
| 23P3C3INT01     |                                                                   | Internship /<br>Industrial<br>Activity          | -       | 2      | -    | -             | -             | -             |
| Total           |                                                                   |                                                 | 30      | 23     | 22   | 190           | 510           | 700           |

|                 | SEMESTER - IV                                                     |                                            |     |        |      |               |               |               |
|-----------------|-------------------------------------------------------------------|--------------------------------------------|-----|--------|------|---------------|---------------|---------------|
| Subject<br>Code |                                                                   | Subject Title                              | Hrs | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P4PHC09       | Core – IX                                                         | Nuclear and<br>Particle Physics            | 6   | 4      | 3    | 25            | 75            | 100           |
| 23P4PHC10       | Core - X                                                          | Condensed<br>Matter Physics                | 5   | 4      | 3    | 25            | 75            | 100           |
| 23P4PHC11       | Core - XI                                                         | Computational<br>techniques for<br>Physics | 5   | 4      | 3    | 25            | 75            | 100           |
| 23P4PHCP04      | Core<br>Practical - IV                                            | Practical – IV                             | 6   | 4      | 4    | 40            | 60            | 100           |
| 23P4PHPR01      | Core - XII                                                        | Project with<br>Viva-Voce                  | 4   | 4      | -    | 25            | 75            | 100           |
| 23P4PHAC03      | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | Robotics, AI in<br>Physics                 | 2   | 2      | 3    | 25            | 75            | 100           |
| 23P3CHED1       | EDC                                                               | Applied<br>polymer<br>Chemistry            | 2   | 2      | 3    | 25            | 75            | 100           |
|                 |                                                                   | Extension<br>Activity                      | -   | 1      | -    | -             | -             | -             |
|                 | Total                                                             |                                            | 30  | 25     | 19   | 190           | 510           | 700           |
| Total (I &      | a II Years)                                                       |                                            | 120 | 91     | 85   | 760           | 2040          | 2800          |

• Elective I, II, III & IV selected from semester the elective list

| S.No | Code      | Course Title                                  |  |  |
|------|-----------|-----------------------------------------------|--|--|
| 1.   | 23P1PHC01 | Mathematical Physics                          |  |  |
| 2.   | 23P1PHC02 | Classical Mechanics and Relativity            |  |  |
| 3.   | 23P1PHC03 | Linear and Digital ICs and Applications       |  |  |
| 4.   | 23P2PHC04 | Statistical Mechanics                         |  |  |
| 5.   | 23P2PHC05 | Quantum Mechanics –I                          |  |  |
| 6.   | 23P3PHC06 | Quantum Mechanics –II                         |  |  |
| 7.   | 23P3PHC07 | Spectroscopy                                  |  |  |
| 8.   | 23P3PHC08 | Electromagnetic Theory                        |  |  |
| 9.   | 23P4PHC09 | Nuclear and Particle Physics                  |  |  |
| 10.  | 23P4PHC10 | Condensed Matter Physics                      |  |  |
| 11.  | 23P4PHC11 | Numerical Methods and Computer<br>Programming |  |  |

### **LIST OF CORE PAPRES**

# LIST OF ELECTIVES SEMESTER 1

| S.No | Code       | Course Title                   |
|------|------------|--------------------------------|
| 1    | 23P1PHDE01 | Materials Science              |
| 2    | 23P1PHDE02 | Crystal Growth and Thin films  |
| 3    | 23P1PHDE03 | Analysis of Crystal Structures |
| 4    | 23P1PHDE04 | Energy Physics                 |
| 5    | 23P1PHDE05 | Non-linear Dynamics            |

# LIST OF ELECTIVES SEMESTER II

| S.No | Code       | Course Title                           |
|------|------------|----------------------------------------|
| 1.   | 23P2PHDE01 | Plasma Physics                         |
| 2.   | 23P2PHDE02 | Physics of Nano Science and Technology |
| 3.   | 23P2PHDE03 | Medical Physics                        |
| 4.   | 23P2PHDE04 | Quantum Field Theory                   |
| 5.   | 23P2PHDE05 | General Relativity and Cosmology       |

#### LIST OF ELECTIVES SEMESTER III

| S.No | Code       | Course Title                                    |
|------|------------|-------------------------------------------------|
| 1.   | 23P3PHDE01 | Advanced Mathematical Physics                   |
| 2.   | 23P3PHDE02 | Advanced Spectroscopy                           |
| 3.   | 23P3PHDE03 | Microprocessor 8085 and Microcontroller<br>8051 |
| 4.   | 23P3PHDE04 | Scientific Research Process                     |
| 5.   | 23P3PHDE05 | Characterization of Materials                   |

# LIST OF ELECTIVES SEMESTER IV

| 1. | 23P3PHDE01 | Solid Waste Management (SWM)                 |
|----|------------|----------------------------------------------|
| 2. | 23P3PHDE02 | Sewage and Waste Water Treatment and Reuse   |
| 3. | 23P3PHDE03 | Solar Energy Utilization                     |
| 4. | 23P4PHDE04 | Bio Physics                                  |
| 5. | 23P4PHDE05 | Robotics, Artificial Intelligence in Physics |

# **LIST OF PRACTICALS**

| S.No | Code       | Course Title    |
|------|------------|-----------------|
| 1.   | 23P1PHCP01 | Practical - I   |
| 2.   | 23P2PHCP02 | Practical - II  |
| 3.   | 23P3PHCP03 | Practical – III |
| 4.   | 23P4PHCP04 | Practical - IV  |

#### **PROGRAM OUTCOMES**

| LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR |                                                                  |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------|--|--|--|
| DEMINING                                         | POSTGRADUATE EDUCATION                                           |  |  |  |
| Programme                                        | M.Sc., Physics                                                   |  |  |  |
| Programme                                        | PPH                                                              |  |  |  |
| Code                                             |                                                                  |  |  |  |
| Duration                                         | PG – 2 years                                                     |  |  |  |
|                                                  | PO1: Problem Solving Skill                                       |  |  |  |
|                                                  | Apply knowledge of Management theories and Human                 |  |  |  |
|                                                  | Resource practices to solve business problems through            |  |  |  |
|                                                  | research in Global context.                                      |  |  |  |
|                                                  | PO2: Decision Making Skill                                       |  |  |  |
|                                                  | Foster analytical and critical thinking abilities for data-based |  |  |  |
|                                                  | decision-making.                                                 |  |  |  |
| Programme                                        | PO3: Ethical Value                                               |  |  |  |
| Outcomes (Pos)                                   | Ability to incorporate quality, ethical and legal value-based    |  |  |  |
| 0 2000 100 (1 00)                                | perspectives to all organizational activities.                   |  |  |  |
|                                                  | PO4: Communication Skill                                         |  |  |  |
|                                                  | Ability to develop communication, managerial and                 |  |  |  |
|                                                  | interpersonal skills.                                            |  |  |  |
|                                                  | PO5: Individual and Team Leadership Skill                        |  |  |  |
| Capability to lead themselves and the team to ac |                                                                  |  |  |  |
|                                                  | organizational goals.                                            |  |  |  |
|                                                  | PO6: Employability Skill                                         |  |  |  |
|                                                  | Inculcate contemporary business practices to enhance             |  |  |  |
|                                                  | employability skills in the competitive environment.             |  |  |  |

|           | PO7: Entrepreneurial Skill                                    |  |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------|--|--|--|--|--|--|--|
|           | Equip with skills and competencies to become an               |  |  |  |  |  |  |  |
|           | entrepreneur.                                                 |  |  |  |  |  |  |  |
|           | PO8: Contribution to Society                                  |  |  |  |  |  |  |  |
|           | Succeed in career endeavors and contribute significantly to   |  |  |  |  |  |  |  |
|           | society.                                                      |  |  |  |  |  |  |  |
|           | PO 9 Multicultural competence                                 |  |  |  |  |  |  |  |
|           | Possess knowledge of the values and beliefs of multiple       |  |  |  |  |  |  |  |
|           | cultures and a global perspective.                            |  |  |  |  |  |  |  |
|           | PO 10: Moral and ethical awareness/reasoning                  |  |  |  |  |  |  |  |
|           | Ability to embrace moral/ethical values in conducting one's   |  |  |  |  |  |  |  |
|           | life.                                                         |  |  |  |  |  |  |  |
|           | PSO1 – Placement                                              |  |  |  |  |  |  |  |
|           | To prepare the students who will demonstrate respectful       |  |  |  |  |  |  |  |
|           | engagement with others' ideas, behaviors, and beliefs and     |  |  |  |  |  |  |  |
|           | apply diverse frames of reference to decisions and actions.   |  |  |  |  |  |  |  |
|           | PSO 2 - Entrepreneur                                          |  |  |  |  |  |  |  |
|           | To create effective entrepreneurs by enhancing their critical |  |  |  |  |  |  |  |
|           | thinking, problem solving, decision making and leadership     |  |  |  |  |  |  |  |
| Programme | skill that will facilitate startups and high potential        |  |  |  |  |  |  |  |
| Specific  | organizations.                                                |  |  |  |  |  |  |  |
| Outcomes  | PSO3 – Research and Development                               |  |  |  |  |  |  |  |
| (PSOs)    | Design and implement HR systems and practices grounded        |  |  |  |  |  |  |  |
|           | in research that comply with employment laws, leading the     |  |  |  |  |  |  |  |
|           | organization towards growth and development.                  |  |  |  |  |  |  |  |
|           | PSO4 – Contribution to Business World                         |  |  |  |  |  |  |  |
|           | To produce employable, ethical and innovative professionals   |  |  |  |  |  |  |  |
|           | to sustain in the dynamic business world.                     |  |  |  |  |  |  |  |
|           | <b>PSO 5 – Contribution to the Society</b>                    |  |  |  |  |  |  |  |
|           | To contribute to the development of the society by            |  |  |  |  |  |  |  |
|           | collaborating with stakeholders for mutual benefit.           |  |  |  |  |  |  |  |

| Semester-I                                                       | Credit | Semester-II                                                       | Credit | Semester-III                                       | Credit | Semester-IV                                                       | Credit |
|------------------------------------------------------------------|--------|-------------------------------------------------------------------|--------|----------------------------------------------------|--------|-------------------------------------------------------------------|--------|
| Core – I                                                         | 4      | Core - IV                                                         | 4      | Core - VI                                          | 4      | Core – IX                                                         | 4      |
| Core – II                                                        | 4      | Core - V                                                          | 4      | Core - VII                                         | 4      | Core - X                                                          | 4      |
| Core – III                                                       | 4      | Elective - II                                                     | 3      | Core - VIII                                        | 4      | Core - XI                                                         | 4      |
| Elective - I                                                     | 3      | Elective - III                                                    | 3      | Elective – IV                                      | 3      | Core – XII                                                        | 4      |
| Practical I                                                      | 3      | Practical II                                                      | 3      | Core Practical -<br>III                            | 4      | 4 Core Practical<br>- IV                                          |        |
| Professional<br>Competency<br>Course                             | 2      | Skill<br>Enhancement<br>Course – I                                | 2      | Common<br>subject                                  | 1      | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | 2      |
| Soft Skill – I<br>Ability<br>Enhancement<br>Compulsory<br>Course | 2      | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | 2      | Skill<br>Enhancement<br>Course – III               | 2      | EDC                                                               | 2      |
|                                                                  |        |                                                                   |        | Internship<br>/Industrial<br>Activity (15<br>days) | 1      | Extension<br>Activity                                             | 1      |
|                                                                  | 22     |                                                                   | 21     |                                                    | 23     |                                                                   | 25     |
| Total Credit Points                                              |        |                                                                   |        |                                                    |        |                                                                   | 91     |

# Credit Distribution for PG Programme

| S1.<br>No. | Subject                                  | No. of<br>Papers | Credit<br>Points | Total<br>Credit<br>Points |
|------------|------------------------------------------|------------------|------------------|---------------------------|
| 1.         | Core- Papers                             | 12               | 4                | 48                        |
| 2.         | Core Practical                           | 2                | 3                | 06                        |
| 4.         | Core Fractical                           | 2                | 4                | 08                        |
| 3.         | Elective                                 | 4                | 3                | 12                        |
| 4.         | Skill Enhancement Course – I             | 2                | 2                | 04                        |
| 5.         | Professional Competency Course           | 1                | 2                | 2                         |
| 6.         | Ability Enhancement Course- Soft Skill - | 3                | 2                | 6                         |
| 7.         | Extra Disciplinary Course (EDC)          | 1                | 2                | 2                         |
| 8.         | Internship/ Industrial Activity          | 1                | 1                | 01                        |
| 9.         | Extension Activity                       | 1                | 1                | 1                         |
| 10.        | Human Rights                             | 1                | 1                | 1                         |
|            | Total Credit Points                      | 30               | 25               | 91                        |

# METHOD OF EVALUATION: THEORY COURSES

| Continuous Internal |         | End Semester |    | Over all passing |         |
|---------------------|---------|--------------|----|------------------|---------|
| Assessment          |         | Examination  |    | Minimum          |         |
| Maximum             | Passing | Maximum      | 3  |                  | Passing |
| marks               | minimum | marks        |    |                  | minimum |
| 25                  | 12      | 75           | 38 | 100              | 50      |

# **Continuous Internal Assessment Breakup**

| S1. No. | CIA break up              | Marks |
|---------|---------------------------|-------|
| 1.      | CIA –I/ CIA II/Model Exam | 10    |
| 2.      | Assignment                | 05    |
| 3.      | Seminar                   | 05    |
| 4.      | Attendance                | 05    |

| Total | 25 |
|-------|----|
|       |    |

#### PRACTICAL COURSES

| Continuous Internal Assessment | End Semester<br>Examination | Total |
|--------------------------------|-----------------------------|-------|
| 40                             | 60                          | 100   |

#### **Practical courses breakup**

| S1. No. | practical courses    | Marks |
|---------|----------------------|-------|
| 1.      | Model Exam           | 20    |
| 2.      | Record & Observation | 10    |
| 3.      | attendance           | 10    |
|         | Total                | 40    |

Submission of Record Notebooks For Practical Examinations

Candidates taking the Practical Examinations should submit bonafide Record Note Books prescribed for the Practical Examinations with due certification by Staff in-charge and HOD is a must for External Practical Examination (for both Regular and Arrear Candidates). Otherwise, the candidates will not be permitted to take the Practical Examinations. Allocation of Marks for University Practical Examinations:

#### Allocation of Marks for University Practical Examinations:

| Record                             | 10 Marks    |
|------------------------------------|-------------|
| Formula and Formula Description    | 10 Marks    |
| Circuit Diagrams / Diagrams        | 08 Marks    |
| Observation-Tabulation and Reading | gs 20 Marks |
| Calculations                       | 15 Marks    |
| Presentation                       | 02 Marks    |
| Result                             | 05 Marks    |
| Viva-Voce                          | 05 Marks    |
| TOTAL                              | 75 Marks    |

#### **PROJECT VIVA-VOCE**

| Internal assessment | External | Total |
|---------------------|----------|-------|
| 25                  | 75       | 100   |

#### **Project – Internal Marks Breakup**

| S1. No. | Project           | Marks |
|---------|-------------------|-------|
| 1.      | Project Work      | 15    |
| 2.      | Continuous Review | 10    |
|         | Total             | 25    |

#### **PROJECT AND VIVA-VOCE EXAM**

Students are required to submit a Project report at the end of Semester - IV and also required to make presentation of the project work during Vivavoce Examination. The Project work shall be based on research-oriented topics both in the fields of theoretical and experimental physics under the guidance of a faculty member of the Department as a Project Supervisor. In the course of the project, the student will refer books, Journals or collect literature/data by the way of visiting research institutes / industries. He/she may even do experimental /theoretical work in his/her college. After completion of the project work by the end of semester IV, each student should submit THREE copies of the project report with a minimum of 50 pages not exceeding 70 pages to the Department on or before the date notified for the same.

#### FORMAT FOR PREPARATION OF PROJECT REPORT

# The sequence in which the project should be arranged and bound should be as follows

- 1. Cover Page and Title Page
- 2. Certificate
- 3. Declaration
- 4. Acknowledgement (not exceeding one page)
- 5. Contents (12 Font size, Times New Roman with 1.5 or double line spacing)
- 6. List of Figures / Exhibits / Charts
- 7. List of tables

8. Symbols and notations

9. Chapters

10. Result and Discussion

- 11. Conclusion
- 12. References

13. Xerox Copies of Publications/Certificates of Seminar, Conference Participation

The bifurcation of marks for project will be as follows:

- 1. Plan of the Project : 25 Marks
- 2. Evaluation of the Project Report : 75 Marks
- 3. Viva- Voce Examination : 25 Marks

# DISTRIBUTION OF MARKS FOR EVAUATION OF PROJECT REPORT & VIVA-VOCE

(a) Execution of the Plan/Collection of Data/ : 40 Marks Organisation of Materials / Presentation of the report /Novelty of the project

(b)Presentation of project in state level/National : 10 Marks level Seminar / Publication

(c).Viva-Voce (Preparation, Presentation of work and Response to questions) : 25 Marks

# EXAMINATION

For the purpose of uniformity, particularly for inter-departmental transfer of credits, there will be a uniform procedure credits, there will be a uniform procedure of examinations to be adopted by all teachers offering courses.

# **DISTRIBUTION OF MARKS:**

# (a)The following are the distribution of external and internal marks for Theory papers.

. i).External Exam. : 75 Marks Passing Minimum : 38 Marks ii). Internal Exam : 25 Marks Passing Minimum : 12 Marks

## **QUESTION PAPER PATTERN**

The following question paper pattern shall be followed for the candidates admitted from the academic year 2023–2024 (revision) onwards.

Time: 3 Hours

Maximum: 75 Marks

# $Part - A (10 \times 1 = 10 Marks)$

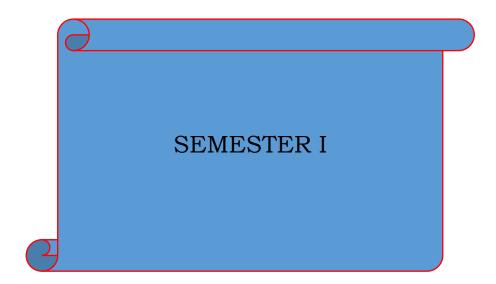
Answer ALL the Questions

Three Questions from each unit

10 multiple choice questions with four options

## Part - B (5 x 7 = 35 Marks)

Answer Any TWO Questions out of FIVE One Question from each unit with either or Type. All Questions carry equal Marks.


# Part - C (3 x 10 = 30 Marks)

Answer ALL the Questions.

One Question from each unit.

All Questions carry equal Marks.

#### ONLINE COURSES SWAYAM, NPTEL, Websites etc.



|                 | SEMESTER- I                                                      |                                               |     |        |      |               |               |               |
|-----------------|------------------------------------------------------------------|-----------------------------------------------|-----|--------|------|---------------|---------------|---------------|
| Subject<br>Code |                                                                  | Subject Title                                 | Hrs | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P1PHC01       | Core – I                                                         | Mathematical<br>Physics                       | 6   | 4      | 3    | 25            | 75            | 100           |
| 23P1PHC02       | Core – II                                                        | Classical<br>Mechanics and<br>Relativity      | 5   | 4      | 3    | 25            | 75            | 100           |
| 23P1PHC03       | Core – III                                                       | Linear and<br>Digital ICs and<br>Applications | 5   | 4      | 3    | 25            | 75            | 100           |
| 23P1PHDE01      | Elective – I*                                                    | Materials<br>Science                          | 4   | 3      | 3    | 25            | 75            | 100           |
| 23P1PHCP01      | Practical                                                        | Practical – I                                 | 6   | 3      | 4    | 40            | 60            | 100           |
| 23P1PHPC01      | Professional<br>Competency<br>Course                             | Semiconductor<br>devices                      | 2   | 2      | 3    | 25            | 75            | 100           |
| 23P1PHAC01      | Soft Skill – I<br>Ability<br>Enhancement<br>Compulsory<br>Course | Laser Physics<br>and its<br>Applications      | 2   | 2      | 3    | 25            | 75            | 100           |
| Total           |                                                                  |                                               | 30  | 22     | 22   | 190           | 510           | 700           |

| Paper-1 - MAT   | I YEAR - FIRST SEMESTER |          |   |   |   |         |                |       |
|-----------------|-------------------------|----------|---|---|---|---------|----------------|-------|
| Subject<br>Code | Subject Name            | Category | L | Т | P | Credits | Inst.<br>Hours | Marks |
| 23P1PHC01       | MATHEMATICAL<br>PHYSICS | Core     |   |   |   | 4       | 6              | 75    |

# Pre-Requisites

Matrices, vectors, differentiation, integration, differential equations Learning Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics

| UNITS        | Course                                                            |
|--------------|-------------------------------------------------------------------|
| UNITS        | Details                                                           |
|              | Basic concepts – Definitions- examples of vector space –          |
| UNIT I:      | Linear independence - Scalar product- Orthogonality - Gram-       |
|              | Schmidt orthogonalization procedure -linear operators - Dual      |
| LINEAR       | space- ket and bra notation - orthogonal basis - change of        |
| VECTOR SPACE | basis – Isomorphism of vector space – projection operator –       |
|              | Eigen values and Eigen functions – Direct sum and invariant       |
|              | subspace – orthogonal transformations and rotation                |
|              | Review of Complex Numbers -de Moivre's theorem-Functions          |
|              | of a Complex Variable- Differentiability -Analytic functions-     |
|              | Harmonic Functions- Complex Integration- Contour                  |
| UNIT II:     | Integration, Cauchy – Riemann conditions – Singular points –      |
|              | Cauchy's Integral Theorem and integral Formula -Taylor's          |
| COMPLEX      | Series - Laurent's Expansion- Zeros and poles - Residue           |
| ANALYSIS     | theorem and its Application: Potential theory - (1) Electrostatic |
|              | fields and complex potentials - Parallel plates, coaxial          |
|              | cylinders and an annular region (2) Heat problems - Parallel      |
|              | plates and coaxial cylinders                                      |
|              | Types of Matrices and their properties, Rank of a Matrix -        |
| UNIT III:    | Conjugate of a matrix - Adjoint of a matrix - Inverse of a        |
|              | matrix - Hermitian and Unitary Matrices -Trace of a matrix-       |
| MATRICES     | Transformation of matrices - Characteristic equation - Eigen      |

|            | values and Eigen vectors - Cayley-Hamilton theorem -               |
|------------|--------------------------------------------------------------------|
|            | Diagonalization                                                    |
|            | Definitions -Fourier transform and its inverse - Transform of      |
|            | Gaussian function and Dirac delta function -Fourier                |
| UNIT IV:   | transform of derivatives - Cosine and sine transforms -            |
|            | Convolution theorem. Application: Diffusion equation: Flow of      |
| FOURIER    | heat in an infinite and in a semi - infinite medium - Wave         |
| TRANSFORMS | equation: Vibration of an infinite string and of a semi - infinite |
| රූ         | string.                                                            |
| LAPLACE    | Laplace transform and its inverse - Transforms of derivatives      |
| TRANSFORMS | and integrals – Differentiation and integration of transforms -    |
|            | Dirac delta functions - Application - Laplace equation:            |
|            | Potential problem in a semi - infinite strip                       |
| L          |                                                                    |

|              | Second order differential equation- Sturm-Liouville's theory -     |  |  |  |  |  |
|--------------|--------------------------------------------------------------------|--|--|--|--|--|
|              | Series solution with simple examples - Hermite polynomials         |  |  |  |  |  |
| UNIT V:      | - Generating function - Orthogonality properties -                 |  |  |  |  |  |
| UNII V.      | Recurrence relations - Legendre polynomials - Generating           |  |  |  |  |  |
| DIFFERENTIAL | function - Rodrigue formula – Orthogonality properties -           |  |  |  |  |  |
| EQUATIONS    | Dirac delta function- One dimensional Green's function and         |  |  |  |  |  |
| LQUATIONS    | Reciprocity theorem -Sturm-Liouville's type equation in one        |  |  |  |  |  |
|              | dimension & their Green's function.                                |  |  |  |  |  |
| UNIT VI:     | Expert Lectures, Online Seminars - Webinars on Industrial          |  |  |  |  |  |
| PROFESSIONAL | Interactions/Visits, Competitive Examinations, Employable          |  |  |  |  |  |
| COMPONENTS   | and Communication Skill Enhancement, Social                        |  |  |  |  |  |
|              | Accountability and Patriotism                                      |  |  |  |  |  |
|              | 1. George Arfken and Hans J Weber, 2012, Mathematical              |  |  |  |  |  |
|              | Methods for Physicists – A Comprehensive Guide (7th                |  |  |  |  |  |
|              | edition), Academic press.                                          |  |  |  |  |  |
|              | 2. P.K. Chattopadhyay, 2013, Mathematical Physics (2 <sup>nd</sup> |  |  |  |  |  |
|              | edition), New Age, New Delhi                                       |  |  |  |  |  |
| TEXT BOOKS   | 3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th           |  |  |  |  |  |
|              | Edition (Paperback), New Age International Pvt. Ltd.,              |  |  |  |  |  |
|              | India                                                              |  |  |  |  |  |
|              | 4. H. K. Dass and Dr. Rama Verma, 2014, Mathematical               |  |  |  |  |  |
|              | Physics, Seventh Revised Edition, S. Chand &                       |  |  |  |  |  |
|              | Company Pvt. Ltd., New Delhi.                                      |  |  |  |  |  |
|              | 1. E. Kreyszig, 1983, Advanced Engineering                         |  |  |  |  |  |
| REFERENCE    | Mathematics, Wiley Eastern, New Delhi,                             |  |  |  |  |  |
| BOOKS        | 2. D. G. Zill and M. R. Cullen, 2006, Advanced                     |  |  |  |  |  |
|              | Engineering Mathematics, 3rd Ed. Narosa, New Delhi.                |  |  |  |  |  |
|              | 3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series,            |  |  |  |  |  |

|             | McGraw - Hill, New York 3. E. Butkov, 1968,                  |  |  |  |  |
|-------------|--------------------------------------------------------------|--|--|--|--|
|             | Mathematical Physics Addison, Wesley, Reading,               |  |  |  |  |
|             | Massachusetts.                                               |  |  |  |  |
|             | 4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces,     |  |  |  |  |
|             | 2nd Edition, Affiliated East West, New Delhi.                |  |  |  |  |
|             | 1. <u>www.khanacademy.org</u>                                |  |  |  |  |
|             | 2. <u>https://youtu.be/LZnRlOA1_2I</u>                       |  |  |  |  |
|             | 3. <u>http://hyperphysics.phy-</u>                           |  |  |  |  |
| WEB SOURCES | <u>astr.gsu.edu/hbase/hmat.html#hmath</u>                    |  |  |  |  |
| WED SOURCES | 4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&amp;l</u>  |  |  |  |  |
|             | <u>ist=PLhkiT_RYTEU27vS_S1ED56gNjVJGO2qaZ</u>                |  |  |  |  |
|             | 5. <u>https://archive.nptel.ac.in/courses/115/106/115106</u> |  |  |  |  |
|             | <u>086/</u>                                                  |  |  |  |  |

# **COURSE OUTCOMES:**

# At the end of the course the student will be able to:

| <b>CO1</b> | Understand use of bra-ket vector notation and explain the               |                        |  |  |  |  |
|------------|-------------------------------------------------------------------------|------------------------|--|--|--|--|
|            | meaning of complete orthonormal set of basis vectors, and               | K1, K2                 |  |  |  |  |
|            | transformations and be able to apply them                               |                        |  |  |  |  |
| CO2        | Able to understand analytic functions, do complex integration,          |                        |  |  |  |  |
|            | by applying Cauchy Integral Formula. Able to compute many               | K2, K3                 |  |  |  |  |
|            | real integrals and infinite sums via complex integration.               |                        |  |  |  |  |
| CO3        | Analyze characteristics of matrices and its different types, and        | K4                     |  |  |  |  |
|            | the process of diagonalization.                                         | N-T                    |  |  |  |  |
| CO4        | Solve equations using Laplace transform and analyze the                 |                        |  |  |  |  |
|            | Fourier transformations of different function, grasp how these          | K4,                    |  |  |  |  |
|            | transformations can speed up analysis and correlate their               | K5                     |  |  |  |  |
|            | importance in technology                                                |                        |  |  |  |  |
| CO5        | To find the solutions for physical problems using linear                |                        |  |  |  |  |
|            | differential equations and to solve boundary value problems             | K2, K5                 |  |  |  |  |
|            | using Green's function. Apply special functions in                      | <b>N</b> 2, <b>N</b> 3 |  |  |  |  |
|            | computation of solutions to real world problems                         |                        |  |  |  |  |
| K1 - R     | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate |                        |  |  |  |  |

# MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 |
|-----|------------|-----|-----|-----|------------|------------|------------|-----|------------|------|
| CO1 | 3          | 3   | 3   | 3   | 3          | 3          | 3          | 2   | 3          | 2    |
| CO2 | 2          | 3   | 3   | 3   | 3          | 3          | 3          | 2   | 2          | 2    |
| CO3 | 3          | 3   | 3   | 2   | 2          | 3          | 3          | 2   | 3          | 2    |
| CO4 | 3          | 3   | 3   | 3   | 2          | 3          | 3          | 2   | 2          | 2    |
| CO5 | 3          | 2   | 3   | 3   | 2          | 3          | 3          | 2   | 2          | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2         |
| CO2 | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2         |
| CO3 | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2         |
| CO4 | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2         |
| CO5 | 3    | 2    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 3         |

# CLASSICAL MECHANICS AND RELATIVITY I YEAR - FIRST SEMESTER

| Subject<br>Code | Subject Name                             | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|------------------------------------------|----------|---|---|---|---------|----------------|-------|
| 23P1PHC02       | CLASSICAL<br>MECHANICS AND<br>RELATIVITY | Core     |   |   |   | 4       | 5              | 75    |

### **Pre-Requisites**

Fundamentals of mechanics, Foundation in mathematical methods.

# Learning Objectives

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

| UNITS                                                        | Course Details                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>PRINCIPLES OF<br>CLASSICAL<br>MECHANICS           | Mechanics of a single particle – mechanics of a system of<br>particles – conservation laws for a system of particles –<br>constraints – holonomic & non-holonomic constraints –<br>generalized coordinates – configuration space –<br>transformation equations – principle of virtual work.                                                                                                         |
| UNIT II:                                                     | D'Alembert's principle - Lagrangian equations of motion for                                                                                                                                                                                                                                                                                                                                         |
| LAGRANGIAN                                                   | conservative systems – applications: (i) simple pendulum (ii)                                                                                                                                                                                                                                                                                                                                       |
| FORMULATION                                                  | Atwood's machine (iii) projectile motion.                                                                                                                                                                                                                                                                                                                                                           |
| UNIT III:<br>HAMILTONIAN<br>FORMULATION<br>UNIT IV:<br>SMALL | Phase space – cyclic coordinates – conjugate momentum –<br>Hamiltonian function – Hamilton's canonical equations of<br>motion – applications: (i) simple pendulum (ii) one<br>dimensional simple harmonic oscillator (iii) motion of particle<br>in a central force field.<br>Formulation of the problem – transformation to normal<br>coordinates – frequencies of normal modes – linear triatomic |
| OSCILLATIONS<br>UNIT V:<br>RELATIVITY                        | molecule.<br>Inertial and non-inertial frames – Lorentz transformation<br>equations – length contraction and time dilation – relativistic<br>addition of velocities – Einstein's mass-energy relation –                                                                                                                                                                                             |

|                                        | Minkowski's space – four vectors – position, velocity,<br>momentum, acceleration and force in for vector notation and<br>their transformations                                                         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable<br>and Communication Skill Enhancement, Social Accountability<br>and Patriotism |

| TEXT BOOKS         | <ol> <li>H. Goldstein, 2002, <i>Classical Mechanics</i>, 3rd Edition,<br/>Pearson Edu.</li> <li>J. C. Upadhyaya, <i>Classical Mechanics</i>, Himalaya<br/>Publshing. Co. New Delhi.</li> <li>Panat P.V, Introduction to Classical Mechanics – CBS<br/>publishers and distributors Pvt. Ltd, New Delhi, 1905.</li> <li>N. C. Rana and P.S. Joag, Classical Mechanics - Tata<br/>McGraw Hill, 2001</li> </ol>                                                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE<br>BOOKS | <ol> <li>S. N. Biswas, , <i>Classical Mechanics</i>, Books &amp; Allied,<br/>Kolkata. 1999</li> <li>Gupta and Kumar, <i>Classical Mechanics</i>, Kedar Nath.</li> <li>T.W.B. Kibble, <i>Classical Mechanics</i>, ELBS.</li> <li><u>B.D. Gupta</u>, Satya Prakash, <i>Classical Dynamics</i>, KNRN<br/>Publications, Meerut.</li> </ol>                                                                                                                              |
| WEB SOURCES        | <ol> <li>http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics<br/>Goldstein_Classical_Mechanics_optimized.pdf</li> <li>https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-<br/>2014-editionpdf-pdf-free.html</li> <li>https://nptel.ac.in/courses/122/106/122106027/</li> <li>https://ocw.mit.edu/courses/physics/8-09-classical-<br/>mechanics-iii-fall-2014/lecture-notes/</li> <li>https://www.britannica.com/science/relativistic-<br/>mechanics</li> </ol> |

### **COURSE OUTCOMES:**

# At the end of the course the student will be able to:

| CO1 | Understand the fundamentals of classical mechanics.                                                                      | K2        |
|-----|--------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2 | Apply the principles of Lagrangian and Hamiltonian<br>mechanics to solve the equations of motion of physical<br>systems. | КЗ        |
| CO3 | Apply the principles of Lagrangian and Hamiltonian<br>mechanics to solve the equations of motion of physical<br>systems. | K3,<br>K5 |

| CO4    | Analyze the small oscillations in systems and determine their  | K4, |  |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|
|        | normal modes of oscillations.                                  | K5  |  |  |  |  |  |  |  |  |
| CO5    | Understand and apply the principles of relativistic kinematics | K2, |  |  |  |  |  |  |  |  |
|        | to the mechanical systems.                                     | К3  |  |  |  |  |  |  |  |  |
| K1 - R | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – |     |  |  |  |  |  |  |  |  |
| Evalua | Evaluate                                                       |     |  |  |  |  |  |  |  |  |

# MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1 | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 2   | 2    |
| CO2 | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 2   | 2    |
| CO3 | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 2   | 2    |
| CO4 | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 2   | 2    |
| CO5 | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 2   | 2    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1 |
|------------|------|------|------|------|------|------|------|------|------|------|
|            |      |      |      |      |      |      |      |      |      | 0    |
| <b>CO1</b> | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2    |
| CO2        | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    |
| CO3        | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2    |
| CO4        | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2    |
| C05        | 3    | 2    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2    |

# LINEAR AND DIGITAL ICs & APPLICATIONS

# I YEAR - FIRST SEMESTER

| Subject<br>Code | Subject Name                                  | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|-----------------------------------------------|----------|---|---|---|---------|----------------|-------|
| 23P1PHC03       | LINEAR AND DIGITAL<br>ICs AND<br>APPLICATIONS | Core     |   |   |   | 4       | 5              | 75    |

# **Pre-Requisites**

Knowledge of semiconductor devices, basic concepts of digital and analog electronics

## Learning Objectives

- > To introduce the basic building blocks of linear integrated circuits.
- To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

| UNITS                                 | Course Details                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:                               |                                                                                                                                                                                                                                                                                                                                                                                      |
| INTEGRATED                            | Introduction, Classification of IC's, basic information of Op-                                                                                                                                                                                                                                                                                                                       |
| CIRCUITS AND                          | Amp 741 and its features, the ideal Operational amplifier,                                                                                                                                                                                                                                                                                                                           |
| OPERATIONAL                           | Op-Amp internal circuit and Op-Amp. Characteristics.                                                                                                                                                                                                                                                                                                                                 |
| AMPLIFIER                             |                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT II:<br>APPLICATIONS<br>OF OP-AMP | LINEAR APPLICATIONS OF OP-AMP: Solution to<br>simultaneous equations and differential equations,<br>Instrumentation amplifiers, V to I and I to V converters.<br>NON-LINEAR APPLICATIONS OF OP-AMP:<br>Sample and Hold circuit, Log and Antilog amplifier,<br>multiplier and divider, Comparators, Schmitt trigger,<br>Multivibrators, Triangular and Square waveform<br>generators. |
| UNIT III:                             | ACTIVE FILTERS: Introduction, Butterworth filters - 1st                                                                                                                                                                                                                                                                                                                              |
| ACTIVE                                | order, 2nd order low pass and high pass filters, band pass,                                                                                                                                                                                                                                                                                                                          |
| FILTERS &                             | band reject and all pass filters.                                                                                                                                                                                                                                                                                                                                                    |
| TIMER AND                             | TIMER AND PHASE LOCKED LOOPS: Introduction to IC                                                                                                                                                                                                                                                                                                                                     |
| PHASE                                 | 555 timer, description of functional diagram, monostable                                                                                                                                                                                                                                                                                                                             |

| LOCKED                 | and astable operations and applications, Schmitt trigger,    |  |  |  |  |  |  |  |  |
|------------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|--|
| LOOPS                  | PLL - introduction, basic principle, phase                   |  |  |  |  |  |  |  |  |
|                        | detector/comparator, voltage controlled oscillator (IC 566), |  |  |  |  |  |  |  |  |
|                        | ow pass filter, monolithic PLL and applications of PLL       |  |  |  |  |  |  |  |  |
|                        | <b>VOLTAGE REGULATOR</b> : Introduction, Series Op-Amp       |  |  |  |  |  |  |  |  |
| UNIT IV:               | regulator, IC Voltage Regulators, IC 723 general purpose     |  |  |  |  |  |  |  |  |
| VOLTAGE                | regulators, Switching Regulator.                             |  |  |  |  |  |  |  |  |
| <b>REGULATOR &amp;</b> | D to A AND A to D CONVERTERS: Introduction, basic            |  |  |  |  |  |  |  |  |
| D to A AND A           | DAC techniques -weighted resistor DAC, R-2R ladder DAC,      |  |  |  |  |  |  |  |  |
| to D                   | inverted R-2R DAC, A to D converters -parallel comparator    |  |  |  |  |  |  |  |  |
| CONVERTERS             | type ADC, counter type ADC, successive approximation         |  |  |  |  |  |  |  |  |
|                        | ADC and dual slope ADC, DAC and ADC Specifications.          |  |  |  |  |  |  |  |  |

| UNIT V:      | <b>CMOS LOGIC:</b> CMOS logic levels, MOS transistors, Basic          |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|
| CMOS LOGIC,  | CMOS Inverter, NAND and NOR gates, CMOS AND-OR-                       |  |  |  |  |  |  |  |
| COMBINATIO   | INVERT and OR-AND-INVERT gates, implementation of any                 |  |  |  |  |  |  |  |
| NAL          | function using CMOS logic. COMBINATIONAL CIRCUITS                     |  |  |  |  |  |  |  |
| CIRCUITS     | <b>RCUITS</b> USING TTL 74XX ICs: Study of logic gates using 74XX ICs |  |  |  |  |  |  |  |
| USING TTL    | Four-bit parallel adder (IC 7483), Comparator (IC 7485),              |  |  |  |  |  |  |  |
| 74XX ICs     | Decoder (IC 74138, IC 74154), BCDto 7-segment decoder                 |  |  |  |  |  |  |  |
| &            | C7447), Encoder (IC74147), Multiplexer (IC74151),                     |  |  |  |  |  |  |  |
| SEQUENTIAL   | Demultiplexer (IC 74154).                                             |  |  |  |  |  |  |  |
| CIRCUITS     | SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops                    |  |  |  |  |  |  |  |
| USING TTL    | (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC     |  |  |  |  |  |  |  |
| 74XX ICs     | 74194), 4- bit asynchronous binary counter (IC 7493).                 |  |  |  |  |  |  |  |
|              | Expert Lectures, Online Seminars - Webinars on Industrial             |  |  |  |  |  |  |  |
| UNIT VI:     | Interactions/Visits, Competitive Examinations, Employable             |  |  |  |  |  |  |  |
| PROFESSIONAL | and Communication Skill Enhancement, Social Accountability            |  |  |  |  |  |  |  |
| COMPONENTS   | and Patriotism                                                        |  |  |  |  |  |  |  |
|              | 1. Ramakant A. Gayakwad, (2012), OP-AMP and Linear                    |  |  |  |  |  |  |  |
|              | Integrated Circuits, 4th edition, Prentice Hall / Pearson             |  |  |  |  |  |  |  |
|              | Education, New Delhi.                                                 |  |  |  |  |  |  |  |
|              | 2. B.L. Theraja and A.K. Theraja, 2004, A Textbook of                 |  |  |  |  |  |  |  |
|              | Electrical technology, S. Chand & Co.                                 |  |  |  |  |  |  |  |
| TEXT BOOKS   | 3. V.K. Mehta and Rohit Mehta, 2008, Principles of                    |  |  |  |  |  |  |  |
|              | Electronics, S. Chand & Co, 12th Edition.                             |  |  |  |  |  |  |  |
|              | 4. V. Vijayendran, 2008, Introduction to Integrated                   |  |  |  |  |  |  |  |
|              | electronics (Digital & Analog), S. Viswanathan Printers               |  |  |  |  |  |  |  |
|              | & Publishers Private Ltd, Reprint. V.                                 |  |  |  |  |  |  |  |
| DEEDENGE     | 1. Sergio Franco (1997), Design with operational amplifiers           |  |  |  |  |  |  |  |
| REFERENCE    | and analog integrated circuits, McGraw Hill, New Delhi.               |  |  |  |  |  |  |  |
| BOOKS        | 2. Gray, Meyer (1995), Analysis and Design of Analog                  |  |  |  |  |  |  |  |
| L            |                                                                       |  |  |  |  |  |  |  |

| elhi.              |
|--------------------|
| d                  |
| ew Delhi           |
| edition,           |
|                    |
| Ialkias,           |
|                    |
| 3/                 |
| <u>perational</u>  |
|                    |
| emicondu           |
|                    |
| <u>op-amp/</u>     |
| <u>nics-logic-</u> |
|                    |
|                    |

# **COURSE OUTCOMES:**

## At the end of the course the student will be able to:

| C01      | Learn about the basic concepts for the circuit configuration for<br>the design of linear integrated circuits and develops skill to<br>solve problems | K1,<br>K5 |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| CO2      | Develop skills to design linear and non-linear applications<br>circuits using Op-Amp and design the active filters circuits.                         | К3        |  |  |  |  |  |
| CO3      | Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.              | K1,<br>K3 |  |  |  |  |  |
| CO4      | Learn about various techniques to develop A/D and D/A converters.                                                                                    | K2        |  |  |  |  |  |
| CO5      | Acquire the knowledge about the CMOS logic, combinational                                                                                            | K1,       |  |  |  |  |  |
| K1 - Ren | and sequential circuitsK4K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate                                                     |           |  |  |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|     | <b>PO1</b> | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|------------|-----|-----|------------|-----|------------|------------|------------|-----|------|
| CO1 | 3          | 3   | 3   | 3          | 2   | 2          | 3          | 3          | 3   | 2    |
| CO2 | 3          | 3   | 3   | 3          | 1   | 3          | 3          | 3          | 2   | 1    |

| CO3 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 2 | 1 |
|-----|---|---|---|---|---|---|---|---|---|---|
| CO4 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 2 | 1 |
| CO5 | 3 | 3 | 3 | 2 | 1 | 1 | 2 | 3 | 2 | 1 |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|------------|------|------|------|------|------|------|------|------|------|-----------|
| <b>CO1</b> | 3    | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 3    | 2         |
| CO2        | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1         |
| CO3        | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1         |
| CO4        | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1         |
| CO5        | 3    | 3    | 3    | 2    | 1    | 1    | 2    | 3    | 2    | 1         |

| Elective-I : MA | TERIALS SCIENCE   | I YEAR- FII | RST | SE | ME | STEI    | ર          |       |
|-----------------|-------------------|-------------|-----|----|----|---------|------------|-------|
| Subject<br>Code | Subject Name      | Category    | L   | т  | P  | Credits | Inst.Hours | Marks |
| 23P1PHDE01      | MATERIAL SSCIENCE | ELECTIVE    |     |    |    | 3       | 4          | 75    |

| Pre              | Pre-Requisites                                                         |  |  |  |  |
|------------------|------------------------------------------------------------------------|--|--|--|--|
| $\triangleright$ | Basic knowledge on different types of materials                        |  |  |  |  |
| Lea              | rning Objectives                                                       |  |  |  |  |
| $\triangleright$ | To gain knowledge on optoelectronic materials                          |  |  |  |  |
| $\triangleright$ | To learn about ceramic processing and advanced ceramics                |  |  |  |  |
| $\triangleright$ | To understand the processing and applications of polymeric materials   |  |  |  |  |
| $\triangleright$ | To gain knowledge on the fabrication of composite materials            |  |  |  |  |
|                  | To learn about shape memory alloys, metallic glasses and nanomaterials |  |  |  |  |

| UNITS                                   | Course details                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I: OPTO<br>ELECTRONICMATE<br>RIALS | Importance of optical materials properties: Bandgap and<br>lattice matching – optical absorption and emission – charge<br>injection, quasi-Fermi levels and recombination–optical<br>absorption, loss and gain. Optical processes in quantum<br>structures: Inter-band and intra-band transitions Organic<br>semiconductors. Light propagation in materials–Electro-<br>optic effect and modulation, electro-absorption modulation–<br>exciton quenching. |
| UNIT II:<br>CERAMICMATE<br>RIALS        | Ceramic processing: powder processing, milling and<br>sintering structural ceramics :zirconia, almina, silicon<br>carbide, tungsten carbide–electronic ceramics–refractories –<br>glass and glass ceramics                                                                                                                                                                                                                                                |
| UNIT III :<br>POLYMERICMA<br>TERIALS    | Polymers and copolymers – molecular weight measurement –<br>synthesis: chain growth polymerization–polymerization<br>techniques–glass transition temperature and its<br>measurement – visco elasticity – polymer processing<br>techniques–applications: conducting polymers, bio polymers<br>and high temperature polymers.                                                                                                                               |

| UNIT IV :<br>COMPOSITE<br>MATERIALS   | Particle reinforced composites – fiber reinforced composites–<br>mechanical behavior –fabrication methods of polymer matrix<br>composites and metal matrix composites–carbon/carbon<br>composites: fabrication and applications.<br>Shape memory alloys: mechanisms of one-way and two-way                                                                                                                                         |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNITV:<br>NEWMATERIALS                | shape memory effect, reverse transformation, thermo-<br>elasticity and pseudo-elasticity, examples and applications -<br>bulk metallic glass: criteria for glass formation and stability,<br>examples and mechanical behavior-nanomaterials:<br>classification, size effect on structural and functional<br>properties, processing and properties of Nanocrystalline<br>materials, single walled and multi-walled carbon nanotubes |
| UNIT<br>VI:PROFESSIONAL<br>COMPONENTS | Expert Lectures, Online Seminars - Webinars on<br>Industrial Interactions/Visits, Competitive Examinations,<br>Employable and Communication Skill Enhancement<br>Social Accountability and Patriotism                                                                                                                                                                                                                              |
| TEXT BOOKS                            | <ol> <li>Jasprit Singh, Electronic and optoelectronic<br/>properties of semiconductor structures, Cambridge<br/>UniversityPress, 2007</li> <li>P.K.Mallick. Fiber- Reinforced Composites. CRC Press,<br/>2008.</li> <li>V.Raghavan, 2003, Materials Science and Engineering,<br/>4<sup>th</sup>Edition, Prentice-HallIndia, New Delhi (For units 2,3,<br/>4 and 5)</li> </ol>                                                      |
|                                       | <ul> <li>4. G.K.Narula, K.S.Narulaand V.K.Gupta, 1988, Materials<br/>Science, Tata McGraw-Hill</li> <li>5. M. Arumugam, 2002, Materials Science, 3<sup>rd</sup> revised<br/>Edition, Anuratha Agencies</li> </ul>                                                                                                                                                                                                                  |
|                                       | <ol> <li>B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J.<br/>Murday. Textbook of Nanoscience and Nanotechnology.<br/>Springer-Verlag, 2012.</li> </ol>                                                                                                                                                                                                                                                                          |
| REFERENCE<br>BOOKS                    | <ol> <li>K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki<br/>(Eds). Shape Memory and Super Elastic Alloys:<br/>Technologies and Applications. Woodhead Publishing<br/>Limited, 2011.</li> </ol>                                                                                                                                                                                                                                |
|                                       | <ol> <li>Lawrence H. Van Vlack, 1998. Elements of Materials<br/>Science and Engineering, 6<sup>th</sup>Edition, Second ARE<br/>Ereprint, Addison-Wesley.</li> </ol>                                                                                                                                                                                                                                                                |

|             | <ol> <li>H. Iabch and H. Luth, 2002, Solid State Physics – An<br/>Introduction to Principles of Materials Science,2<sup>nd</sup><br/>Edition, Springer.</li> </ol>        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 5. D. Hull & T.W. Clyne, An introduction to composite materials, Cambridge University Press,2008.                                                                         |
|             | 1. https://onlinecourses.nptel.ac.in/noc20_mm02/preview                                                                                                                   |
|             | 2. https://nptel.ac.in/courses/112104229                                                                                                                                  |
| WEB SOURCES | 3. <u>https://archive.nptel.ac.in/courses/113/105/</u><br><u>113105081</u>                                                                                                |
|             | 4. <u>https://nptel.ac.in/courses/113/105/113105025/</u>                                                                                                                  |
|             | <ol> <li>https://eng.libretexts.org/Bookshelves/Materials_Scienc<br/>e/Supplemental_MModules_(Materials_Science)/Electr<br/>onic_Properties/Lattice_Vibrations</li> </ol> |

COURSEOUTCOMES:

# At the end of the course, the student will be able to:

| <b>CO</b> 1 | Acquire knowledge on opto electronic materials                                   | K1     |
|-------------|----------------------------------------------------------------------------------|--------|
| CO2         | Be able to prepare ceramic materials                                             | К3     |
| соз         | Beabletounderstandtheprocessingandapplicationsofpolymericma terials              | K2, K3 |
| CO4         | Beware of the fabrication of composite materials                                 | K5     |
| CO5         | Be knowledge able of shape memory alloys, metallic glasses and<br>Nano materials | K1     |

MAPPINGWITHPROGRAMOUTCOMES:

Map course outcomes (CO)for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-pointscale of STRONG (3),MEDIUM(2) and LOW(1).

|     | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 2   | 3   | 3   | 2   | 2   | 2   | 2          | 1   | 2   | 3    |
| CO2 | 2   | 3   | 3   | 2   | 2   | 2   | 2          | 1   | 2   | 2    |
| CO3 | 2   | 3   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 2    |
| CO4 | 1   | 3   | 2   | 3   | 2   | 3   | 2          | 2   | 2   | 2    |

| CO5 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |   |   |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 2     |
| CO3 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO4 | 1    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO5 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |

| Professional Co<br>SEMICONDUCT | I YEAR- FIRSTSEMESTER    |                                      |   |   |   |         |            |       |
|--------------------------------|--------------------------|--------------------------------------|---|---|---|---------|------------|-------|
| Subject Code                   | Subject Name             | Category                             | L | т | Р | Credits | Inst.Hours | Marks |
| 23P1PHPC01                     | SEMICONDUCTOR<br>DEVICES | Professional<br>Competency<br>Course |   |   |   | 2       | 2          | 75    |

| Pre-I                  | Requisites                                                                                    |
|------------------------|-----------------------------------------------------------------------------------------------|
|                        | Basic knowledge on Semiconductor devices and its applications                                 |
| Lear                   | ning Objectives                                                                               |
| $\boldsymbol{\lambda}$ | To gain knowledge on various semiconductor diodes and their characteristics and applications. |
|                        | To learn about characteristics and applications of metal semiconductor devices.               |
| $\succ$                | To understand the various power control devices and its applications.                         |
|                        | To gain knowledge on the characteristics and applications of microwave device.                |

> To learn about characteristics of various photonic devices.

| UNITS                                     | Course details                                                                                                                           |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>SEMICONDUCTOR<br>DIODE         | Semiconductors – characteristics and applications of PN<br>Junction diode– Zener diode– Gunn diode–Varactor<br>diode–Schottky diode –LED |
| UNITII METAL-<br>SEMICONDUCTOR<br>DEVICES | JFET - Structure and Characteristics - MOSFET -<br>Depletion and Enhancement type MOSFET                                                 |
| UNIT III<br>POWER CONTROL<br>DEVICES      | Construction, V-I characteristics and applications of UJT, SCR, DIAC, TRIAC                                                              |
| UNIT IV<br>MICROWAVE                      | Tunnel diode – I-V characteristics of Tunnel diode –<br>IMPATT diode – MISS diode                                                        |

| DEVICES                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNITV:<br>PHOTONIC<br>DEVICES         | Photoconductor, Photodiode, quantum efficiency, PIN photodiode, hetero junction photodiode, avalanche photodiode - Photo transistors.                                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT<br>VI:PROFESSIONAL<br>COMPONENTS | ExpertLectures,OnlineSeminarsWebinarsIndustrialInteractions/Visits,CompetitiveExaminations,EmployableandCommunicationSkillEnhancement,SocialAccountabilityandPatriotism                                                                                                                                                                                                                                                                                                                                                                    |
| TEXT BOOKS                            | <ol> <li>Principles of Electronics, V.K.Mehta, S. Chand and<br/>Company, New Delhi(2015).</li> <li>A text book of Applied Electronics,<br/>R.S.Sedha,S.Chand&amp;Company,NewDelhi(2017).</li> <li>Modern Digital Electronics, R.P.Jain, Tata<br/>McGraw-Hill Edn., Publishing Company Ltd.,<br/>New Delhi(2010).</li> <li>Solid State Electronic Devices, B.G. Streetman, S.<br/>Banerjee, Prentice Hall(2009).</li> <li>Physics of Semiconductor Devices, S.M.Sze,<br/>Kwok K.Ng, John Wiley &amp; Sons, New Delhi<br/>(2011).</li> </ol> |
| REFERENCE<br>BOOKS                    | <ol> <li>SemiconductorPhysicsandDevices:BasicPrinciples,D.<br/>A.Neamen,McGraw-Hill (2003).</li> <li>Physicsof<br/>SemiconductorDevices,DilipK.Roy,UniversityPres<br/>s(India)PrivateLimited,Hyderabad(2004).</li> <li>Principles of Electronics, Partha Kumar and<br/>Ganguly, PHI Learning (P)Ltd., New Delhi<br/>(2015).</li> <li>Physics of Photonic Devices, Shun Lien Chuang,<br/>JohnWiley&amp;Sons,2ndEdition(2009).</li> </ol>                                                                                                    |
| WEBSOURCES                            | <ol> <li>https://open.umn.edu/opentextbooks/textbooks/57<br/>3</li> <li>https://www.khanacademy.org/science/electrical-<br/>engineering/ee-semiconductor-devices</li> <li>https://www.cambridge.org/core/books/abs/comp<br/>utational-electromagnetics-for-rf-and-microwave-<br/>engineering/web-<br/>resources/5DFE109913C5411D2E60C828A4F96F<br/>77</li> <li>https://technav.ieee.org/topic/microwave-devices</li> <li>https://technav.ieee.org/topic/microwave-devices</li> </ol>                                                       |

# At the end of the course, the student will be able to:

| <b>CO1</b> | Acquire knowledge on semiconductor diodes and applications         | K1           |  |  |  |  |  |
|------------|--------------------------------------------------------------------|--------------|--|--|--|--|--|
| CO2        | Be able to understand the working of various metal semiconductor   | кз           |  |  |  |  |  |
| 02         | devices                                                            |              |  |  |  |  |  |
| CO3        | Be able to understand the characteristics of various power control | <b>2 2 2</b> |  |  |  |  |  |
| 03         | devices                                                            |              |  |  |  |  |  |
| CO4        | Beware of the microwave devices and its applications               | K5           |  |  |  |  |  |
| CO5        | Be knowledgeable various photonic devices                          | K1           |  |  |  |  |  |
|            | member;K2–Understand;K3-Apply;K4 -Analyze;K5-Evaluate;             | RI           |  |  |  |  |  |

## MAPPINGWITHPROGRAMOUTCOMES:

|             | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | <b>PO6</b> | PO7 | PO8 | <b>PO9</b> | PO10 |
|-------------|------------|------------|-----|-----|-----|------------|-----|-----|------------|------|
| CO1         | 2          | 3          | 3   | 2   | 2   | 2          | 2   | 1   | 2          | 3    |
| CO2         | 2          | 3          | 3   | 2   | 2   | 2          | 2   | 1   | 2          | 2    |
| CO3         | 2          | 3          | 2   | 2   | 2   | 2          | 2   | 2   | 2          | 2    |
| CO4         | 1          | 3          | 2   | 3   | 2   | 3          | 2   | 2   | 2          | 2    |
| <b>CO</b> 5 | 2          | 3          | 2   | 2   | 2   | 2          | 2   | 2   | 2          | 2    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------------|------|------|------|------|------|------|------|------|------|-------|
| <b>CO1</b> | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2        | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 2     |
| CO3        | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 3    | 2     |
| CO4        | 1    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO5        | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |

# Soft Skill - I : Ability Enhancement Compulsory Course - LASER PHYSICS AND I YEAR- FIRSTSEMESTER APPLICATIONS

| SubjectCo<br>de | Subject Name                      | Category       | L | т | P | Credits | Inst.Hours | Marks |
|-----------------|-----------------------------------|----------------|---|---|---|---------|------------|-------|
| 23P1PHAC01      | LASER PHYSICS AND<br>APPLICATIONS | Soft Skill - I |   |   |   | 2       | 2          | 75    |

| Pre-             | Pre-Requisites                                     |  |  |  |  |  |  |
|------------------|----------------------------------------------------|--|--|--|--|--|--|
| $\triangleright$ | Basic knowledge on laser and its applications      |  |  |  |  |  |  |
| Lear             | rning Objectives                                   |  |  |  |  |  |  |
| $\triangleright$ | To gain knowledge on principle of laser.           |  |  |  |  |  |  |
| $\triangleright$ | To learn about characteristics of laser.           |  |  |  |  |  |  |
| $\triangleright$ | To understand the components of laser.             |  |  |  |  |  |  |
| $\triangleright$ | To gain knowledge on the different types of laser. |  |  |  |  |  |  |
| $\succ$          | To learn about the applications of laser.          |  |  |  |  |  |  |

| UNITS                               | Course Details                                                                                                                                                                             |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>PRINCIPLE OF<br>LASER    | Interaction of Light with matter– absorption–<br>transmission-Stimulated Absorption-spontaneous and<br>stimulated emission-Einstein Coefficient–their relations –<br>population inversion. |
| UNITII                              | Mono chromaticity– Coherence– Directionality-                                                                                                                                              |
| CHARACTERISTI                       | Brightness-Short Time Duration–Light Amplification-laser                                                                                                                                   |
| CS OF LASER                         | pumping–two level laser– three level laser– four level laser.                                                                                                                              |
| UNIT III<br>COMPONENTS<br>OF LASERS | Components of Laser-resonators-vibrational modes of<br>resonators-open resonators-control resonators-Q-factor-<br>losses in the resonance cavity-Modes of Laser beam-<br>transverse modes. |
| UNIT IV                             | Five types of lasers- Gas laser– CO <sub>2</sub> – Solid state laser–                                                                                                                      |
| TYPES OF                            | Helium Neon laser –Fiber laser–Liquid laser–Dye laser–                                                                                                                                     |
| LASERS                              | Semiconductor laser–diode laser.                                                                                                                                                           |
| UNITV:                              | Application of lasers in industry – medicine – Science                                                                                                                                     |
| APPLICATIONS                        | - Research – instrumentation                                                                                                                                                               |

| UNIT            | Expert Lectures, Online Seminars -                        |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------|--|--|--|--|--|--|--|
| VI:PROFESSIONAL | Webinars on Industrial Interactions/Visits,               |  |  |  |  |  |  |  |
| COMPONENTS      | Competitive Examinations, Employable and                  |  |  |  |  |  |  |  |
|                 | Communication Skill Enhancement, Social Accountability    |  |  |  |  |  |  |  |
|                 | and Patriotism                                            |  |  |  |  |  |  |  |
|                 | 1. M.N. Aravamudhan, An introduction to Laser theory      |  |  |  |  |  |  |  |
|                 | and application, S. Chand & Co. Pvt. Ltd, 2012.           |  |  |  |  |  |  |  |
|                 | 2. Nityan and Chowdry and Richa Verma, Laser              |  |  |  |  |  |  |  |
|                 | systems and applications, PHI, 2011.                      |  |  |  |  |  |  |  |
|                 | 3. R. Murugeshan and Kiruthiga sivaprasath,               |  |  |  |  |  |  |  |
| TEXTBOOKS       | Optics and Spectroscopy, S.Chand& Co, 2010.               |  |  |  |  |  |  |  |
|                 | 4. Subrahmanyam and Brijlal, A textbook of                |  |  |  |  |  |  |  |
|                 | Optics, S.Chand& Co., 2001,                               |  |  |  |  |  |  |  |
|                 | 5. R. Murugeshan and Kiruthiga sivaprasath,               |  |  |  |  |  |  |  |
|                 | Modern Physics, S.Chand & Co, 2014.                       |  |  |  |  |  |  |  |
|                 | 1. Lasers, Fundamentals and                               |  |  |  |  |  |  |  |
|                 | Applications, K. Thyagarajan, AjoyGhatak, Springer, 2011. |  |  |  |  |  |  |  |
|                 | 2. Lasers and Nonlinear Optics-B.B.Laud,Cambridge         |  |  |  |  |  |  |  |
|                 | UniversityPress,SecondEdition,2004.                       |  |  |  |  |  |  |  |
|                 | 3. Laser Physics, Peter W. Milonni, JosephH. Eberly, John |  |  |  |  |  |  |  |
| REFERENCEBOO    | Wiley & Sons, Inc., 2010.                                 |  |  |  |  |  |  |  |
| KS              | 4. An Advances in Optics, Photonics and Optoelectronics,  |  |  |  |  |  |  |  |
|                 | PremB Bishit, IOP Publishing Ltd,2022.                    |  |  |  |  |  |  |  |
|                 | 5. An introduction to Laser Spectroscopy, DavidL.         |  |  |  |  |  |  |  |
|                 | Andrews and Andrey, A.Demidov,                            |  |  |  |  |  |  |  |
|                 | Springer(India)PrivateLimited,NewDelhi,1995               |  |  |  |  |  |  |  |
|                 | 1. https://ocw.mit.edu/courses/res-6-005                  |  |  |  |  |  |  |  |
|                 | understanding-lasers-and-fiberoptics-spring-              |  |  |  |  |  |  |  |
|                 | 2008/resources/laser-fundamentalsi/                       |  |  |  |  |  |  |  |
|                 | 2. https://ehs.msu.edu/_assets/docs/laser/laser-          |  |  |  |  |  |  |  |
|                 | fundamentals-pt1-springer-2005.pdf                        |  |  |  |  |  |  |  |
| WEBSOURCES      | 3. https://technav.ieee.org/topic/laser-applications      |  |  |  |  |  |  |  |
|                 | 4.https://onlinelibrary.wiley.com/doi/book/10.1002/       |  |  |  |  |  |  |  |
|                 | 9780470409718                                             |  |  |  |  |  |  |  |
|                 | 5.https://www.olympuslifescience.com/en/icroscope-        |  |  |  |  |  |  |  |
|                 | resource/primer/lightandcolor/lasersintro/                |  |  |  |  |  |  |  |

## At the end of the course, the student will be able to:

| Acquire knowledge on working principle of laser.        | K1                                                                                                                                                              |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Be able to understand the characteristics of laser.     | K2                                                                                                                                                              |
| Be able to understand the various components of laser   | K3                                                                                                                                                              |
| Beware of the working process of different types lasers | K2, K4                                                                                                                                                          |
| Be knowledge able of applications of laser.             | K4                                                                                                                                                              |
| -                                                       | Be able to understand the characteristics of laser.Be able to understand the various components of laserBeware of the working process of different types lasers |

K1-Remember;K2–Understand;K3-Apply;K4 -Analyze;K5-Evaluate;

### MAPPINGWITHPROGRAMOUTCOMES:

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | 2          | 3   | 3   | 2   | 2   | 2   | 2   | 1   | 2   | 3    |
| CO2 | 2          | 3   | 3   | 2   | 2   | 2   | 2   | 1   | 2   | 2    |
| CO3 | 2          | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    |
| CO4 | 1          | 3   | 2   | 3   | 2   | 3   | 2   | 2   | 3   | 2    |
| CO5 | 2          | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 2     |
| CO3 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO4 | 2    | 3    | 2    | 3    | 1    | 3    | 2    | 2    | 2    | 2     |
| CO5 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |

Paper 4 - PRACTICAL I

#### **I YEAR - FIRST SEMESTER**

| Subject<br>Code | Subject Name | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|--------------|----------|---|---|---|---------|----------------|-------|
| 23P1PHCP01      | PRACTICAL I  | Core     |   |   |   | 3       | 6              | 75    |

### **Pre-Requisites**

Knowledge and hands on experience of basic general and electronics experiments of Physics

# Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

# **Course Details**

# (Any Twelve Experiments)

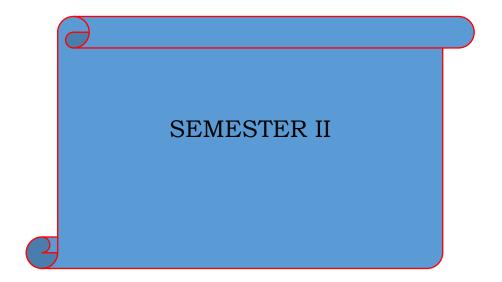
- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes -Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.

- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern -Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 23. Construction of relaxation oscillator using UJT
- 24. FET CS amplifier- Frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741.
- 26. V- I Characteristics of different colors of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Construction of Schmidt triggers circuit using IC 741 for a given hysteresisapplication as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

|            | 1. Practical Physics, Gupta and Kumar, PragatiPrakasan. |
|------------|---------------------------------------------------------|
| TEXT BOOKS | 2. Kit Developed for doing experiments in Physics-      |

| [         |                                                            |
|-----------|------------------------------------------------------------|
|           | Instruction manual,                                        |
|           | R. Srinivasan K.R Priolkar, Indian Academy of Sciences.    |
|           | 3. Electronic Laboratory Primer a design approach, S.      |
|           | Poornachandra,                                             |
|           | B. Sasikala, Wheeler Publishing, New Delhi.                |
|           | 4. Electronic lab manual Vol I, K ANavas, Rajath           |
|           | Publishing.                                                |
|           | 5. Electronic lab manual Vol II, K ANavas, PHI eastern     |
|           | Economy Edition                                            |
|           | 1. Advanced Practical Physics, S.P Singh, PragatiPrakasan. |
|           | 2. An advanced course in Practical Physics, D.             |
|           | Chattopadhayay, C.R Rakshit, New Central Book Agency       |
|           | Pvt. Ltd                                                   |
| REFERENCE | 3. Op-Amp and linear integrated circuit, Ramakanth A       |
| BOOKS     | Gaykwad, Eastern Economy Edition.                          |
|           | 4. A course on experiment with He-Ne Laser, R.S. Sirohi,   |
|           | John Wiley & Sons (Asia) Pvt. Ltd.                         |
|           | 5. Electronic lab manual Vol II, Kuriachan T.D, Syam       |
|           | Mohan, Ayodhya Publishing.                                 |
| L         | 1                                                          |

# At the end of the course the student will be able to:


| <b>CO1</b>   | Understand the strength of material using Young's modulus.                            | K2     |
|--------------|---------------------------------------------------------------------------------------|--------|
| CO2          | Acquire knowledge of thermal behavior of the materials.                               | K1     |
| CO3          | Understand theoretical principles of magnetism through the experiments.               | К2     |
| CO4          | Acquire knowledge about arc spectrum and applications of laser                        | K1, K3 |
| CO5          | Improve the analytical and observation ability in Physics<br>Experiments              | K3, K5 |
| CO6          | Conduct experiments on applications of FET and UJT                                    | K4     |
| CO7          | Analyze various parameters related to operational amplifiers.                         | K4     |
| C <b>O</b> 8 | Understand the concepts involved in arithmatic and logical circuits using IC's        | К2     |
| 209          | Acquire knowledge about Combinational Logic Circuits and<br>Sequential Logic Circuits | К1     |
| <u></u>      | Analyze the applications of counters and registers                                    | K4     |

Map course outcomes (CO) for each course with program outcomes (PO)

|      | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|------|------------|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1  | 2          | 2   | 2   | 3   | 2   | 2   | 2          | 1          | 2   | 3    |
| CO2  | 2          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO3  | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO4  | 3          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO5  | 3          | 3   | 3   | 3   | 3   | 3   | 2          | 2          | 2   | 2    |
| CO6  | 2          | 2   | 2   | 3   | 3   | 1   | 1          | 1          | 3   | 3    |
| C07  | 2          | 2   | 3   | 3   | 3   | 1   | 1          | 1          | 3   | 3    |
| CO8  | 3          | 3   | 3   | 3   | 3   | 3   | 2          | 2          | 3   | 3    |
| CO9  | 3          | 3   | 3   | 3   | 3   | 3   | 1          | 1          | 1   | 1    |
| CO10 | 3          | 3   | 3   | 3   | 3   | 3   | 1          | 1          | 1   | 1    |

and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

|      | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------|------|------|------|------|------|------|------|------|------|-------|
| CO1  | 2    | 2    | 2    | 3    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2  | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO3  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4  | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO5  | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 2     |
| C06  | 2    | 2    | 2    | 3    | 3    | 1    | 1    | 1    | 3    | 3     |
| C07  | 2    | 2    | 3    | 3    | 3    | 1    | 1    | 1    | 3    | 3     |
| CO8  | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 3    | 3     |
| CO9  | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1     |
| CO10 | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1     |



|              | SEMESTER - II                                                     |                                                |     |        |      |               |               |               |  |
|--------------|-------------------------------------------------------------------|------------------------------------------------|-----|--------|------|---------------|---------------|---------------|--|
| Subject Code |                                                                   | Subject<br>Title                               | Hrs | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |  |
| 23P2PHC04    | Core - IV                                                         | Statistical<br>Mechanics                       | 6   | 4      | 3    | 25            | 75            | 100           |  |
| 23P2PHC05    | Core - V                                                          | Quantum<br>Mechanics –<br>I                    | 6   | 4      | 3    | 25            | 75            | 100           |  |
| 23P2PHDE02   | Elective – II*                                                    | Physics of<br>Nanoscience<br>and<br>technology | 4   | 3      | 3    | 25            | 75            | 100           |  |
| 23P3PHDE03   | Elective – III*                                                   | Medical<br>Physics                             | 4   | 3      | 3    | 25            | 75            | 100           |  |
| 23P2PHCP02   | Practical                                                         | Practical - II                                 | 6   | 3      | 4    | 40            | 60            | 100           |  |
| 23P2PHS01    | Skill<br>Enhancement<br>Course – I                                | Electronics<br>in daily life                   | 2   | 2      | 3    | 25            | 75            | 100           |  |
| 23P2PHAC02   | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | Solar<br>Physics                               | 2   | 2      | 3    | 25            | 75            | 100           |  |
| Total        |                                                                   |                                                | 30  | 21     | 22   | 190           | 510           | 700           |  |

| Paper 5 - STATISTICAL MECHANICS |                       |          | I YEAR - SECOND SEMESTER |   |   |         |             |       |  |
|---------------------------------|-----------------------|----------|--------------------------|---|---|---------|-------------|-------|--|
| Subject<br>Code                 | Subject Name          | Category | L                        | Т | Р | Credits | Inst. Hours | Marks |  |
| 23P2PHC04                       | STATISTICAL MECHANICS | Core     |                          |   |   | 4       | 6           | 75    |  |

| i ie-itequisites                                                          |
|---------------------------------------------------------------------------|
| Laws of thermodynamics, phase transition, entropy, ensembles, partition   |
| function, classical and quantum statistics, thermal equilibrium, Brownian |
| motion                                                                    |

# Learning Objectives

Pre-Requisites

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

| UNITS          | Course Details                                              |  |  |  |  |
|----------------|-------------------------------------------------------------|--|--|--|--|
|                | Thermodynamic potentials - Phase Equilibrium - Gibb's       |  |  |  |  |
| UNIT I:        | phase rule - Phase transitions and Ehrenfest's              |  |  |  |  |
| PHASE          | classifications – Third law of Thermodynamics. Order        |  |  |  |  |
| TRANSITIONS    | parameters – Landau's theory of phase transition - Critical |  |  |  |  |
|                | indices - Scale transformations and dimensional analysis.   |  |  |  |  |
| UNIT II:       | Foundations of statistical mechanics - Specification of     |  |  |  |  |
| STATISTICAL    | states of a system - Micro canonical ensemble - Phase       |  |  |  |  |
| MECHANICS AND  | space – Entropy - Connection between statistics and         |  |  |  |  |
| MECHANICS AND  | thermodynamics – Entropy of an ideal gas using the micro    |  |  |  |  |
| THERMODYNAMICS | canonical ensemble - Entropy of mixing and Gibb's           |  |  |  |  |

|                                                            | paradox.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT III:<br>CANONICAL AND<br>GRAND CANONICAL<br>ENSEMBLES | Trajectories and density of states - Liouville's theorem -<br>Canonical and grand canonical ensembles - Partition<br>function - Calculation of statistical quantities - Energy and<br>density fluctuations.                                                                                                                                                                                                                                                                                                                                                   |
| UNIT IV:<br>CLASSICAL AND<br>QUANTUM<br>STATISTICS         | Density matrix - Statistics of ensembles - Statistics of<br>indistinguishable particles - Maxwell-Boltzmann<br>statistics - Fermi-Dirac statistics – Ideal Fermi gas –<br>Degeneracy - Bose-Einstein statistics - Plank radiation<br>formula - Ideal Bose gas - Bose-Einstein condensation.                                                                                                                                                                                                                                                                   |
| UNIT V:<br>REAL GAS,<br>ISING MODEL AND<br>FLUCTUATIONS    | Cluster expansion for a classical gas - Virial equation of<br>state - Calculation of the first Virial coefficient in the<br>cluster expansion - Ising model - Mean-field theories of the<br>Ising model in three, two and one dimensions - Exact<br>solutions in one dimension. Correlation of space-time<br>dependent fluctuations - Fluctuations and transport<br>phenomena - Brownian motion - Langevin's theory -<br>Fluctuation-dissipation theorem - The Fokker-Planck<br>equation                                                                      |
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS                     | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable<br>and Communication Skill Enhancement, Social<br>Accountability and Patriotism                                                                                                                                                                                                                                                                                                                                                        |
| TEXT BOOKS                                                 | <ol> <li>S. K. Sinha, 1990, Statistical Mechanics, Tata<br/>McGraw Hill, New Delhi.</li> <li>B. K. Agarwal and M. Eisner, 1998, Statistical<br/>Mechanics, Second Edition New Age International,<br/>New Delhi.</li> <li>J. K. Bhattacharjee, 1996, Statistical Mechanics: An<br/>Introductory Text, Allied Publication, New Delhi.</li> <li>F. Reif, 1965, Fundamentals of Statistical and Thermal<br/>Physics, McGraw -Hill, New York.</li> <li>M. K. Zemansky, 1968, Heat and Thermodynamics, 5<sup>th</sup><br/>edition, McGraw-Hill New York.</li> </ol> |
| REFERENCE<br>BOOKS                                         | <ol> <li>R. K. Pathria, 1996, Statistical Mechanics, 2<sup>nd</sup> edition,<br/>Butter WorthHeinemann, New Delhi.</li> <li>L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics,</li> </ol>                                                                                                                                                                                                                                                                                                                                                            |

|             | Pergamon Press, Oxford.                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|
|             | 3. K. Huang, 2002, Statistical Mechanics, Taylor and                                                                          |
|             | Francis, London                                                                                                               |
|             | 4. W. Greiner, L. Neise and H. Stoecker, <i>Thermodynamics</i> and <i>Statistical Mechanics</i> , Springer Verlang, New York. |
|             | 5. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and                                                              |
|             | Allied, Kolkata.                                                                                                              |
|             | 1. <u>https://byjus.com/chemistry/third-law-of-</u>                                                                           |
|             | <u>thermodynamics/</u>                                                                                                        |
|             | 2. <u>https://web.stanford.edu/~peastman/statmech/ther</u>                                                                    |
|             | modynamics.html                                                                                                               |
| WEB SOURCES | 3. <u>https://en.wikiversity.org/wiki/Statistical_mechanics</u>                                                               |
|             | <u>_and_thermodynamics</u>                                                                                                    |
|             | 4. https://en.wikipedia.org/wiki/Grand_canonical_ense                                                                         |
|             | mble                                                                                                                          |
|             | 5. <u>https://en.wikipedia.org/wiki/Ising_model</u>                                                                           |

# At the end of the course the student will be able to:

| CO1 | To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition                                                                                                                                                                                                                                           | К5        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2 | To analyze the macroscopic properties such as pressure, volume,<br>temperature, specific heat, elastic moduli etc. using microscopic<br>properties like intermolecular forces, chemical bonding, atomicity<br>etc.<br>Describe the peculiar behavior of the entropy by mixing two gases<br>Justify the connection between statistics and thermodynamic<br>quantities | K4        |
| CO3 | Differentiate between canonical and grand canonical ensembles and<br>to interpret the relation between thermodynamically quantities and<br>partition function                                                                                                                                                                                                        | К1        |
| CO4 | To recall and apply the different statistical concepts to analyze the<br>behavior of ideal Fermi gas and ideal Bose gas and also to compare<br>and distinguish between the three types of statistics.                                                                                                                                                                | К4,<br>К5 |
| CO5 | To discuss and examine the thermodynamically behavior of gases                                                                                                                                                                                                                                                                                                       | K3        |

| under fluctuation | and | also | using | Ising model |  |
|-------------------|-----|------|-------|-------------|--|
|                   |     |      | 0     |             |  |

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

## MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |
| CO2 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |
| CO3 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 2   | 1   | 3    |
| CO4 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 2   | 1   | 3    |
| C05 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |
| CO2 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |
| CO3 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 2    | 1    | 3     |
| CO4 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 2    | 1    | 3     |
| CO5 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |

| QUANTUM MI      | I YEAR                | I YEAR - SECOND SEMESTER |   |   |   |         |             |       |
|-----------------|-----------------------|--------------------------|---|---|---|---------|-------------|-------|
| Subject<br>Code | Subject Name          | Category                 | L | Т | Р | Credits | Inst. Hours | Marks |
| 23P2PHC05       | QUANTUM MECHANICS – I | Core                     |   |   |   | 4       | 6           | 75    |

| re-Requisites                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Newton's laws of motion, Schrodinger's equation, integration, differentiation.                                                          |
| Learning Objectives                                                                                                                     |
| To develop the physical principles and the mathematical background<br>important to quantum mechanical descriptions.                     |
| To describe the propagation of a particle in a simple, one-dimensional potential.                                                       |
| To formulate and solve the Schrodinger's equation to obtain eigenvectors and<br>energies for particle in a three-dimensional potential. |

- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- > To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

| UNITS                                                                             | Course Details                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>BASIC<br>FORMALISM                                                     | Interpretation of the wave function – Time dependent Schrodinger<br>equation –Time independent Schrodinger equation – Stationary<br>states – Ehrenfest's theorem – Linear vector space – Linear operator<br>– Eigen functions and Eigen Values – Hermitian Operator –<br>Postulates of Quantum Mechanics – Simultaneous measurability of<br>observables – General Uncertainty relation |
| UNIT II: ONE<br>DIMENSIONAL<br>AND THREE-<br>DIMENSIONAL<br>ENERGY EIGEN<br>VALUE | Square – well potential with rigid walls – Square well potential with<br>finite walls – Square potential barrier – Alpha emission – Bloch<br>waves in a periodic potential – Kronig-penny square – well periodic<br>potential – Linear harmonic oscillator: Operator method – Particle<br>moving in a spherically symmetric potential – System of two                                  |

| PROBLEMS                               | interacting particles – Hydrogen atom – Rigid rotator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                        | Dirac notation – Equations of motions – Schrodinger representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| UNIT III:<br>GENERAL<br>FORMALISM      | <ul> <li>Heisenberg representation – Interaction representation –</li> <li>Coordinate representation – Momentum representation –</li> <li>Symmetries and conservation laws – Unitary transformation –</li> <li>Parity and time reversal</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| UNIT IV:<br>APPROXIMATION<br>METHODS   | Time independent perturbation theory for non-degenerate energy<br>levels – Degenerate energy levels – Stark effect in Hydrogen atom –<br>Ground and excited state – Variation method – Helium atom – WKB<br>approximation – Connection formulae (no derivation) – WKB<br>quantization – Application to simple harmonic oscillator.                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| UNIT V:<br>ANGULAR<br>MOMENTUM         | Eigenvalue spectrum of general angular momentum – Ladder<br>operators and their algebra – Matrix representation – Spin angular<br>momentum – Addition of angular momenta – CG Coefficients –<br>Symmetry and anti – symmetry of wave functions – Construction of<br>wave-functions and Pauli's exclusion principle.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| TEXT BOOKS                             | <ol> <li>P. M. Mathews and K. Venkatesan, A Text book of Quantum<br/>Mechanics, 2<sup>nd</sup>edition(37th Reprint), Tata McGraw-Hill, New<br/>Delhi, 2010.</li> <li>G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall<br/>of India, New Delhi, 2009.</li> <li>David J Griffiths, Introduction to Quantum Mechanics. 4th<br/>edition, Pearson, 2011.</li> <li>SL Gupta and ID Gupta, Advanced Quantum Theory and<br/>Fields, 1<sup>st</sup> Edition, S.Chand&amp; Co., New Delhi, 1982.</li> <li>A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory<br/>and Applications, 4<sup>th</sup>Edition, Macmillan, India, 1984.</li> </ol> |  |  |  |  |  |  |  |  |
| REFERENCE<br>BOOKS                     | <ol> <li>E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley<br/>and Sons, New York, 1970.</li> <li>V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley<br/>Eastern Ltd, New Delhi, 1985.</li> <li>L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st<br/>edition, Pergomon Press, Oxford, 1976.</li> <li>S. N. Biswas, Quantum Mechanics, Books and Allied Ltd.,<br/>Kolkata, 1999.</li> <li>V. Devanathan, Quantum Mechanics, 2nd edition, Alpha</li> </ol>                                                                                                                                                                     |  |  |  |  |  |  |  |  |

|             | S           | cience International Ltd, Oxford, 2011.                                |
|-------------|-------------|------------------------------------------------------------------------|
|             |             | http://research.chem.psu.edu/lxjgroup/download_files/chem<br>65-c7.pdf |
|             | 2. h        | http://www.feynmanlectures.caltech.edu/III_20.html                     |
| WEB SOURCES | 3. <u>h</u> | .ttp://web.mit.edu/8.05/handouts/jaffe1.pdf                            |
| WEB SOURCES | 4. h        | https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_L                |
|             | e           | ctures/Lecture_ 1.pdf                                                  |
|             | 5. <u>h</u> | https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.             |
|             | p           | <u>df</u>                                                              |

### At the end of the course the student will be able to:

| C01              | Demonstrates a clear understanding of the basic postulates<br>of quantum mechanics which serve to formalize the rules of<br>quantumMechanics | K1,<br>K5 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2              | Is able to apply and analyze the Schrodinger equation to<br>solve one dimensional problems and three dimensional<br>problems                 | K3,<br>K4 |
| CO3              | Can discuss the various representations, space time symmetries and formulations of time evolution                                            | K1        |
| CO4              | Can formulate and analyze the approximation methods for various quantum mechanical problems                                                  | K4,<br>K5 |
| CO5              | To apply non-commutative algebra for topics such as<br>angular and spin angular momentum and hence explain<br>spectral line splitting.       | K3,<br>K4 |
| K1 - F<br>Evalua | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 –<br>ate                                                                             | 1         |

# MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 2   | 2   | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | S   | 3   | 2   | 2   | 3    |
| CO3 | 2   | 3   | 3   | 2   | 3   | 2   | 3   | 2   | 2   | 3    |

| CO4 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|
| C05 | 3 | 3 | 3 | 2 | 3 | S | 3 | 3 | 2 | 3 |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2    | 2    | 3     |
| CO2 | 3    | 3    | 3    | 3    | 3    | S    | 3    | 2    | 2    | 3     |
| CO3 | 2    | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 3     |
| CO4 | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO5 | 3    | 3    | 3    | 2    | 3    | S    | 3    | 3    | 2    | 3     |

| Elective - II: PHYSICS OF NANOSCIENCE AND | I YEAR – SECOND SEMESTER  |
|-------------------------------------------|---------------------------|
| TECHNOLOGY                                | I IEAR - SECOND SEMIESTER |

| Subject<br>Code | Subject Name                                | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|---------------------------------------------|----------|---|---|---|---------|----------------|-------|
| 23P2PHDE02      | PHYSICS OF<br>NANOSCIENCE AND<br>TECHNOLOGY | Elective |   |   |   | 3       | 4              | 75    |

### **Pre-Requisites**

Nanoscience fundamentals, Nanomaterials properties, Characterization and applications of materials

### **Learning Objectives**

- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- > To provide the basic knowledge about Nanoscience and technology.
- > To learn the structures and properties of Nanomaterials.
- > To acquire the knowledge about synthesis methods and characterization techniques and its applications.

| UNITS                                                       | Course Details                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>FUNDAMENTALS OF<br>NANOSCIENCE AND<br>TECHNOLOGY | Fundamentals of NANO – Historical Perspective on<br>Nanomaterial and Nanotechnology – Classification of<br>Nanomaterials – Metal and Semiconductor Nanomaterials - 2D,<br>1D, 0D nanostructured materials - Quantum dots – Quantum<br>wires – Quantum wells - Surface effects of nanomaterials.                                                                                                           |
| UNIT II: PROPERTIES<br>OF NANOMATERIALS                     | Physical properties of Nanomaterials: Melting points, specific<br>heat capacity, and lattice constant - Mechanical behavior:<br>Elastic properties – strength - ductility - superplastic behavior -<br>Optical properties: - Surface Plasmon Resonance – Quantum<br>size effects - Electrical properties - Conductivity, Ferroelectrics<br>and dielectrics - Magnetic properties – super para magnetism – |

|                                            | Diluted magnetic semiconductor (DMS).                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT III: SYNTHESIS<br>AND FABRICATION     | Physical vapour deposition - Chemical vapour deposition - sol-<br>gel – Wet deposition techniques - electrochemical deposition<br>method – Plasma arching - Electrospinning method - ball<br>milling technique - pulsed laser deposition - Nanolithography:<br>photolithography – Nanomanipulator.                    |
| UNIT IV:<br>CHARACTERIZATION<br>TECHNIQUES | Powder X-ray diffraction – X-ray photoelectron spectroscopy<br>(XPS) - UV-visible spectroscopy – Photoluminescence -<br>Scanning electron microscopy (SEM) - Transmission electron<br>microscopy (TEM) - Scanning probe microscopy (SPM) -<br>Scanning tunneling microscopy (STM) – Vibrating sample<br>Magnetometer. |

| UNIT V:<br>APPLICATIONS OF<br>NANOMATERIALS | Sensors: Nanosensors based on optical and physical properties<br>- Electrochemical sensors – Nano-biosensors. Nano Electronics:<br>Nanobots - display screens - GMR read/write heads - Carbon<br>Nanotube Emitters – Photocatalytic application: Air<br>purification, water purification -Medicine: Imaging of cancer<br>cells – biological tags - drug delivery - photodynamic therapy -<br>Energy: fuel cells - rechargeable batteries - supercapacitors -<br>photovoltaics.                                                                                                                                                                                               |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS      | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TEXT BOOKS                                  | <ol> <li>A textbook of Nanoscience and Nanotechnology, Pradeep<br/>T., Tata McGraw-Hill Publishing Co. (2012).</li> <li>Principles of Nanoscience and Nanotechnology, M.A.<br/>Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd.,<br/>(2010).</li> <li>Introduction to Nanoscience and Nanotechnology, K. K.<br/>Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New<br/>Delhi, (2012).</li> <li>Nanostructured Materials and Nanotechnology, Hari<br/>Singh Nalwa, Academic Press, (2002).</li> <li>Nanotechnology and Nanoelectronics, D.P. Kothari,<br/>V. Velmurugan and Rajit Ram Singh, Narosa Publishing House<br/>Pvt. Ltd, New Delhi. (2018)</li> </ol> |

| REFERENCE<br>BOOKS | <ol> <li>Nanostructures and Nanomaterials – Huozhong Gao – Imperial College<br/>Press (2004).</li> <li>Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley<br/>Publishing Inc. USA</li> <li>Nano particles and Nano structured films; Preparation, Characterization<br/>and Applications, J. H. Fendler John Wiley and Sons. (2007)</li> <li>Textbook of Nanoscience and Nanotechnology, B. S. Murty, et al.,<br/>Universities Press. (2012)</li> <li>The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr.<br/>Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics</li> </ol> |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEB<br>SOURCES     | Pentagon Press, New Delhi.         1. www.its.caltec.edu/feyman/plenty.html         2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm         3. http://www.understandingnano.com         4. http://www.nano.gov         5. http://www.nanotechnology.com                                                                                                                                                                                                                                                                                                                                       |

At the end of the course, the student will be able to:

| CO1 | Understand the basic of Nanoscience and explore the different<br>types of Nanomaterials and should comprehend the surface<br>effects of the Nanomaterials. | K1, K2 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| CO2 | Explore various physical, mechanical, optical, electrical and magnetic properties Nanomaterials.                                                           | К1     |
| CO3 | Understand the process and mechanism of synthesis and fabrication of Nanomaterials.                                                                        | K2, K3 |
| CO4 | Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.                                | K4     |
| C05 | Apply the concepts of Nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.               | КЗ     |

**MAPPING WITH PROGRAM OUTCOMES:** 

|     | <b>PO1</b> | PO2 | PO3 | PO4 | <b>PO5</b> | P06 | PO7 | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|------------|-----|-----|-----|-----|------|
| CO1 | 3          | 3   | 3   | 2   | 1          | 1   | 3   | 3   | 3   | 3    |
| CO2 | 3          | 3   | 3   | 2   | 1          | 1   | 3   | 3   | 3   | 3    |
| CO3 | 3          | 3   | 2   | 2   | 1          | 1   | 3   | 3   | 3   | 3    |
| CO4 | 3          | 3   | 3   | 2   | 1          | 1   | 3   | 3   | 3   | 3    |
| C05 | 3          | 3   | 2   | 2   | 1          | 1   | 3   | 3   | 3   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1 |
|-----|------|------|------|------|------|------|------|------|------|------|
|     |      |      |      |      |      |      |      |      |      | 0    |
| CO1 | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3    |
| CO2 | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3    |
| CO3 | 3    | 3    | 2    | 2    | 1    | 1    | 3    | 3    | 3    | 3    |
| CO4 | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3    |
| CO5 | 3    | 3    | 2    | 2    | 1    | 1    | 3    | 3    | 3    | 3    |

### **Elective – III: MEDICAL PHYSICS**

#### I YEAR – SECOND SEMESTER

| Subject<br>Code | Subject Name       | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|--------------------|----------|---|---|---|---------|----------------|-------|
| 23P2PHDE03      | MEDICAL<br>PHYSICS | Elective |   |   |   | 3       | 4              | 75    |

#### **Pre-Requisites**

Fundamentals of physiological concepts, Basics of instruments principle,

### Learning Objectives

- > To understand the major applications of Physics to Medicine
- > To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

| UNITS        | Course Details                                                    |
|--------------|-------------------------------------------------------------------|
|              | Electromagnetic Spectrum – Production of X-Rays – X-Ray           |
| UNIT I:      | Spectrum –Bremsstrahlung – Characteristic X-Ray – X-Ray           |
| X-RAYS AND   | Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors –         |
| TRANSDUCERS  | photo electric transducers – Photo voltaic cells – photo emissive |
|              | cells –Photoconductive cells– piezoelectric transducer            |
| UNIT II:     | Introduction – sphygmomanometer – Measurement of heart rate       |
| BLOOD        | – basic principles of electrocardiogram (ECG) – Basic principles  |
| PRESSURE     | of electro-neurography (ENG) – Basic principles of magnetic       |
| MEASUREMENTS | resonance imaging (MRI).                                          |
|              | Radiation Units – Exposure – Absorbed Dose – Rad to Gray –        |
| UNIT III:    | Kera Relative Biological Effectiveness –Effective Dose – Sievert  |
| RADIATION    | (Sv) – Inverse Square Law – Interaction of radiation with Matter  |
| PHYSICS      | – Linear Attenuation Coefficient – Radiation Detectors –Thimble   |
| FUI 2102     | Chamber – Condenser Chambers – Geiger Counter –                   |
|              | Scintillation Counter                                             |

| UNIT IV:<br>MEDICAL<br>IMAGING<br>PHYSICS | Radiological Imaging – Radiography – Filters – Grids – Cassette<br>– X-Ray Film – Film processing – Fluoroscopy – Computed<br>Tomography Scanner – Principal Function – Display –<br>Mammography – Ultrasound Imaging – Magnetic Resonance<br>Imaging – Thyroid Uptake System – Gamma Camera (Only<br>Principle, Function and display)                                                                                                                                                                                                                                 |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>RADIATION<br>PROTECTION        | Principles of Radiation Protection – Protective Materials –<br>Radiation Effects – Somatic – Genetic Stochastic and<br>Deterministic Effect – Personal Monitoring Devices – TLD Film<br>Badge – Pocket Dosimeter                                                                                                                                                                                                                                                                                                                                                       |
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS    | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                                                                                 |
| TEXT BOOKS                                | <ol> <li>Dr. K. Thayalan , Basic Radiological Physics, Jayapee<br/>Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003.</li> <li>Curry, Dowdey and Murry, Christensen's Physics of<br/>Diagnostic Radiology: -LippincotWilliams and Wilkins, 1990.</li> <li>FM Khan, Physics of Radiation Therapy, William and<br/>Wilkins, 3rd ed, 2003.</li> <li>D. J. Dewhurst, An Introduction to Biomedical<br/>Instrumentation, 1st ed, Elsevier Science, 2014.</li> <li>R.S. Khandpur, Hand Book of Biomedical Instrumentations,<br/>1st ed, TMG, New Delhi, 2005.</li> </ol> |
| REFERENCE<br>BOOKS                        | <ol> <li>Muhammad Maqbool, An Introduction to Medical Physics, 1st<br/>ed, Springer International Publishing, 2017.</li> <li>Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st<br/>ed, Charles University, Karolinum Press, 2018</li> <li>Anders Brahme, Comprehensive Biomedical Physics, Volume<br/>1, 1st ed, Elsevier Science, 2014.</li> <li>K. Venkata Ram, Bio-Medical Electronics and<br/>Instrumentation, 1st ed, Galgotia Publications, New Delhi,<br/>2001.</li> </ol>                                                                           |

|             | <ol> <li>John R. Cameron and James G. Skofronick, 2009, Medical<br/>Physics, John Wiley Interscience Publication, Canada, 2nd<br/>edition.</li> </ol>                                                                                                                                                                                                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEB SOURCES | <ol> <li><u>https:nptel.ac.in/courses/108/103/108103157/</u></li> <li><u>https://www.studocu.com/en/course/university-of-technology-sydney/medical-devices-and-diagnostics/225692</u></li> <li><u>https://www.technicalsymposium.com/alllecturenotes_biomed.html</u></li> <li><u>https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-by-deepraj-adhikary/78</u></li> <li><u>https://www.modulight.com/applications-medical/</u></li> </ol> |

At the end of the course, the student will be able to:

| CO1        | Learn the fundamentals, production and applications of X-   | K1       |  |  |  |
|------------|-------------------------------------------------------------|----------|--|--|--|
|            | rays.                                                       |          |  |  |  |
|            | Understand the basics of blood pressure measurements. Learn |          |  |  |  |
| <b>CO2</b> | about sphygmomanometer, EGC, ENG and basic principles of    | K2       |  |  |  |
|            | MRI.                                                        |          |  |  |  |
| <b>CO3</b> | Apply knowledge on Radiation Physics                        | K3       |  |  |  |
| CO4        | Analyze Radiological imaging and filters                    | K4       |  |  |  |
| CO5        | Assess the principles of radiation protection               | K5       |  |  |  |
| K1 - R     | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - E  | valuate; |  |  |  |

# MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO)

and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) **and** LOW (1).

|     | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 |
|-----|------------|------------|-----|-----|-----|------------|------------|-----|------------|------|
| C01 | 3          | 3          | 3   | 1   | 1   | 2          | 3          | 3   | 1          | 3    |
| CO2 | 3          | 3          | 3   | 2   | 1   | 2          | 3          | 3   | 1          | 3    |

| CO3 | 3 | 3 | 3 | 2 | 1 | 2 | 3 | 3 | 1 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|
| CO4 | 3 | 3 | 3 | 2 | 1 | 2 | 3 | 3 | 1 | 3 |
| CO5 | 3 | 3 | 3 | 1 | 1 | 2 | 3 | 3 | 1 | 3 |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 3    | 1    | 3     |
| CO2 | 3    | 3    | 3    | 2    | 1    | 2    | 3    | 3    | 1    | 3     |
| CO3 | 3    | 3    | 3    | 2    | 1    | 2    | 3    | 3    | 1    | 3     |
| CO4 | 3    | 3    | 3    | 2    | 1    | 2    | 3    | 3    | 1    | 3     |
| CO5 | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 3    | 1    | 3     |
|     |      |      |      |      |      |      |      |      |      |       |

# Skill Enhancement Course – I: ELECTRONICS IN DAILY LIFE

| Subject<br>Code | Subject Name                 | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|------------------------------|----------|---|---|---|---------|----------------|-------|
| 23P2PHS01       | ELECTRONICS IN DAILY<br>LIFE | SEC      |   |   |   | 2       | 2              | 75    |

## **Pre-Requisites**

Electronic components and home electrical appliances, Communication devices and safety mechanics of electronic devices.

### **Learning Objectives**

- > To understand the basic electronic components.
- ➢ To study the working of various electrical appliances.
- ➤ To outline the principles of home electronic appliances.
- > To introduce the ideas about the communication devices.
- ▶ To form a good awareness on safety mechanism of electronic devices.

| UNITS                                      | Course Details                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>ELECTRONIC<br>COMPONENTS        | Resistors – Capacitors – Resistance values – Capacitor value –<br>Fuse wire – Transistors – Integrated chips.                                                                                                                                                                                                                                         |
| UNIT II:<br>ELECTRICAL<br>APPLIANCES       | Switch board – Main box – Metal circuit breakers (MCB) – AC<br>– DC currents – Two Phase – Three Phase electrical<br>connections – generators – un intrepid power supply (UPS)-<br>stabilizer – voltage regulators – Electrical devices – Iron box –<br>Fan – Electrical Oven – water Heaters Air conditioners –<br>Refrigerators – washing machines. |
| UNIT III:<br>ELECTRONIC HOME<br>APPLIANCES | Radio – Audio tape - speaker- televisions – VCR – CD Players –<br>DVD – calculators – Computers – scanner – Printer – Digital                                                                                                                                                                                                                         |

|                                           | Camera – LCD Projectors – Display devices.                                                                                          |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| UNIT IV:<br>COMMUNICATIONS<br>ELECTRONICS | Principles of optical fiber Cables (OFC) – Telephone – Mobile<br>phones – wireless phone – Antenna - Internet - Intranet.           |
| UNIT V:<br>SAFETY MECHANISM               | Handling Electrical appliances - Power saving methods –<br>Hazards Prevention Methods - Protection of Hi –Fi electronic<br>devices. |

| TEXT BOOKS | <ol> <li>S.S. Kamble – Electronics and Mathematics Data book –<br/>Allied publishers Ltd, 1997.</li> <li>William David Cooper, Electronic Instrumentation and<br/>Measurement Technique, Second Edition, Prentice-Hall,<br/>1978.</li> <li>Electronics In Every Day Life, William Charles Vergara,<br/>Dover Publications, 1983.</li> <li>The Importance of Electronics in Modern Life, Edubirdie,<br/>2022.</li> </ol> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| <b>REFERENCE BOOKS</b> | <ol> <li>Electronics in Every Day Life, Text book solutions, HW<br/>Solutions, 2003-2023, Chegg Inc.</li> <li>Making Every day Electronics Work: A Yourself Guide,<br/>Stan Gibilisco, First Edition, 2013.</li> <li>Human Activity Recognition: Using wearable Sensors and<br/>Smart phones, Miguel A.Labrador, Oscar D. Lara Yejas,<br/>Chapman and Hall / CRC Computer and Information<br/>Science Series, First Edition, 2013.</li> <li>Study of Electrical Appliances and Devices –Bhatia, Kanna<br/>Publications, 2014.</li> </ol> |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEB SOURCES            | <ol> <li>https://byjus.com/physics/electronics-in-daily-life/</li> <li>https://www.linkedin.com/pulse/e-commerce-our-daily-<br/>life-dash-technologies-inc</li> <li>https://www.quora.com/What-are-the-most-important-<br/>electronic-devices-for-everyday-life</li> <li>https://edubirdie.com/examples/the-importance-of-<br/>electronics - in modern - life/</li> </ol>                                                                                                                                                                |

At the end of the course, the student will be able to:

| CO<br>1    | Learn the construction and working of basic electronic components. | K1   |  |  |  |
|------------|--------------------------------------------------------------------|------|--|--|--|
| CO<br>2    | Understand the mechanism of various electrical appliances.         |      |  |  |  |
| CO<br>3    | Apply knowledge home electrical appliances.                        |      |  |  |  |
| CO<br>4    | Analyze various communication devices.                             | K4   |  |  |  |
| <b>CO5</b> | Assess the safety mechanism of electronic devices.                 | K5   |  |  |  |
| K1 - F     | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evalu     | ate; |  |  |  |

# MAPPING WITH PROGRAM OUTCOMES:

| CO1 | 3 | 3 | 3 | 1 | 1 | 2 | 2 | 3 | 1 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|
| CO2 | 3 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 1 | 3 |
| CO3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 1 | 3 |
| CO4 | 3 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 1 | 3 |
| CO5 | 3 | 3 | 3 | 1 | 1 | 2 | 2 | 3 | 1 | 3 |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| C01 | 3    | 3    | 3    | 1    | 1    | 2    | 2    | 3    | 1    | 3         |
| CO2 | 3    | 3    | 3    | 2    | 1    | 2    | 2    | 3    | 1    | 3         |
| CO3 | 3    | 3    | 3    | 2    | 1    | 2    | 2    | 3    | 1    | 3         |
| CO4 | 3    | 3    | 3    | 2    | 1    | 2    | 2    | 3    | 1    | 3         |
| C05 | 3    | 3    | 3    | 1    | 1    | 2    | 2    | 3    | 1    | 3         |

**Practical - PRACTICAL - II** 

#### I YEAR - SECOND SEMESTER

| Subject<br>Code | Subject Name   | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------|----------|---|---|---|---------|-------------|-------|
| 23P2PHCP02      | PRACTICAL - II | Core     |   |   |   | 2       | 6           | 60    |

### **Pre-Requisites**

Knowledge and handling of basic general and electronics experiments of Physics **Learning Objectives** 

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

# **Course Details**

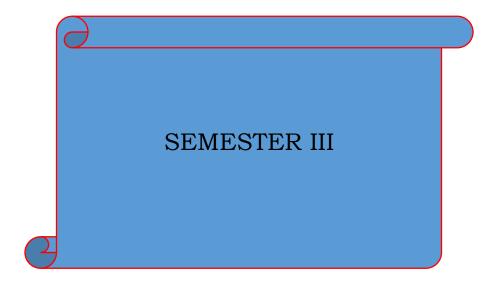
# (Any Twelve Experiments)

- 1. Determine the Young's modulus of a given material by the method of Elliptical fringes.
- 2. Determine the magnetic susceptibility of a given liquid by Quincke's method.
- 3. Determine the specific charge of an electron using Spectrometer.
- 4. Determine Rydberg's Constant using diffraction grating and Hydrogen discharge tube.
- 5. Determine the Thermal Conductivity of a metal by Forbe's Method.
- 6. Determine the Resistivity of the given Semiconductor at different temperature by using Four Probe Method and calculate energy band gap.
- 7. Study the multiplexer and Demultiplexer and verify their truth table.
- 8. Study the decode counter by using IC 7447, IC 7490 and Seven segment display and verify the truth table.

- 9. Construct a square wave generator using IC 555 timer and verify the result.
- 10. Solve simultaneous equation using IC 741 analog computation and verify the result.
- 11. Construct and verify the active filters (Low pass and High pass) using the operational amplifier IC 741.
- 12. Convert Voltage to Current using IC 741 and study their result. Iodine absorption spectra
- 13. Molecular spectra CN bands
- 14. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 15. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 16. Measurement of Dielectricity Microwave test bench
- 17. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 18. Interpretation of vibrational spectra of a given material
- 19. Determination of I-V Characteristics and efficiency of solar cell.
- 20. IC 7490 as scalar and seven segment display using IC7447
- 21. Solving simultaneous equations IC 741 / IC LM324
- 22. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 23. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 24. Construction of second order butter worth multiple feedback narrow band pass filter
- 25. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 26. Construction of square wave generator using IC 555 Study of VCO
- 27. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer
- 28. Construction of pulse generator using the IC 555 Application as frequency divider
- 29. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 30. Study of binary up / down counters IC 7476 / IC7473

| TEXT BOOKS | <ol> <li>Practical Physics, Gupta and Kumar, Pragati Prakasan</li> <li>Kit Developed for doing experiments in Physics-</li> </ol> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
|            | Instruction manual, R. Srinivasan K.R Priolkar, Indian<br>Academy of Sciences                                                     |

|           | 2. On Anna and linear intermeted sincerit Demolograph A     |
|-----------|-------------------------------------------------------------|
|           | 3. Op-Amp and linear integrated circuit, Ramakanth A        |
|           | Gaykwad, Eastern Economy Edition.                           |
|           | 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing |
|           | 5. Electronic lab manual Vol II, K ANavas, PHI eastern      |
|           | Economy Edition                                             |
|           | 1. An advanced course in Practical Physics, D.              |
|           | Chattopadhayay,                                             |
|           | C.R Rakshit, New Central Book Agency Pvt. Ltd               |
|           | 2. Advanced Practical Physics, S.P Singh, Pragati Prakasan  |
| REFERENCE | 3. A course on experiment with He-Ne Laser, R. S. Sirohi,   |
| BOOKS     | John Wiley & Sons (Asia) Pvt. ltd                           |
|           | 4. Electronic lab manual Vol II, Kuriachan T.D, Syam        |
|           | Mohan, Ayodhya Publishing                                   |
|           | 5. Electronic Laboratory Primer a design approach, S.       |
|           | Poornachandra,                                              |
|           | B. Sasikala, Wheeler Publishing, New Delhi                  |


# At the end of the course the student will be able to:

| CO1                                                        | Understand the strength of material using Young's modulus                             | K2 |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|----|--|--|--|--|
| CO2                                                        | Acquire knowledge of thermal behavior of the materials                                | K1 |  |  |  |  |
| CO3                                                        | Understand theoretical principles of magnetism through the experiments.               | K2 |  |  |  |  |
| CO4                                                        | Acquire knowledge about arc spectrum and applications of laser                        | K1 |  |  |  |  |
| CO5                                                        | Improve the analytical and observation ability in Physics Experiments                 | K4 |  |  |  |  |
| CO6                                                        | Conduct experiments on applications of FET and UJT                                    | K5 |  |  |  |  |
| CO7                                                        | Analyze various parameters related to operational amplifiers                          | K4 |  |  |  |  |
| CO8                                                        | Understand the concepts involved in arithmetic and logical circuits using IC's        | K2 |  |  |  |  |
| CO9                                                        | Acquire knowledge about Combinational Logic Circuits and Sequential<br>Logic Circuits | К3 |  |  |  |  |
| CO1<br>0Analyze the applications of counters and registers |                                                                                       |    |  |  |  |  |
| K1 - Re                                                    | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                     |    |  |  |  |  |

# MAPPING WITH PROGRAM OUTCOMES:

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------------|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|
| <b>CO1</b> | 2          | 2   | 2   | S   | S   | 2   | 2          | 2   | 3   | 3    |
| CO2        | 2          | 2   | S   | S   | S   | 2   | 2          | 3   | 3   | 3    |
| CO3        | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO4        | 3          | 2   | 3   | 3   | 3   | 3   | 2          | 3   | 3   | 3    |
| CO5        | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| C06        | 2          | 2   | 2   | 3   | 3   | 2   | 2          | 2   | 3   | 3    |
| C07        | 2          | 2   | 3   | 3   | 3   | 2   | 2          | 3   | 3   | 3    |
| C08        | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO9        | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO10       | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |

|      | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------|------|------|------|------|------|------|------|------|------|-------|
| CO1  | 2    | 2    | 2    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |
| CO2  | 2    | 2    | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 3     |
| CO3  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4  | 3    | 2    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 3     |
| CO5  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO6  | 2    | 2    | 2    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |
| C07  | 2    | 2    | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 3     |
| CO8  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO9  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO10 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |



|              | SEMESTER - III                             |                                                       |     |        |      |               |               |               |  |
|--------------|--------------------------------------------|-------------------------------------------------------|-----|--------|------|---------------|---------------|---------------|--|
| Subject Code |                                            | Subject Title                                         | Hrs | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |  |
| 23P3PHC06    | Core - VI                                  | Quantum<br>Mechanics –II                              |     | 4      | 3    | 25            | 75            | 100           |  |
| 23P3PHC07    | Core - VII                                 | Spectroscopy                                          | 6   | 4      | 3    | 25            | 75            | 100           |  |
| 23P3PHC08    | Core - VIII Electromagnetic<br>Theory      |                                                       | 5   | 4      | 3    | 25            | 75            | 100           |  |
| 23P3PHDE03   | Elective – IV*                             | Microprocessor<br>8085 and<br>Microcontroller<br>8051 | 4   | 3      | 3    | 25            | 75            | 100           |  |
| 23P3PHCP03   | Core<br>Practical - III<br>Practical – III |                                                       | 6   | 4      | 4    | 40            | 60            | 100           |  |
| 23P3HR01     | Common<br>subject                          | Human Rights                                          |     | 1      | 3    | 25            | 75            | 100           |  |
| 23P3PHS02    | Skill<br>Enhancement<br>Course – III       | Enhancement Scientific                                |     | 2      | 3    | 25            | 75            | 100           |  |
| 23P3C3INT01  | Internship /I<br>(15 days)                 | ndustrial Activity                                    |     | 1      | -    | -             |               | -             |  |
|              | Total                                      |                                                       | 30  | 23     | 22   | 190           | 510           | 700           |  |

#### **QUANTUM MECHANICS – II**

#### **II YEAR - THIRD SEMESTER**

| Subject<br>Code | Subject Name           | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|------------------------|----------|---|---|---|---------|----------------|-------|
| 23P3PHC06       | QUANTUM MECHANICS – II | Core     |   |   |   | 4       | 6              | 75    |

## **Pre-Requisites**

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

## Learning Objectives

- Formal development of the theory and the properties of angular momenta, both orbital and spin
- > To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

| UNITS      | Course Details                                                  |  |  |  |  |  |
|------------|-----------------------------------------------------------------|--|--|--|--|--|
|            | Scattering amplitude - Cross sections - Born approximation      |  |  |  |  |  |
| UNIT 1:    | and its validity – Scattering by a screened coulomb potential – |  |  |  |  |  |
| SCATTERING | Yukawa potential – Partial wave analysis – Scattering length    |  |  |  |  |  |
| THEORY     | and Effective range theory for s wave – Optical theorem         |  |  |  |  |  |
|            | Time dependent perturbation theory - Constant and               |  |  |  |  |  |
| UNIT II:   | harmonic perturbations - Fermi Golden rule - Transition         |  |  |  |  |  |
| PERTURBATI | probability Einstein's A and B Coefficients – Adiabatic         |  |  |  |  |  |
| ON THEORY  | approximation - Sudden approximation - Semi - classical         |  |  |  |  |  |
| ON THEORY  | treatment of an atom with electromagnetic radiation -           |  |  |  |  |  |
|            | Selection rules for dipole radiation                            |  |  |  |  |  |

| UNIT III:            | View Conden Equation Duchshility density Dines Matrices                                                  |
|----------------------|----------------------------------------------------------------------------------------------------------|
|                      | Klein – Gordon Equation –Probability density– Dirac Matrices                                             |
| Relativistic         | – Dirac Equation – Plane Wave Solutions – Interpretation Of                                              |
| QUANTUM              | Negative Energy States – Antiparticles – Spin of Electron –                                              |
| MECHANICS            | Magnetic Moment Of An Electron Due To Spin                                                               |
| UNIT IV:             | Covariant form of Dirac Equation - Properties of the gamma                                               |
| DIRAC                | matrices – Traces – Relativistic invariance of Dirac equation –                                          |
| EQUATION             | _                                                                                                        |
|                      | Probability Density – Current four vector – Bilinear covariant                                           |
| UNIT V:<br>CLASSICAL | Classical fields – Euler Lagrange equation – Hamiltonian                                                 |
| FIELDS AND           | formulation - Noether's theorem - Quantization of real and                                               |
| SECOND               | complex scalar fields – Creation, Annihilation and Number                                                |
| QUANTIZATION         | operators – Fock states – Second Quantization of K-G field.                                              |
| YUNNIDATION          | Expert Lectures, Online Seminars - Webinars on Industrial                                                |
| UNIT VI:             | Interactions/Visits, Competitive Examinations, Employable                                                |
| PROFESSIONAL         |                                                                                                          |
| COMPONENTS           | and Communication Skill Enhancement, Social                                                              |
|                      | Accountability and Patriotism, Walter Living Lectures                                                    |
|                      | 1. P. M. Mathews and K. Venkatesan, A Text book of                                                       |
|                      | Quantum Mechanics,2nd Edition, Tata McGraw-Hill,                                                         |
|                      | New Delhi, 2010.                                                                                         |
|                      | 2. G. Aruldhas, Quantum Mechanics, 2nd Edition,                                                          |
|                      | Prentice-Hall of India, NewDelhi,2009                                                                    |
|                      | 3. L. I. Schiff, Quantum Mechanics, 3rd Edition,                                                         |
| TEXT BOOKS           | International Student Edition, McGraw-Hill                                                               |
|                      | Kogakusha, Tokyo, 1968                                                                                   |
|                      | 4. V. Devanathan, Quantum Mechanics, 1st Edition,                                                        |
|                      | Narosa Publishing House, New Delhi, 2005.                                                                |
|                      | 5. Nouredine Zettili, Quantum mechanics concepts and                                                     |
|                      | applications, 2nd Edition, Wiley, 2017                                                                   |
|                      | 1. P. A. M. Dirac, The Principles of Quantum Mechanics,                                                  |
|                      | 4th Edition, Oxford University Press, London, 1973.                                                      |
|                      |                                                                                                          |
|                      | 2. B. K. Agarwal & Hari Prakash, Quantum Mechanics,<br>7th reprint DILL corning Drt. Ltd. New Delhi 2000 |
|                      | 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009.                                                    |
| REFERENCE            | 3. Deep Chandra Joshi, Quantum Electrodynamics and                                                       |
| BOOKS                | Particle Physics, 1 <sup>st</sup> edition, I.K. International Publishing                                 |
|                      | house Pvt. Ltd., 2006                                                                                    |
|                      |                                                                                                          |
|                      | 4. Ghatak and S. Lokanathan, Quantum Mechanics:                                                          |
|                      | Theory and Applications, 4 <sup>th</sup> Edition, Macmillan India,                                       |
|                      | New Delhi.                                                                                               |

|         | 5. E. Merzbacher, Quantum Mechanics, 2nd edition,           |  |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|         | John Wiley and Sons, New York, 1970                         |  |  |  |  |  |  |  |  |  |
|         | 1. <u>https://ocw.mit.edu/courses/physics/8-05-quantum-</u> |  |  |  |  |  |  |  |  |  |
|         | physics-ii-fall-2013/lecture                                |  |  |  |  |  |  |  |  |  |
|         | notes/MIT8_05F13_Chap_09.pdf                                |  |  |  |  |  |  |  |  |  |
| WEB     | 2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch           |  |  |  |  |  |  |  |  |  |
| SOURCES | 1.pdf                                                       |  |  |  |  |  |  |  |  |  |
| SUURCES | 3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf            |  |  |  |  |  |  |  |  |  |
|         | 4. https://www.cmi.ac.in/~govind/teaching/rel-qm-           |  |  |  |  |  |  |  |  |  |
|         | rc13/rel-qm-notes-gk.pdf                                    |  |  |  |  |  |  |  |  |  |
|         | 5. <u>https://web.mit.edu/dikaiser/www/FdsAmSci.pdf</u>     |  |  |  |  |  |  |  |  |  |

## At the end of the course the student will be able to:

| CO1    | Familiarize the concept of scattering theory such as partial         | K1                 |  |  |  |  |
|--------|----------------------------------------------------------------------|--------------------|--|--|--|--|
|        | wave analysis and Born approximation                                 |                    |  |  |  |  |
| CO2    | Give a firm grounding in relativistic quantum mechanics,             | K2                 |  |  |  |  |
|        | with emphasis on Dirac equation and related concepts                 | κ <i>∠</i>         |  |  |  |  |
| CO3    | Discuss the relativistic quantum mechanical equations                |                    |  |  |  |  |
|        | namely, Klein-Gordon and Dirac equations and the                     | K1, K4             |  |  |  |  |
|        | phenomena accounted by them like electron spin and                   | кı, к <del>ч</del> |  |  |  |  |
|        | magnetic moment                                                      |                    |  |  |  |  |
| CO4    | Introduce the concept of covariance and the use of Feynman           | K1,                |  |  |  |  |
|        | graphs for depicting different interactions                          | K3                 |  |  |  |  |
| CO5    | Demonstrate an understanding of field quantization and the           | K5                 |  |  |  |  |
|        | explanation of the scattering matrix.                                | кS                 |  |  |  |  |
| K1 - F | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evalu |                    |  |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|            | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | P06 | PO7 | <b>PO8</b> | <b>PO9</b> | PO10 |
|------------|------------|------------|-----|-----|-----|-----|-----|------------|------------|------|
| <b>CO1</b> | 3          | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3          | 3    |
| <b>CO2</b> | 3          | 3          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3    |
| CO3        | 3          | 2          | 2   | 3   | 3   | 2   | 3   | 3          | 3          | 3    |

| <b>CO4</b> | 2 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 3 | 3 |
|------------|---|---|---|---|---|---|---|---|---|---|
| <b>CO5</b> | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 3 | 3 |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO3 | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 3    | 3    | 3     |
| CO4 | 2    | 1    | 1    | 3    | 3    | 1    | 2    | 2    | 3    | 3     |
| C05 | 2    | 1    | 1    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |

| Paper 8 - SPEC  | II YEAR - THIRD SEMESTER |          |   |   |   |         |                |       |
|-----------------|--------------------------|----------|---|---|---|---------|----------------|-------|
| Subject<br>Code | Subject Name             | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
| 23P3PHC07       | SPECTROSCOPY             | Core     |   |   |   | 4       | 6              | 75    |

## **Pre-Requisites**

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

## Learning Objectives

- > To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- > Understand this important analytical tool

| UNITS        | Course                                                              |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
|              | Details                                                             |  |  |  |  |  |  |  |
|              | Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic    |  |  |  |  |  |  |  |
| UNIT I:      | Molecules)-reduced mass - rotational constant - Effect of isotopic  |  |  |  |  |  |  |  |
| UNII I.      | substitution - Non rigid rotator - centrifugal distortion constant- |  |  |  |  |  |  |  |
| MICROWAVE    | Intensity of Spectral Lines- Polyatomic molecules – linear –        |  |  |  |  |  |  |  |
| SPECTROSCOPY | symmetric asymmetric top molecules                                  |  |  |  |  |  |  |  |
| SPECIROSCOPI | Instrumentation techniques - block diagram -Information Derived     |  |  |  |  |  |  |  |
|              | from Rotational Spectra- Stark effect.                              |  |  |  |  |  |  |  |
|              | Vibrations of simple harmonic oscillator – zero-point energy-       |  |  |  |  |  |  |  |
|              | Anharmonic oscillator - fundamentals, overtones and                 |  |  |  |  |  |  |  |
| UNIT II:     | combinations- Diatomic Vibrating Rotator- PR branch – PQR           |  |  |  |  |  |  |  |
|              | branch- Fundamental modes of Vibrational of H <sub>2</sub> O        |  |  |  |  |  |  |  |
| INFRA-RED    | -Introduction to application of vibration spectra.                  |  |  |  |  |  |  |  |
| SPECTROSCOPY | IR Spectrophotometer Instrumentation (Double Beam                   |  |  |  |  |  |  |  |
| SPECINOSCOPI | Spectrometer) – Fourier Transform Infrared Spectroscopy -           |  |  |  |  |  |  |  |
|              | Interpretation of vibrational spectra-remote analysis of            |  |  |  |  |  |  |  |
|              | atmospheric gases like $N_2O$ using FTIR by National Remote         |  |  |  |  |  |  |  |

|              | Sensing Centre (NRSC), India– other simple applications             |
|--------------|---------------------------------------------------------------------|
|              | Theory of Raman Scattering - Classical theory – molecular           |
|              | polarizability – polarizability ellipsoid - Quantum theory of Raman |
| UNIT III:    | effect - rotational Raman spectra of linear molecule - symmetric    |
|              | top molecule – Stokes and anti-stokes line- SR branch -Raman        |
| RAMAN        | activity of $H_2O$ - Mutual exclusion principle-                    |
| SPECTROSCOPY | Instrumentation technique and block diagram - structure             |
|              | determination of planar and non-planar molecules using IR and       |
|              | Raman techniques - FT Raman spectroscopy- SERS                      |
|              | Nuclear and Electron spin- Interaction with magnetic field -        |
|              | Population of Energy levels - Larmor precession- Relaxation times   |
|              | NMR of Hydrogen nuclei - Instrumentation techniques of NMR          |
| UNIT IV:     | spectroscopy – MRI Scan.                                            |
|              | Electron Spin Resonance: Basic principle –Total Hamiltonian         |
| RESONANCE    | (Direct Dipole-Dipole interaction and Fermi Contact Interaction) –  |
| SPECTROSCOPY | Hyperfine Structure (Hydrogen atom ) – ESR Spectra of Free          |
|              | radicals – g-factors – Instrumentation - Medical applications of    |
|              | ESR                                                                 |
|              | Origin of UV spectra - Laws of absorption – Lambert Bouguer law     |
|              | – Lambert Beer law - molar absorptivity – transmittance and         |
| UNIT V:      | absorbance - Color in organic compounds- Absorption by organic      |
|              | Molecule -Chromospheres -Effect of conjugation on                   |
| UV           | chromospheres - Choice of Solvent and Solvent effect - Absorption   |
| SPECTROSCOPY | by inorganic systems - Instrumentation - double beam UV-            |
|              | Spectrophotometer -Simple applications                              |
|              | Expert Lectures, Online Seminars - Webinars on Industrial           |
| UNIT VI:     | Interactions/Visits, Competitive Examinations, Employable and       |
| PROFESSIONAL | Communication Skill Enhancement, Social Accountability and          |
| COMPONENTS   | Patriotism                                                          |
|              | 1. C N Banwell and E M McCash, 1994, Fundamentals of                |
|              | Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill,              |
|              | New Delhi.                                                          |
|              | 2. G Aruldhas, 1994, Molecular Structure and Molecular              |
|              | Spectroscopy, Prentice–Hall of India, New Delhi.                    |
| TEXT BOOKS   | 3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and           |
|              | Applications, New Age International Publication.                    |
|              | 4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House           |
|              | Meerut.                                                             |
|              | 5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th          |

|             | Edition),                                                          |
|-------------|--------------------------------------------------------------------|
|             | New Age International Publishers.                                  |
|             | 1. J L McHale, 2008, Molecular Spectroscopy, Pearson               |
|             | Education India, New Delhi.                                        |
|             | 2. J M Hollas, 2002, Basic Atomic and Molecular                    |
|             | Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.          |
| REFERENCE   | 3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I,       |
| BOOKS       | Chapman and Hall, New York.                                        |
|             | 4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata          |
|             | McGraw Hill, New Delhi.                                            |
|             | 5. Demtroder. W, Laser Spectroscopy: Basic concepts and            |
|             | Instrumentation, Springer Link.                                    |
|             | 1. <u>https://www.youtube.com/watch?v=0iQhirTf2PI</u>              |
|             | 2. <u>https://www.coursera.org/lecture/spectroscopy/introducti</u> |
|             | on-3N5D5                                                           |
|             | 3. https://www.coursera.org/lecture/spectroscopy/infrared-         |
| WEB SOURCES | spectroscopy-8jEee                                                 |
|             | 4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview            |
|             | 5. https://www.coursera.org/lecture/spectroscopy/nmr-              |
|             | spectroscopy-introduction-XCWRu                                    |
|             |                                                                    |

# At the end of the course the student will be able to:

| Understand fundamentals of rotational spectroscopy, view      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -                                                             | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| to quantify their nature and correlate them with their        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| characteristic properties.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Understand the working principles of spectroscopic            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| instruments and theoretical background of IR spectroscopy.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Able to correlate mathematical process of Fourier             | к2, кз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| transformations with instrumentation. Able to interpret       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| vibrational spectrum of small molecules.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Interpret structures and composition of molecules and use     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| their knowledge of Raman Spectroscopy as an important         | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| analytical tool                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Use these resonance spectroscopic techniques for quantitative | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| and qualitative estimation of a substances                    | <b>N</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Learn the electronic transitions caused by absorption of      | V1 VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| radiation in the UV/Vis region of the electromagnetic         | K1, K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                               | <ul> <li>molecules as elastic rotors and interpret their behaviour. Able to quantify their nature and correlate them with their characteristic properties.</li> <li>Understand the working principles of spectroscopic instruments and theoretical background of IR spectroscopy. Able to correlate mathematical process of Fourier transformations with instrumentation. Able to interpret vibrational spectrum of small molecules.</li> <li>Interpret structures and composition of molecules and use their knowledge of Raman Spectroscopy as an important analytical tool</li> <li>Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances</li> <li>Learn the electronic transitions caused by absorption of</li> </ul> |  |

| spectrum | and | be able | to | analvze a                             | simple       | UV | spectrum. |  |
|----------|-----|---------|----|---------------------------------------|--------------|----|-----------|--|
| - I      |     |         |    | ··· · · · · · · · · · · · · · · · · · | - <u>r</u> - | -  | ·         |  |

# K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|     | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 |
|-----|------------|------------|-----|-----|-----|------------|------------|-----|------------|------|
| CO1 | 3          | 3          | 3   | 2   | 3   | 3          | 3          | 3   | 3          | 2    |
| CO2 | 2          | 2          | 2   | 3   | 3   | 3          | 3          | 3   | 3          | 2    |
| CO3 | 3          | 2          | 3   | 3   | 3   | 3          | 3          | 3   | 3          | 3    |
| CO4 | 3          | 2          | 3   | 3   | 3   | 3          | 3          | 3   | 3          | 3    |
| CO5 | 3          | 3          | 3   | 3   | 3   | 3          | 3          | 3   | 3          | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 2         |
| CO2 | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2         |
| CO3 | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3         |
| CO4 | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3         |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3         |

| Paper 10 - ELEC | CTROMAGNETIC THEORY       | II YEA   | <b>R</b> - | TH] | IRD | SEM     | IESTE          | R     |
|-----------------|---------------------------|----------|------------|-----|-----|---------|----------------|-------|
| Subject<br>Code | Subject Name              | Category | L          | Т   | Р   | Credits | Inst.<br>Hours | Marks |
| 23P3PHC08       | ELECTROMAGNETIC<br>THEORY | Core     |            |     |     | 4       | 5              | 75    |

## **Pre-Requisites**

Different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

#### **Learning Objectives**

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

| UNITS                      | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>ELECTROSTATICS  | Boundary value problems and Laplace equation –<br>Boundary conditions and uniqueness theorem – Laplace<br>equation in three dimension – Solution in Cartesian and<br>spherical polar coordinates<br>Polarization and displacement vectors - Boundary<br>conditions - Dielectric sphere in a uniform field – Molecular<br>polarizability and electrical susceptibility – Electrostatic<br>energy in the presence of dielectric. |
| UNIT II:<br>MAGNETOSTATICS | Biot-Savart's Law - Ampere's law - Magnetic vector<br>potential and magnetic field of a localized current<br>distribution - Magnetic moment, force and torque on a<br>current distribution in an external field - Magneto static<br>energy - Magnetic induction and magnetic field in<br>macroscopic media - Boundary conditions - Uniformly                                                                                   |

|                | magnetized sphere.                                                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------|
|                | Faraday's laws of Induction - Maxwell's displacement<br>current - Maxwell's equations - Vector and scalar              |
| UNIT III:      | potentials - Gauge invariance - Wave equation and plane                                                                |
| MAXWELL        | wave solution- Coulomb and Lorentz gauges - Energy and                                                                 |
| EQUATIONS      | momentum of the field - Poynting's theorem - Lorentz force                                                             |
|                | - Conservation laws for a system of charges and                                                                        |
|                | electromagnetic fields.                                                                                                |
|                | Plane waves in non-conducting media - Linear and circular                                                              |
|                | polarization, reflection and refraction at a plane interface -                                                         |
| UNIT IV:       | Waves in a conducting medium - Propagation of waves in a                                                               |
| WAVE           | rectangular wave guide.                                                                                                |
| PROPAGATION    | Inhomogeneous wave equation and retarded potentials -                                                                  |
|                | Radiation from a localized source - Oscillating electric                                                               |
| _              | dipole                                                                                                                 |
|                | The Boltzmann Equation - Simplified magneto-                                                                           |
| UNIT V:        | hydrodynamic equations - Electron plasma oscillations -                                                                |
| ELEMENTARY     | The Debye shielding problem - Plasma confinement in a                                                                  |
| PLASMA PHYSICS | magnetic field - Magneto-hydrodynamic waves - Alfven                                                                   |
|                | waves and magnetosonic waves.                                                                                          |
| UNIT VI:       | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable |
| PROFESSIONAL   | and Communication Skill Enhancement, Social                                                                            |
| COMPONENTS     | Accountability and Patriotism                                                                                          |
|                | 1. D. J. Griffiths, 2002, Introduction to Electrodynamics,                                                             |
|                | 3 <sup>rd</sup> Edition, Prentice-Hall of India, New Delhi.                                                            |
|                | 2. J. R. Reitz, F. J. Milford and R. W. Christy, 1986,                                                                 |
|                | Foundations of Electromagnetic Theory, 3 <sup>rd</sup> edition,                                                        |
|                | Narosa Publishing House, New Delhi.                                                                                    |
| TEVT DOOVS     | 3. J. D. Jackson, 1975, Classical Electrodynamics,                                                                     |
| TEXT BOOKS     | Wiley Eastern Ltd. New Delhi.                                                                                          |
|                | 4. J. A. Bittencourt, 1988, Fundamentals of Plasma                                                                     |
|                | Physics, Pergamon Press, Oxford.                                                                                       |
|                | 5. Gupta, Kumar and Singh, Electrodynamics, S.                                                                         |
|                | Chand & Co., New Delhi                                                                                                 |
|                | 1. W. Panofsky and M. Phillips, 1962, Classical                                                                        |
| REFERENCE      | Electricity and Magnetism, Addison Wesley, London.                                                                     |
| BOOKS          | 2. J. D. Kraus and D. A. Fleisch, 1999,                                                                                |
|                | Electromagnetics with Applications, 5 <sup>th</sup> Edition, WCB                                                       |

|             | McGraw-Hill, New York.                                     |
|-------------|------------------------------------------------------------|
|             | 3. B. Chakraborty, 2002, Principles of Electrodynamics,    |
|             | Books and Allied, Kolkata.                                 |
|             | 4. P. Feynman, R. B. Leighton and M. Sands, 1998, The      |
|             | Feynman Lectures on Physics, Vols. 2, Narosa               |
|             | Publishing House, New Delhi.                               |
|             | 5. Andrew Zangwill, 2013, Modern Electrodynamics,          |
|             | Cambridge University Press, USA.                           |
|             | 1. <u>http://www.plasma.uu.se/CED/Book/index.html</u>      |
|             | 2. <u>http://www.thphys.nuim.ie/Notes/electromag/fram</u>  |
|             | <u>e-notes.html</u>                                        |
|             | 3. <u>http://www.thphys.nuim.ie/Notes/em-topics/em-</u>    |
| WEB SOURCES | topics.html                                                |
| WEB SOURCES | 4. <u>http://dmoz.org/Science/Physics/Electromagnetism</u> |
|             | <u>/Courses_and_Tutorials/</u>                             |
|             | 5. <u>https://www.cliffsnotes.com/study-</u>               |
|             | guides/physics/electricity-and-                            |
|             | magnetism/electrostatics                                   |

## At the end of the course the student will be able to:

| <b>CO1</b> | Solve the differential equations using Laplace equation and to find                                                                                                                                                        | K1,       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            | solutions for boundary value problems                                                                                                                                                                                      | K5        |
| CO2        | Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various                                                                                                      | K2,       |
|            | physical problems                                                                                                                                                                                                          | К3        |
| CO3        | Apply Maxwell's equations to describe how electromagnetic field<br>behaves in different media                                                                                                                              | кз        |
| CO4        | Apply the concept of propagation of EM waves through wave<br>guides in optical fiber communications and also in radar<br>installations, calculate the transmission and reflection coefficients<br>of electromagnetic waves | КЗ,<br>К4 |
| CO5        | Investigate the interaction of ionized gases with self-consistent electric and magnetic fields                                                                                                                             | К5        |

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM

# (2) andLOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3    |
| CO2 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3    |
| CO3 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3    |
| CO4 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3    |
| CO5 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3         |
| CO2 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3         |
| CO3 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3         |
| CO4 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3         |
| CO5 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3         |

| Elective - MICRO<br>AND MICROCO | II YEAR –                                             | тн       | IRI | ) SE | MES | TER     |                |       |
|---------------------------------|-------------------------------------------------------|----------|-----|------|-----|---------|----------------|-------|
| Subject<br>Code                 | Subject Name                                          | Category | L   | т    | Р   | Credits | Inst.<br>Hours | Marks |
| 23P3PHDE03                      | MICROPROCESSOR<br>8085 AND<br>MICROCONTROLLER<br>8051 | ELECTIVE |     |      |     | 3       | 4              | 75    |

| Pre-Requisites                                    |
|---------------------------------------------------|
| Knowledge of number systems and binary operations |
| Learning Objectives                               |

- To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- > To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051

| UNITS                                                                   | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>EVOLUTION AND<br>ARCHITECTURE OF<br>MICROPROCESSOR<br>S 8085 | ALLI Flags Deviators Instruction act Adducesing medas                                                                                                                                                                                                                                                                                                                                                                                                         |
| UNIT II:<br>8085 PERIPHERAL<br>DEVICES AND<br>THEIR<br>INTERFACING      | Memory mapped I/O scheme- I/O mapped I/O scheme -<br>Memory and I/O interfacing - Programmable Peripheral<br>Interface (PPI) INTEL 8255 - Data Transfers: Types of parallel<br>and serial data transfer schemes - Direct Memory Access (DMA)<br>controller INTEL 8257. Seven segment display interface -<br>Interfacing of Digital to Analog converter and Analog to Digital<br>converter - Stepper motor interface - Temperature<br>measurement and control. |
| UNIT III:<br>8051<br>MICROCONTROLL<br>ER HARDWARE                       | Introduction – Features of 8051 – 8051 Microcontroller<br>Hardware: Pin-out 8051, Central Processing Unit (CPU),<br>internal RAM, Internal ROM, Register set of 8051 – Memory<br>organization of 8051 – Input/ Output pins, Ports and Circuits<br>– External data memory and program memory: External                                                                                                                                                         |

|                                                                                   | program memory, External data memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   | r - 8 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UNIT IV: 8051<br>INSTRUCTION SET<br>AND ASSEMBLY<br>LANGUAGE<br>PROGRAMMING       | Addressing modes – Data moving (Data transfer) instructions:<br>Instructions to Access external data memory, external ROM /<br>program memory, PUSH and POP instructions, Data exchange<br>instructions – Logical instructions: byte and bit level logical<br>operations, Rotate and swap operations – Arithmetic<br>instructions: Flags, Incrementing and decrementing, Addition,<br>Subtraction, Multiplication and division, Decimal arithmetic –<br>Jump and CALL instructions: Jump and Call program range,<br>Jump, Call and subroutines – Programming.                                                   |
| UNIT V:<br>INTERRUPT<br>PROGRAMMING<br>AND<br>INTERFACING<br>TO EXTERNAL<br>WORLD | 8051 Interrupts – Interrupt vector table – Enabling and<br>disabling an interrupt – Timer interrupts and programming –<br>Programming external hardware interrupts – Serial<br>communication interrupts and programming – Interrupt<br>priority in the 8051 : Nested interrupts , Software triggering of<br>interrupt. LED Interface Seven segment display interface-<br>Interfacing of Digital to Analog converter and Analog to Digital<br>converter - Stepper motor interface - Measurement of electrical<br>quantities – Voltage and current) Measurement of physical<br>quantities(Temperature an strain). |
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS                                            | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                                                                                                                          |
| TEXT BOOKS                                                                        | <ol> <li>A. NagoorKani, Microprocessors &amp; Microcontrollers, RBA<br/>Publications (2009).</li> <li>A. P. Godse and D. A. Godse, Microprocessors, Technical<br/>Publications, Pune (2009).</li> <li>Ramesh Gaonkar, Microprocessor Architecture,<br/>Programming and Applications with 8085, Penram<br/>International Publishing (2013).</li> <li>B. Ram, Fundamentals of Microprocessors &amp;<br/>Microcontrollers, DhanpatRai publications New Delhi<br/>(2016).</li> <li>V. Vijayendran, 2005, Fundamentals of Microprocessor-<br/>8085", 3rd Edition S.Visvanathan Pvt, Ltd.</li> </ol>                  |

|           | 1. Douglas V. Hall, Microprocessors and Interfacing          |  |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------|--|--|--|--|--|--|--|
|           | programming and Hardware, Tata Mc Graw Hill                  |  |  |  |  |  |  |  |
|           | Publications (2008)                                          |  |  |  |  |  |  |  |
|           | 2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D.     |  |  |  |  |  |  |  |
|           | Mckinlay, The 8051 Microcontroller and Embedded              |  |  |  |  |  |  |  |
|           | Systems, Pearson Education (2008).                           |  |  |  |  |  |  |  |
|           | 3. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, |  |  |  |  |  |  |  |
| REFERENCE | 80186, 80286, 80386 and 80486, 3rd Edition, Prentice-        |  |  |  |  |  |  |  |
| BOOKS     | Hall of India, New Delhi.                                    |  |  |  |  |  |  |  |
|           | 4. J. Uffrenbeck, "The 8086/8088 Family-Design,              |  |  |  |  |  |  |  |
|           | Programming and Interfacing, Software, Hardware and          |  |  |  |  |  |  |  |
|           | Applications", Prentice-Hall of India, New Delhi.            |  |  |  |  |  |  |  |
|           | 5.W. A. Tribel, Avtar Singh, "The 8086/8088                  |  |  |  |  |  |  |  |
|           | Microprocessors: Programming, Interfacing, Software,         |  |  |  |  |  |  |  |
|           | Hardware and Applications", Prentice-Hall of India, New      |  |  |  |  |  |  |  |
|           | Delhi.                                                       |  |  |  |  |  |  |  |

|             | 1. https://www.tutorialspoint.com/microprocessor/micro         |
|-------------|----------------------------------------------------------------|
|             | processor_8085_architecture.html                               |
|             | 2. <u>http://www.electronicsengineering.nbcafe.in/peripher</u> |
|             | al-mapped-io-interfacing/                                      |
| WEB SOURCES | 3. <u>https://www.geeksforgeeks.org/programmable-</u>          |
|             | peripheral-interface-8255/                                     |
|             | 4. http://www.circuitstoday.com/8051-microcontroller           |
|             | 5. <u>https://www.elprocus.com/8051-assembly-language-</u>     |
|             | programming/                                                   |

# At the end of the course, the student will be able to:

| CO1 | Gain knowledge of architecture and working of 8085           | К1  |
|-----|--------------------------------------------------------------|-----|
|     | microprocessor.                                              | NI  |
| CO2 | Get knowledge of architecture and working of 8051            | K1  |
|     | Microcontroller.                                             | NI  |
| CO3 | Be able to write simple assembly language programs for 8085A | K2, |
|     | microprocessor.                                              | K3  |
| CO4 | Able to write simple assembly language programs for 8051     | КЗ, |
|     | Microcontroller.                                             | K4  |
| CO5 | Understand the different applications of microprocessor and  | K3, |

microcontroller.

K 5

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 -Evaluate;

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) **and** LOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 2          | 3   | 3   | 3   | 3   | 1   | 1          | 1   | 1   | 1    |
| CO2 | 2          | 1   | 1   | 1   | 1   | 1   | 1          | 1   | 1   | 1    |
| CO3 | 3          | 3   | 3   | 3   | 3   | 1   | 1          | 1   | 1   | 1    |
| CO4 | 3          | 3   | 3   | 3   | 3   | 1   | 1          | 1   | 1   | 1    |
| CO5 | 3          | 3   | 3   | 3   | 3   | 1   | 1          | 1   | 1   | 1    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 2    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1         |
| CO2 | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1         |
| CO3 | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1         |
| CO4 | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1         |
| CO5 | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1         |

| SCIENTIFIC RESEARCH PROCESS |                                   |                                    |   |   | –TH | IRI | ) SEI   | MESTI          | ER    |
|-----------------------------|-----------------------------------|------------------------------------|---|---|-----|-----|---------|----------------|-------|
| Subject<br>Code             | Subject Name                      | Category                           |   | L | т   | Р   | Credits | Inst.<br>Hours | Marks |
| 23P3PHS02                   | SCIENTIFIC<br>RESEARCH<br>PROCESS | Skill<br>Enhanceme<br>Course – III | - |   |     |     | 2       | 2              | 75    |

| Pre-Requisites                                                                   |
|----------------------------------------------------------------------------------|
| Ability in scientific research process                                           |
| Learning Objectives                                                              |
| > To give an introduction to students in the areas of <b>scientific research</b> |
| process                                                                          |

|               | Definition Orientific Descent Meaning and importance of       |
|---------------|---------------------------------------------------------------|
| UNIT – I :    | Definition- Scientific Research- Meaning and importance of    |
| RESEARCH      | Research – Types of Research - Defining and formulating the   |
| PROBLEM       | research problem - Selecting the problem - Necessity of       |
|               | defining the problem.                                         |
| UNIT – II :   |                                                               |
| LITERATURE    | Importance of literature review in defining a problem -       |
| REVIEW        | Literature review – reviews – web as a source                 |
|               |                                                               |
| UNIT – III :  | Data Preparation - Univariate analysis (frequency tables, bar |
| DATA ANALYSIS | charts, pie charts, percentages), Reference Management        |
|               | Software like Zotero/ Mendeley, Software for paper formatting |
|               | like LaTeX/ MS Office, Software for detection of Plagiarism   |
| UNIT – IV:    | Preparing Research papers for journals, Seminars and          |
| SCIENTIFIC    | Conferences - power point and poster presentation-            |
| PRESENTATION  | Calculations of Impact factor of a journal, citation Index,   |
|               | ISBN & ISSN- web of science                                   |
| UNIT - V :    |                                                               |
| ETHICS OF     | Ethical Issues - Ethical Committees - Commercialization -     |
| RESEARCH      | copy right - Plagiarism – Citation and Acknowledgement        |
|               |                                                               |
|               |                                                               |
|               |                                                               |

|             | 1. Garg.B.L., Karadia, R., Agarwal, F. and Agarwal, U.K.,               |
|-------------|-------------------------------------------------------------------------|
|             | 2002. An introduction to Research Methodology, RBSA                     |
|             | Publishers                                                              |
|             | 2. Kothari, C.R.(2008). Research Methodology: Methods                   |
| TEXT BOOKS  | and Techniques. Second Edition. New Age                                 |
| IEAI BUUNS  | International Publishers, New Delhi.                                    |
|             | <b>3.</b> Thesis and assignment writing – J.Anderson,                   |
|             | B.H.Durston and M.Poole – Wiley Eastern, New Delhi                      |
|             | (1977).                                                                 |
|             | <b>1.</b> How to write a research paper – Ralph Berry,                  |
|             | Pergamon Press, Oxford (1986).                                          |
| REFERENCE   | <b>2.</b> Form and style in thesis writing – W.G.Campbell, The          |
| BOOKS       | University of Chicago Press (2016).                                     |
|             | 3. A Handbook of Methodology of Research – Rajammal                     |
|             | P.A.Devadas, R.M.M.Vidyalaya Press (1976).                              |
|             | 1. https://www.bu.edu/abroad/files/2016/06/CAS-NS291-Introduction-into- |
|             | Scientific-Research.pdf                                                 |
| WEB SOURCES | 2. <u>https://www.linkedin.com/pulse/e-commerce-our-</u>                |
| WED SOURCES | daily-life-dash-technologies-inc                                        |
|             | 3. <u>https://www.quora.com/What-are-the-most-</u>                      |
|             | important-electronic-devices-for-everyday-life                          |

## At the end of the course, the student will be able to:

| <b>CO1</b>                                                               | Understand scientific research process | K2    |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------|-------|--|--|--|
| CO2                                                                      | To analyze research problem            | K4,K1 |  |  |  |
| CO3                                                                      | Apply the data handling                | K3    |  |  |  |
| CO4                                                                      | To remember the research process       | K1    |  |  |  |
| CO5                                                                      | To apply the research presentation     | К3    |  |  |  |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |                                        |       |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1 | 3          | 3   | 1   | 3   | 2   | 3   | 2          | 2          | 2   | 2    |
| CO2 | 3          | 3   | 1   | 3   | 2   | 3   | 2          | 2          | 2   | 2    |

| CO3 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|
| CO4 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |
| CO5 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | М   | S   | М   | L   | S   | S   |
| CO2 | S   | М   | S   | L   | L   | М   | М   |
| CO3 | S   | М   | S   | L   | М   | М   | М   |
| CO4 | S   | М   | S   | S   | М   | S   | S   |
| CO5 | S   | М   | S   | L   | М   | М   | М   |

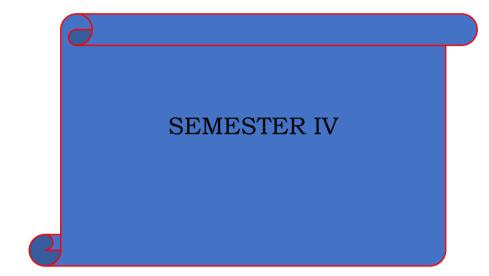
#### PRACTICAL III

#### **II YEAR - THIRD SEMESTER**

| Subject<br>Code | Subject Name    | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|-----------------|----------|---|---|---|---------|----------------|-------|
| 23P3PHCP03      | PRACTICAL - III | Core     |   |   |   | 4       | 6              | 75    |

| Pre-Requisites                                                            |
|---------------------------------------------------------------------------|
| Fundamentals of digital principles                                        |
| Learning Objectives                                                       |
| > To understand the theory and working of Microprocessor, Microcontroller |
| and their applications                                                    |

> To use microprocessor and Microcontroller in different applications


#### **Course Details**

#### Practical IV: MICROPROCESSOR 8085 AND MICROCONTROLLER 8051 (ANY TWELVE EXPERIMENTS)

- 1. 8-bit addition and subtraction 8085
- 2. 8-bit multiplication and division 8085
- 3. Picking up the smallest and largest number in an array.
- 4. Sum of a set of N data (8-bit number)
- 5. Ascending and descending order in given array
- 6. Multi-byte decimal addition and subtraction
- 7. 16- bit square root of a number and square of a number
- 8. 16-bit addition and subtraction 8085
- 9. 16-bit multiplication and division 8085
- 10. Interfacing of DC stepper motor 8085
- 11. Sum of simple series and Factorial of a given number.
- 12. ADC 0809 interface
- 13. Data transfer program

- 14. Interfacing of seven segment display
- 15. Addition and Subtraction of 8-bit numbers 8051
- 16. Multiplication and Division of 8-bit numbers 8051
- 17. Sum of a series of 8-bit numbers 8051
- 18. Stepper motor interfacing
- 19. ADC interfacing
- 20. Temperature controller and Measurements
- 21. Traffic light controller

|           | 1. Douglas V. Hall, Microprocessors and Interfacing programming  |
|-----------|------------------------------------------------------------------|
|           | and Hardware, Tata Mc Graw Hill Publications (2008)              |
|           | 2. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D.        |
|           | Mckinlay,                                                        |
|           | The 8051 Microcontroller and Embedded Systems, Pearson           |
| TEXT      | Education (2008).                                                |
| BOOKS     | 3. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",   |
|           | 3rd Edition S. Visvanathan Pvt, Ltd.                             |
|           | 4. The 8085 Microprocessor, Architecture, Programming and        |
|           | Interfacing – K. Udaya Kumar, S. Uma Shankar, Pearson            |
|           | 5. Fundamentals of Microprocessors and Microcontrollers - B.     |
|           | Ram, Dhanpat Rai Publications                                    |
|           | 1. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:    |
|           | Programming, Interfacing, Software, Hardware and                 |
|           | Applications", Prentice-Hall of India, New Delhi.                |
|           | 2. Microprocessor and Its Application - S. Malarvizhi, Anuradha  |
|           | Agencies Publications                                            |
| REFERENCE | 3. Microprocessor Architecture, Program And Its Application With |
| BOOKS     | 8085 - R.S. Gaonkar, New Age International (P) Ltd               |
| DOOMS     | 4. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088,     |
|           | 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of    |
|           | India, New Delhi.                                                |
|           | 5. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming      |
|           | and Interfacing, Software, Hardware and Applications",           |
|           | Prentice-Hall of India, New Delhi.                               |



|                 |                                                                   | SEMI                                       | ESTER - | IV     |      |               |               |               |
|-----------------|-------------------------------------------------------------------|--------------------------------------------|---------|--------|------|---------------|---------------|---------------|
| Subject<br>Code |                                                                   | Subject Title                              | Hrs     | Credit | Exam | Int.<br>Marks | Ent.<br>Marks | Total<br>Mark |
| 23P4PHC09       | Core – IX                                                         | Nuclear and<br>Particle Physics            | 6       | 4      | 3    | 25            | 75            | 100           |
| 23P4PHC10       | Core - X                                                          | Condensed<br>Matter Physics                | 5       | 4      | 3    | 25            | 75            | 100           |
| 23P4PHC11       | Core - XI                                                         | Computational<br>techniques for<br>Physics | 5       | 4      | 3    | 25            | 75            | 100           |
| 23P4PHCP04      | Core<br>Practical - IV                                            | Practical – IV                             | 6       | 4      | 4    | 40            | 60            | 100           |
| 23P4PHPR01      | Core - XII                                                        | Project with<br>Viva-Voce                  | 4       | 4      | -    | 25            | 75            | 100           |
| 23P4PHDE04      | Soft Skill – II<br>Ability<br>Enhancement<br>Compulsory<br>Course | Robotics, Al in<br>Physics                 | 2       | 2      | 3    | 25            | 75            | 100           |
| 23P4PH ED1      | EDC                                                               | Applied<br>polymer<br>Chemistry            | 2       | 2      | 3    | 25            | 75            | 100           |
|                 |                                                                   | Extension<br>Activity                      | -       | 1      | -    | -             | -             | -             |
|                 | Total                                                             |                                            |         |        | 19   | 190           | 510           | 700           |

#### **CONDENSED MATTER PHYSICS**

#### **II YEAR - FOURTH SEMESTER**

| Subject<br>Code | Subject Name                | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|-----------------------------|----------|---|---|---|---------|----------------|-------|
| 23P4PHC10       | CONDENSED MATTER<br>PHYSICS | Core     |   |   |   | 4       | 5              | 75    |

#### **Pre-Requisites**

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

#### Learning Objectives

- > To describe various crystal structures, symmetry and to differentiate different types of bonding.
- > To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- > To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

| UNITS    | Course Details                                                     |
|----------|--------------------------------------------------------------------|
|          | Basic Concepts :                                                   |
|          | Types of lattices - Miller indices - Simple crystal structures -   |
|          | Atomic Packing Factor Symmetry elements and allowed                |
| UNIT I:  | rotations -Reciprocal Lattice (SC, BCC, FCC). Brillouin zone -     |
| CRYSTAL  | Structure factor - Atomic form factor                              |
| PHYSICS  | Crystal diffraction:                                               |
|          | Bragg's law – Scattered Wave Amplitude Structure and               |
|          | Diffraction Conditions - Laue equations - Inert gas crystals -     |
|          | Cohesive energy of ionic crystals                                  |
|          | Lattice with two atoms per primitive cell - First Brillouin zone - |
| UNIT II: | Group and phase velocities - Quantization of lattice vibrations -  |
| LATTICE  | Phonon momentum - Inelastic scattering by phonons - Thermal        |
| DYNAMICS | Conductivity - Debye's theory of lattice heat capacity -           |
|          | Umkalapp processes.                                                |

|                                                            | Free electron gas in three dimensions - Electronic heat capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT III:<br>THEORY OF<br>METALS AND<br>SEMICONDUC<br>TORS | <ul> <li>Wiedemann-Franz law - Band theory of metals and<br/>semiconductors - Bloch theorem - Kronig-Penney model -<br/>Semiconductors - Intrinsic carrier concentration – Temperature<br/>Dependence - Mobility - Impurity conductivity – Impurity states</li> <li>Hall effect - Fermi surfaces and construction - Experimental<br/>methods in Fermi surface studies - de Hass-van Alphen effect .</li> </ul>                                                                                                                                                                                                                                        |
| UNIT IV:<br>MAGNETISM                                      | <ul> <li>Diamagnetism - Quantum theory of paramagnetism - Rare earth</li> <li>ion - Hund's rule - Quenching of orbital angular momentum -</li> <li>Adiabatic demagnetization - Quantum theory of ferromagnetism</li> <li>Curie point - Exchange integral - Heisenberg's interpretation</li> <li>of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves</li> <li>Quantization - Magnons - Thermal excitation of magnons -</li> <li>Curie temperature and susceptibility of ferrimagnets - Theory of</li> <li>antiferomagnetism - Neel temperature.</li> </ul>                                                                                |
| UNIT V:<br>SUPERCON<br>DUCTIVITY                           | <b>Experimental facts:</b> Occurrence - Effect of magnetic fields -<br>Meissner effect – Critical field – Critical current - Entropy<br>and heat capacity - Energy gap -Type I and II Superconductors.<br><b>Theoretical Explanation:</b> Thermodynamics of super<br>conducting transition - London equation - Coherence length –<br>Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS)<br>Theory – BCS to Bose – Einstein Condensation (BEC) regime-<br>Nature of paring and condensation of Fermions. Single particle<br>tunneling - Josephson tunneling - DC and AC Josephson<br>effects - High temperature Superconductors – SQUIDS. |
| UNIT VI:<br>PROFESSION<br>AL<br>COMPONENTS                 | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEXT<br>BOOKS                                              | <ol> <li>C. Kittel, 1996, Introduction to Solid State Physics, 7<sup>th</sup> Edition,<br/>Wiley, New York.</li> <li>Rita John, Solid State Physics, Tata Mc-<br/>Graw Hill Publication.</li> <li>A. J. Dekker, Solid State Physics, Macmillan India, New Delhi.</li> <li>M. Ali Omar, 1974, Elementary Solid State Physics –<br/>Principlesand Applications, Addison - Wesley</li> <li>H. P. Myers, 1998, Introductory Solid State Physics,<br/>2<sup>nd</sup>Edition,Viva Book, New Delhi.</li> </ol>                                                                                                                                               |
| REFERENCE<br>BOOKS                                         | <ol> <li>J. S. Blakemore, 1974, Solid state Physics, 2<sup>nd</sup> Edition, W.B.<br/>Saunder, Philadelphia</li> <li>H. M. Rosenburg, 1993, The Solid State, 3<sup>rd</sup> Edition, Oxford<br/>University Press, Oxford.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | 3. J. M. Ziman, 1971, Principles of the Theory of Solids,           |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
|         | Cambridge University Press, London.                                 |  |  |  |  |  |  |  |
|         | 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to         |  |  |  |  |  |  |  |
|         | Superconductivity, Pergamon, Oxford.                                |  |  |  |  |  |  |  |
|         | 5. J. P. Srivastava, 2001, Elements of Solid State Physics,         |  |  |  |  |  |  |  |
|         | Prentice-Hall of India, New Delhi.                                  |  |  |  |  |  |  |  |
|         | 1. <u>http://www.physics.uiuc.edu/research/electronicstructure/</u> |  |  |  |  |  |  |  |
|         | <u>389/389-cal.html</u>                                             |  |  |  |  |  |  |  |
|         | 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index             |  |  |  |  |  |  |  |
| WEB     | <u>.html</u>                                                        |  |  |  |  |  |  |  |
| SOURCES | 3. <u>https://www.britannica.com/science/crystal</u>                |  |  |  |  |  |  |  |
| SUURCES | 4. <u>https://www.nationalgeographic.org/encyclopedia/magnetis</u>  |  |  |  |  |  |  |  |
|         | <u>m/</u>                                                           |  |  |  |  |  |  |  |
|         | 5. <u>https://www.brainkart.com/article/Super-</u>                  |  |  |  |  |  |  |  |
|         | Conductors_6824/                                                    |  |  |  |  |  |  |  |

## At the end of the course, the student will be able to:

|        | Student will be able to list out the crystal systems,             |     |  |  |  |  |  |
|--------|-------------------------------------------------------------------|-----|--|--|--|--|--|
| CO1    | symmetries allowed in a system and also the diffraction           |     |  |  |  |  |  |
|        | techniques to find the crystal structure                          |     |  |  |  |  |  |
| CO2    | Students will be able to visualize the idea of reciprocal spaces, |     |  |  |  |  |  |
| 02     | Brillouin Zone and their extension to band theory of solids.      | K2  |  |  |  |  |  |
| CO3    | Student will be able to comprehend the heat conduction in         | К3  |  |  |  |  |  |
|        | solids                                                            | ns  |  |  |  |  |  |
| CO4    | Student will be able to generalize the electronic nature of       | K3, |  |  |  |  |  |
| 04     | solids from band theories.                                        | K4  |  |  |  |  |  |
| CO5    | Student can compare and contrast the various types of             | K5  |  |  |  |  |  |
| 05     | magnetism and conceptualize the idea of superconductivity.        |     |  |  |  |  |  |
| K1 - R | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 –         |     |  |  |  |  |  |
| Evalua | ate                                                               |     |  |  |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | P06 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3          | 2   | 3   | 2   | 2   | 2   | 2          | 2   | 2   | 2    |
| CO2 | 3          | 2   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO3 | 3          | 3   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO4 | 2          | 2   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 3    |
| CO5 | 2          | 2   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 3    | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2         |
| CO2 | 3    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3         |
| CO3 | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3         |
| CO4 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3         |
| CO5 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3         |

| NUCLEAR AND     | PARTICLE PHYSICS II YE          | AR - FOU | RTI | H SI | EMI | ESTE    | R              |       |
|-----------------|---------------------------------|----------|-----|------|-----|---------|----------------|-------|
| Subject<br>Code | Subject Name                    | Category | L   | т    | Р   | Credits | Inst.<br>Hours | Marks |
| 23P4PHC09       | NUCLEAR AND PARTICLE<br>PHYSICS | Core     |     |      |     | 4       | 6              | 75    |

| Pre-F            | lequisites                                                               |
|------------------|--------------------------------------------------------------------------|
| Know             | ledge of basic structure of atom and nucleus.                            |
| Lear             | ning Objectives                                                          |
| $\triangleright$ | Introduces students to the different models of the nucleus in a          |
|                  | chronological order                                                      |
| $\triangleright$ | Imparts an in-depth knowledge on the nuclear force, experiments to study |
|                  | it and the types of nuclear reactions and their principles               |
| $\succ$          | Provides students with details of nuclear decay with relevant theories   |

Exposes students to the Standard Model of Elementary Particles and Higgs boson

| UNITS                             | Course Details                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>NUCLEAR<br>MODELS      | Liquid drop model – Weizacker mass formula – Isobaric mass<br>parabola –Mirror Pair - Bohr Wheeler theory of fission – shell<br>model – spin-orbit coupling – magic numbers – angular momenta<br>and parity of ground states – magnetic moment – Schmidt model –<br>electric Quadrapole moment - Bohr and Mottelson collective model<br>– rotational and vibrational bands. |
| UNIT II:<br>NUCLEAR<br>FORCES     | Nucleon – nucleon interaction – Tensor forces – properties of<br>nuclear forces – ground state of deuteron – Exchange Forces -<br>Meson theory of nuclear forces – Yukawa potential – nucleon-<br>nucleon scattering – effective range theory – spin dependence of<br>nuclear forces - charge independence and charge symmetry –<br>isospin formalism.                      |
| UNIT III:<br>NUCLEAR<br>REACTIONS | Kinds of nuclear reactions – Reaction kinematics – Q-value –<br>Partial wave analysis of scattering and reaction cross section –<br>scattering length – Compound nuclear reactions – Reciprocity<br>theorem – Resonances – Breit Wigner one level formula – Direct<br>reactions - Nuclear Chain reaction – four factor formula.                                             |
| UNIT IV:<br>NUCLEAR               | Beta decay – Continuous Beta spectrum – Fermi theory of beta<br>decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino                                                                                                                                                                                                                                          |

| DECAN                                          | allowed and fambiddon descent in anticipation of the TT "                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DECAY                                          | <ul> <li>allowed and forbidden decay — neutrino physics – Helicity -</li> <li>Parity violation - Gamma decay – multipole radiations – Angular</li> <li>Correlation - internal conversion – nuclear isomerism – angular</li> </ul>                                                                                                                                                                                                                                                                                 |
|                                                | momentum and parity selection rules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UNIT V:                                        | Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin –                                                                                                                                                                                                                                                                                                                                                                                |
| ELEMENTARY                                     | Quantum Numbers - Strangeness - Hypercharge and Quarks -SU                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PARTICLES                                      | (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                | Mass formula-Quark Model. Standard model of particle physics –<br>Higgs boson.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UNIT VI:<br>PROFESSION<br>AL<br>COMPONENT<br>S | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable and<br>Communication Skill Enhancement, Social Accountability and<br>Patriotism                                                                                                                                                                                                                                                                                                            |
|                                                | 1. D. C. Tayal – Nuclear Physics – Himalaya Publishing House                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TEXT<br>BOOKS                                  | <ul> <li>(2011)</li> <li>2. K. S. Krane - Introductory Nuclear Physics - John Wiley &amp; Sons (2008)</li> <li>3. R. Roy and P. Nigam - Nuclear Physics - New Age Publishers (1996)</li> <li>4. S. B. Patel - Nuclear Physics - An introduction - New Age International Pvt Ltd Publishers (2011)</li> <li>5. S. Glasstone - Source Book of Atomic Energy - Van Nostrand Reinhold Inc.,U.S 3rd Revised edition (1968)</li> </ul>                                                                                  |
| REFERENC<br>E BOOKS                            | <ol> <li>L. J. Tassie - The Physics of elementary particles - Prentice<br/>Hall Press (1973)</li> <li>H. A. Enge - Introduction to Nuclear Physics - Addison Wesley,<br/>Publishing Company. Inc. Reading. New York, (1974).</li> <li>Kaplan - Nuclear Physics - 1989 - 2nd Ed Narosa (2002)</li> <li>Bernard L Cohen - Concepts of Nuclear Physics - McGraw Hill<br/>Education (India) Private Limited; 1 edition (2001)</li> <li>B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New<br/>Delhi.</li> </ol> |
| WEB<br>SOURCES                                 | <ol> <li><u>http://bubl.ac.uk/link/n/nuclearphysics.html</u></li> <li><u>http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Model</u><br/><u>s.pdfhttp://www.scholarpedia.org/article/Nuclear_Forces</u></li> <li><u>https://www.nuclear-power.net/nuclear-power/nuclear-reactions/</u></li> <li><u>http://labman.phys.utk.edu/phys222core/modules/m12/nucl</u></li> </ol>                                                                                                                                          |
|                                                | ear_models.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                | 5. <u>https://www.ndeed.org/EducationResources/HighSchool/Radi</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ography/radioactivedecay.html |
|-------------------------------|

## At the end of the course, the student will be able to:

| CO1    | Gain knowledge about the concepts of helicity, parity, angular | V1 VE  |  |  |  |  |  |
|--------|----------------------------------------------------------------|--------|--|--|--|--|--|
|        | correlation and internal conversion.                           | K1, K5 |  |  |  |  |  |
| CO2    | Demonstrate knowledge of fundamental aspects of the            |        |  |  |  |  |  |
|        | structure of the nucleus, radioactive decay, nuclear reactions | K2, K3 |  |  |  |  |  |
|        | and the interaction of radiation and matter.                   |        |  |  |  |  |  |
| CO3    | Use the different nuclear models to explain different nuclear  |        |  |  |  |  |  |
|        | phenomena and the concept of resonances through Briet-         |        |  |  |  |  |  |
|        | Weigner single level formula                                   |        |  |  |  |  |  |
| CO4    | Analyze data from nuclear scattering experiments to identify   | K3, K4 |  |  |  |  |  |
|        | different properties of the nuclear force.                     |        |  |  |  |  |  |
| CO5    | Summarize and identify allowed and forbidden nuclear           |        |  |  |  |  |  |
|        | reactions based on conservation laws of the elementary         | K5     |  |  |  |  |  |
|        | particles.                                                     |        |  |  |  |  |  |
| K1 - F | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Eval | uate   |  |  |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

|            | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 |
|------------|------------|------------|-----|-----|-----|------------|------------|------------|------------|------|
| CO1        | 3          | 3          | 2   | 2   | 2   | 2          | 2          | 2          | 2          | 2    |
| CO2        | 3          | 3          | 2   | 2   | 1   | 2          | 1          | 2          | 2          | 2    |
| <b>CO3</b> | 3          | 3          | 1   | 2   | 1   | 2          | 1          | 1          | 2          | 2    |
| CO4        | 3          | 3          | 2   | 3   | 2   | 3          | 2          | 2          | 3          | 3    |
| CO5        | 3          | 3          | 2   | 3   | 2   | 3          | 2          | 3          | 3          | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1<br>0 |
|-----|------|------|------|------|------|------|------|------|------|-----------|
| CO1 | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2         |
| CO2 | 3    | 3    | 2    | 2    | 1    | 2    | 1    | 2    | 2    | 2         |
| CO3 | 3    | 3    | 1    | 2    | 1    | 2    | 1    | 1    | 2    | 2         |
| CO4 | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 3    | 3         |
| CO5 | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 3         |

# NUMERICAL METHODS AND COMPUTERII YEAR - FOURTH SEMESTERPROGRAMMING

| Subject<br>Code | Subject Name                               | Category | L | т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|--------------------------------------------|----------|---|---|---|---------|----------------|-------|
| 23P4PHC11       | COMPUTATIONAL<br>TECHNIQUES FOR<br>PHYSICS | Core     |   |   |   | 4       | 5              | 75    |

| Pre-Requisites                                                                    |
|-----------------------------------------------------------------------------------|
| Prior knowledge on computer and basic mathematics                                 |
| Learning Objectives                                                               |
| To make students to understand different numerical approaches to solve a problem. |
| <ul> <li>To understand the basics of programming</li> </ul>                       |

| UNITS                                              | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>SOLUTIONS OF<br>EQUATIONS               | Zeros or Roots of an equation - Non-linear algebraic<br>equation and transcendental equations - Zeros of<br>polynomials –Roots of polynomials, nonlinear algebraic<br>equations and transcendental equations using Bisection and<br>Newton-Raphson methods – Convergence of solutions in<br>Bisection and Newton-Raphson methods – Limitations of<br>Disaction and Newton-Raphson methods                                                      |
| UNIT II:<br>LINEAR SYSTEM<br>OF EQUATIONS          | Bisection and Newton-Raphson methods.<br>Simultaneous linear equations and their matrix<br>representation– Inverse of a Matrix – Solution of<br>simultaneous equations by Matrix inversion method and its<br>limitations – Gaussian elimination method – Gauss Jordan<br>method – Inverse of a matrix by Gauss elimination method -<br>Eigen values and eigenvectors of matrices –Jacobi Method to<br>find the Eigen values and Eigen vectors. |
| UNIT III:<br>INTERPOLATION<br>AND CURVE<br>FITTING | Interpolation with equally spaced points - Newton forward<br>and backward interpolation - Interpolation with unevenly<br>spaced points -Newton's divided difference interpolation -<br>Lagrange interpolation - least square approximation- Curve<br>fitting - Method of least squares - Fitting a polynomial.                                                                                                                                 |
| UNIT IV:<br>DIFFERENTIATION<br>, INTEGRATION       | Numerical differentiation – Numerical integration –<br>Trapezoidal rule – Simpson's rule – Error estimates – Gauss-<br>Legendre, Gauss-Laguerre, Gauss-Hermite and Gauss-                                                                                                                                                                                                                                                                      |

| AND SOLUTION OF<br>DIFFERENTIAL<br>EQUATIONS | Chebyshev quadrature – solution of ordinary differential<br>equations – Euler and RungaKutta methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>PROGRAMMING<br>WITH C             | Flow-charts – Integer and floating point arithmetic<br>expressions – Built-in functions – Executable and non-<br>executable statements – Subroutines and functions –<br>Programs for the following computational methods: (a) Zeros<br>of polynomials by the bisection method, (b) Zeros of<br>polynomials/non-linear equations by the Newton-Raphson<br>method, (c) Newton's forward and backward interpolation,<br>Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules,<br>(e) Solution of first order differential equations by Euler's<br>method.                                                                            |
| UNIT VI:<br>PROFESSIONAL<br>COMPONENTS       | Expert Lectures, Online Seminars - Webinars on Industrial<br>Interactions/Visits, Competitive Examinations, Employable<br>and Communication Skill Enhancement, Social<br>Accountability and Patriotism                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TEXT BOOKS                                   | <ol> <li>V. Rajaraman, 1993, Computer oriented Numerical<br/>Methods, 3rd Edition. PHI, New Delhi</li> <li>M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical<br/>Methods for Scientific and Engineering Computation,<br/>3rd Edition, New Age Intl., New Delhi</li> <li>S. S. Sastry, Introductory Methods of Numerical analysis,<br/>PHI, New Delhi</li> <li>F. Scheid, 1998, Numerical Analysis, 2nd Edition,<br/>Schaum's series, McGraw Hill, New York</li> <li>W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.<br/>Flannery, 1992, Numerical Recipes in FORTRAN, 2nd<br/>Edition, Cambridge Univ. Press</li> </ol> |
| REFERENCE<br>BOOKS                           | <ol> <li>S. D. Conte and C. de Boor, 1981, Elementary<br/>Numerical analysis-an algorithmic approach, 3rd<br/>Edition, McGraw Hill,)</li> <li>B. F. Gerald, and P. O. Wheatley, 1994, Applied<br/>Numerical analysis, 5th Edition, Addison-Wesley, MA.</li> <li>B. Carnagan, H. A. Luther and J. O. Wilkes, 1969,<br/>Applied Numerical Methods, Wiley, New York.</li> <li>S. S. Kuo, 1996, Numerical Methods and Computers,<br/>Addison-Wesley.</li> <li>V. Rajaraman, Programming in FORTRAN /<br/>Programming in C, PHI, New Delhi</li> </ol>                                                                                         |

| WEB SOURCES | <ol> <li>https://www.scribd.com/doc/202122350/Computer-<br/>Oriented-Numerical-Methods-by-V-RajaRaman</li> <li>https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))<br/>/reference/referencespapers.aspx?referenceid=168287<br/>4</li> <li>https://nptel.ac.in/course/122106033/</li> </ol> |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>3. <u>https://nptel.ac.in/course/122106033/</u></li> <li>4. <u>https://nptel.ac.in/course/103106074/</u></li> <li>5. <u>https://onlinecourses.nptel.ac.in/noc20_ma33/previe</u></li> <li><u>w</u></li> </ul>                                                                      |

#### At the end of the course, the student will be able to:

| CO1     | Recall the transcendental equations and analyze the       |                       |
|---------|-----------------------------------------------------------|-----------------------|
|         | different root finding methods. Understand the basic      |                       |
|         | concept involved in root finding procedure such as Newton | K1, K2                |
|         | Raphson and Bisection methods, their limitations.         |                       |
| CO2     | Relate Simultaneous linear equations and their matrix     |                       |
|         | representation Distinguish between various methods in     | K5                    |
|         | solving simultaneous linear equations.                    |                       |
| CO3     | Understand, how interpolation will be used in various     |                       |
|         | realms of physics and Apply to some simple problems       | K2, K3                |
|         | Analyze the newton forward and backward interpolation     |                       |
| CO4     | Recollect and apply methods in numerical differentiation  | 720                   |
|         | and integration. Assess the trapezoidal and Simson's      | КЗ,<br>К4             |
|         | method of numerical integration.                          | <b>N</b> <del>4</del> |
| CO5     | Understand the basics of C-programming and conditional    | K2                    |
|         | statements.                                               | 172                   |
| K1 - Re | member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - 1 | Evaluate;             |

#### **MAPPING WITH PROGRAM OUTCOMES:**

Map course outcomes **(CO)** for each course with program outcomes **(PO)** 

and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3),

|     | ( <u>_</u> ) \ |    |    |    |    |    |    |    |    |      |
|-----|----------------|----|----|----|----|----|----|----|----|------|
|     | PO1            | PO | PO10 |
|     | 101            | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 1010 |
| C01 | 3              | 2  | 3  | 1  | 1  | 2  | 3  | 2  | 2  | 3    |
| CO2 | 3              | 2  | 3  | 1  | 1  | 2  | 3  | 2  | 2  | 3    |
| CO3 | 3              | 2  | 3  | 1  | 1  | 2  | 3  | 2  | 2  | 3    |
| CO4 | 3              | 2  | 3  | 1  | 1  | 2  | 3  | 2  | 2  | 3    |

## MEDIUM (2) andLOW (1)

| CO5 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |
|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-------|
|     | PSO1 | PSO | PSO | PSC | PSO | PSO | PSO | PSO | PSO | PSO10 |
|     | 1501 | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 15010 |
| CO1 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |
| CO2 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |
| CO3 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |
| CO4 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |
| CO5 | 3    | 2   | 3   | 1   | 1   | 2   | 3   | 2   | 2   | 3     |

## **ROBOTICS AND ARTIFICIAL INTELLIGENCE IN PHYSICS**

# II YEAR -FOURTH SEMESTER

| Subject<br>Code | Subject Name                                             | Category    | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|----------------------------------------------------------|-------------|---|---|---|---------|----------------|-------|
| 23P4PHDE04      | ROBOTICS AND<br>ARTIFICIAL<br>INTELLIGENCE<br>IN PHYSICS | Elective VI |   |   |   | 2       | 2              | 75    |

| Pre-Requisites                                                             |
|----------------------------------------------------------------------------|
| Ability in robotics, artificial intelligence                               |
| Learning Objectives                                                        |
| > To give an introduction to students in the areas of robotics, artificial |
| intelligence                                                               |

|                | Robot – Definition of Robot – Industrial Robot – Laws of     |
|----------------|--------------------------------------------------------------|
| Unit I         | Robotics – Motivating Factors – Advantages and               |
| BASICS OF      | Disadvantages of Robots – Characteristics & Components of    |
| ROBOTICS       | an Industrial Robot — Comparison of the Human and Robot      |
| ROBOTICS       | Manipulator – Robot Wrist and End of Arm Tools – Robot       |
|                | Terminology – Robotic Joints.                                |
|                | Classification on the Basis of Coordinate System, Power      |
|                | Source and Method of Control - Robot Selection - Robot       |
| UNIT II        | Work cell – Robotics and Machine Vision – Robotic            |
| CLASSIFICATION | Accidents , Safety, Maintenance and Installation - Robotic   |
| OF ROBOTS      | Sensors – Types of Sensors in Robots – Exteroceptors –       |
|                | Tactile Sensors - Proximity Sensors - Range Sensors -        |
|                | Machine Vision Sensors – Velocity Sensors – Proprioceptors   |
| Unit III       | Introduction to Artificial Intelligence (AI) - Need for AI - |
| ARTIFICIAL     | Applications domains of AI – tools – Challenges and Future   |
| INTELLIGENCE   | of AI –Fundamentals of Machine Learning and Deep             |
| INTELLIGENCE   | Learning                                                     |
|                | Machine Learning algorithms to find associations across      |
| UNIT IV        | Biological Data, Cellular Image Classification and           |
| MACHINE        | Identification of Genetic Variations - AI in Bio Physics     |
| LEARNING       | Research – AI in drug Design – AI in next generation         |
| ALGORITHMS     | Sequencing – AI in Protein Structure – AI in Protein Folding |
|                | Analysis                                                     |

| Unit V    | Cohen Security Security Environment Threats Cohen        |
|-----------|----------------------------------------------------------|
| BASICS OF | Cyber Security - Security Environment – Threats – Cyber  |
| CYBER     | Crime – Vulnerabilities in Software – Open Access Data – |
| SECURITY  | Open Source Software                                     |

|                    | 1. Industrial Automation and Robotics – A. K. Gupta, S. K.                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Arora and J. R. Westcott, Mercury Learning and<br>Information LLC, 2017                                                                                                                                                                                                                                                                                                                                                             |
| TEXT BOOKS         | <ol> <li>Arduino Cookbook – Michael Margolis, O' Reilly Media,<br/>Inc., 2011</li> </ol>                                                                                                                                                                                                                                                                                                                                            |
|                    | 3. Artificial Intelligence: A modern approach – Stuart<br>Russell and Peter Norvig, Prentice Hall, 3 <sup>rd</sup> Edition, 2009                                                                                                                                                                                                                                                                                                    |
| REFERENCE<br>BOOKS | <ol> <li>Principles of Information Security – Michael E Whitman<br/>and Herbert J Mattord, Vikas Publishing House, 4th<br/>Edition, 2011</li> <li>Ethical Hacking: A Beginners Guide to Learning the<br/>World of Ethical Hacking – LakshayEshan, Shockwave<br/>Publishing, 2018</li> <li>Quantum Computation and Quantum Information –<br/>Michael A. Nielsen and Isaac L. Chuang, Cambridge<br/>University Press, 2000</li> </ol> |
| WEB SOURCES        | https://nptel.ac.in/courses/106105166/<br>http://www.theory.caltech.edu/people/preskill/ph229<br>/                                                                                                                                                                                                                                                                                                                                  |

#### At the end of the course, the student will be able to:

| CO1        | Understand & acquire basics of robotics                  | K1 |
|------------|----------------------------------------------------------|----|
| <b>CO2</b> | Understand & acquire basics of robotics/ robotic sensors | K2 |
| <b>CO3</b> | Understand artificial intelligence                       | K2 |
| <b>CO4</b> | Understand Machine Learning Algorithms                   | K2 |
| CO5        | Remembering the basics of cyber security                 | K1 |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3),MEDIUM (2) and LOW (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | <b>PO5</b> | P06 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|------------|-----|-----|-----|------------|-----|------------|------------|-----|------|
| CO1 | 3          | 3   | 1   | 3   | 2          | 3   | 2          | 2          | 2   | 2    |
| CO2 | 3          | 3   | 1   | 3   | 2          | 3   | 2          | 2          | 2   | 2    |

| CO3 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |
|-----|---|---|---|---|---|---|---|---|---|---|
| CO4 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |
| CO5 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 2 |

| COs | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|-----|------------|-----|-----|-----|-----|-----|------------|
| CO1 | S          | М   | S   | М   | L   | S   | S          |
| CO2 | S          | М   | S   | L   | L   | М   | М          |
| CO3 | S          | М   | S   | L   | М   | М   | М          |
| CO4 | S          | М   | S   | S   | М   | S   | S          |
| CO5 | S          | М   | S   | L   | М   | М   | М          |

| Practical – IV  |                | II YEA | R - FOUR | TH | SE | MES | STER    | 2              |       |
|-----------------|----------------|--------|----------|----|----|-----|---------|----------------|-------|
| Subject<br>Code | Subject Name   |        | Category | L  | Т  | Р   | Credits | Inst.<br>Hours | Marks |
| 23P3PHPC04      | Practical – IV |        | Core     |    |    |     | 3       | 6              | 75    |

## **Pre-Requisites**

Basic knowledge in differential equation and linear algebra Basic knowledge of operating system and computer fundamentals.

## Learning Objectives

- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN
- > To equip the computational skill using various mathematical tools.
- > To apply the software tools to explore the concepts of physical science.
- > To approach the real time activities using physics and mathematical formulations.

## **Course Details**

## (Any Twelve Experiments)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. RungeKutta Fourth Order Method for solving first order Ordinary

|     | Differential Equations                                      |
|-----|-------------------------------------------------------------|
| 14. | Newton's cotes formula                                      |
| 15. | Trapezoidal rule                                            |
| 16. | Simpson's 1/3 rule                                          |
| 17. | Simpson's 3/8 rule                                          |
| 18. | Boole's rule                                                |
| 19. | Gaussian quadrature method (2 point and 3 point formula)    |
| 20. | Giraffe's root square method for solving algebraic equation |

|            | 1. Numerical methods using Matlab – John Mathews &                  |
|------------|---------------------------------------------------------------------|
|            | Kurtis Fink, Prentice Hall, New Jersey 2006                         |
|            | 2. Numerical methods in Science and Engineering - M.K.              |
|            | Venkataraman, National Publishing Co. Madras, 1996                  |
|            | 3. V. Rajaraman, 1993, Computer Oriented Numerical                  |
| TEXT BOOKS | Methods, 3 <sup>rd</sup> Ed. (Prentice-Hall, New Delhi.             |
|            | 4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical           |
|            | Methods for Scientific and Engineering Computation, 3 <sup>rd</sup> |
|            | Ed. New Age International, New Delhi.                               |
|            | 5. S.S. Sastry, Introductory Methods of Numerical Analysis,         |
|            | PHI, New Delhi.                                                     |
|            | 1. S.D. Conte and C. de Boor, 1981, Elementary Numerical            |
|            | Analysis, An Algorithmic Approach, 3rd Ed., International           |
|            | Ed. (McGraw-Hill).                                                  |
|            | 2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical           |
| REFERENCE  | Analysis, 5th Edition, Addison Wesley, Reading, MA.                 |
| BOOKS      | 3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied           |
| DOONS      | Numerical Methods (Wiley, New York.                                 |
|            | 4. S.S. Kuo, 1996, Numerical Methods and Computers,                 |
|            | Addison - Wesley, London.                                           |
|            | 5. V. Rajaraman, Programming in FORTRAN/ Programming                |
|            | in C, PHI, New Delhi.                                               |

# At the end of the course the student will be able to:

| CO1 | Program with the C Program/ FORTRAN with the C or any other  | IZ 1 |
|-----|--------------------------------------------------------------|------|
| COI | high level language                                          | K I  |
| CO2 | Use various numerical methods in describing/solving physics  | K4   |
| 02  | problems.                                                    | 174  |
| CO3 | Solve problem, critical thinking and analytical reasoning as | K5   |
| 003 | applied to scientific problems.                              | кJ   |
| CO4 | To enhance the problem-solving aptitudes of students using   | K5   |

|         | various numerical methods.                                                                                                                                                                             |           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO5     | To apply various mathematical entities, facilitate to visualise any complicate tasks.                                                                                                                  | K3        |
| CO6     | Process, analyze and plot data from various physical phenomena<br>and interpret their meaning                                                                                                          | K4        |
| CO7     | Identify modern programming methods and describe the extent<br>and limitations of computational methods in physics                                                                                     | K1        |
| CO8     | Work out numerical differentiation and integration whenever routine are not applicable.                                                                                                                | K5        |
| CO9     | Apply various interpolation methods and finite difference concepts.                                                                                                                                    | K4        |
| CO10    | Understand and apply numerical methods to find out solution of<br>algebraic equation using different methods under different<br>conditions, and numerical solution of system of algebraic<br>equation. | K1,<br>K4 |
| K1 - Re | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                                                                                      | <u>,</u>  |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes

(PO)

and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) **and** LOW (1).

|      | <b>PO1</b> | PO2 | PO3 | PO4 | <b>PO5</b> | P06 | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 |
|------|------------|-----|-----|-----|------------|-----|------------|------------|------------|------|
| CO1  | 2          | 2   | 2   | 3   | 3          | 2   | 2          | 2          | 3          | 3    |
| CO2  | 2          | 2   | 3   | 3   | 3          | 2   | 2          | 3          | 3          | 3    |
| CO3  | 3          | 3   | 3   | 3   | 3          | 3   | 3          | 3          | 3          | 3    |
| CO4  | 3          | 2   | 3   | 3   | 3          | 3   | 2          | 3          | 3          | 3    |
| CO5  | 3          | 3   | 3   | 3   | 3          | 3   | 3          | 3          | 3          | 3    |
| CO6  | 2          | 2   | 2   | 3   | 3          | 2   | 2          | 2          | 3          | 3    |
| C07  | 2          | 2   | 3   | 3   | 3          | 2   | 2          | 3          | 3          | 3    |
| CO8  | 3          | 3   | 3   | 3   | 3          | 3   | 3          | 3          | 3          | 3    |
| CO9  | 3          | 3   | 3   | 3   | 3          | 3   | 3          | 3          | 3          | 3    |
| CO10 | 3          | 3   | 3   | 3   | 3          | 3   | 3          | 3          | 3          | 3    |

|     | PSO<br>1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO<br>9 | PSO<br>10 |
|-----|----------|------|------|------|------|------|------|------|----------|-----------|
| CO1 | 2        | 2    | 2    | 3    | 3    | 2    | 2    | 2    | 3        | 3         |
| CO2 | 2        | 2    | 3    | 3    | 3    | 2    | 2    | 3    | 3        | 3         |
| CO3 | 3        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3        | 3         |

| CO4  | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 |
|------|---|---|---|---|---|---|---|---|---|---|
| CO5  | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO6  | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 3 |
| C07  | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 3 |
| CO8  | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO9  | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO10 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

## **EDC : SOLAR ENERGY**

## **II YEAR - FOURTH SEMESTER**

| Subject<br>Code | Subject Name       | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|--------------------|----------|---|---|---|---------|----------------|-------|
| 23P4PHED1       | EDC : SOLAR ENERGY | Core     |   |   |   | 4       | 5              | 75    |

#### **Pre-Requisites**

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

## Learning Objectives

- Energy resources around us.
- > Threatening to our energy resources.
- ➢ How to conserve energy.

| UNITS       | Course Details                                                  |
|-------------|-----------------------------------------------------------------|
| UNIT I:     | Classification of Energy sources - Worlds reserve of commercial |
| INTRODUCTIO | energy sources and their availability - Geothermal energy -     |
| N TO ENERGY | wind energy - Ocean thermal energy conversion - Energy from     |
| SOURCES     | waves and tides (basic ideas) - Merits and Demerits.            |
| UNIT II:    | Introduction about thermal properties - Renewable               |
| SOLAR       | energy sources - Solar energy - Solar water heater -            |
| THERMAL     | Solar Pumping - Solar furnace - Solar space heating             |
| ENERGY      | and cooling - Solar thermal technologies - Solar cooker         |
| ENERGI      | - Solar Pond - Merits and Demerits of solar energy.             |
|             | Introduction about semiconductor - Photo voltaic effect         |
| UNIT III:   | - Performance of solar cell - Solar cell Parameter -            |
|             | Solar cell characteristics and efficiency – Choice of           |
| SOLAR       | materials for solar cell - Basic requirements for               |
| CELL        | obtaining an effective solar cell - Power generation by         |
|             | using solar cell.                                               |
| UNIT IV:    | Biomass energy - Classification -                               |
| BIOMASS     | Photosynthesis - Biogas Generation - Introduction               |
| ENERGY      | basic process and energetic, Advantages -Biomass                |
| FUNDAMEN    | conversion technology – Wet and dry process -                   |
| TALS        | Gobar gas and its Applications - Advantages and                 |
|             | Disadvantages of                                                |

|                              | hiomoss energy                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                              | biomass energy.                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| UNIT V:<br>ENERGY<br>STORAGE | Introduction - Liquid media storage - Solid media<br>storage - Ground collector - Chemical storage-<br>Capacitor, Electromagnets-Superconducting Magnet<br>Energy Storage (SMES)systems                                                                                   |  |  |  |  |  |  |  |
| UNIT VI:                     | Expert Lectures, Online Seminars - Webinars on Industrial                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| PROFESSION                   | Interactions/Visits, Competitive Examinations, Employable and                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| AL                           | Communication Skill Enhancement, Social Accountability and                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| COMPONENTS                   | Patriotism                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| TEXT<br>BOOKS                | <ol> <li>G.D. Rai, Non Conventional Energy Sources, 4th,<br/>5th Edition, (2011).</li> <li>G. G.D. Rai, Solar Energy Utilization, 5th Edition,<br/>(2011).</li> <li>S.P. Sukhatme, Solar Energy, Tata McGraw Hill<br/>Publishing Company, 3rd Edition, (2005).</li> </ol> |  |  |  |  |  |  |  |
| REFERENCE<br>BOOKS           | <ol> <li>D.S. Chauhan, S.K. Srivastava, Non<br/>Conventional Energy Sources, Ed.V, first edition,<br/>(2004).</li> <li>Solar Energy, Fundamentals, Design,<br/>Modelling and Applications, G.N.Tiwari, Narosa<br/>Publications, (2004).</li> </ol>                        |  |  |  |  |  |  |  |
| WEB<br>SOURCES               | https://www.renewableenergyworld.com/solar-<br>energy/tech.html<br>https://en.wikipedia.org/wiki/Solar_power                                                                                                                                                              |  |  |  |  |  |  |  |

# At the end of the course, the student will be able to:

| <b>CO</b> 1     | Energy resources around us.                                      | K1        |
|-----------------|------------------------------------------------------------------|-----------|
| CO2             | Threatening to our energy resources.                             | K1,<br>K2 |
| CO3             | How to conserve energy                                           | К3        |
| CO4             | Student will be able to generalize bio medical storage systems   | K3,<br>K4 |
| CO5             | Student will be able to generalize energy storage systems.       | K5        |
| K1 - I<br>Evalu | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 –<br>ate |           |

## MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), medium (2) and low (1).

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|------------|------------|------------|-----|------|
| CO1 | 3          | 2   | 3   | 2   | 2   | 2          | 2          | 2          | 2   | 2    |
| CO2 | 3          | 2   | 3   | 2   | 3   | 2          | 3          | 3          | 2   | 3    |
| CO3 | 3          | 3   | 3   | 2   | 3   | 2          | 3          | 3          | 2   | 3    |
| CO4 | 2          | 2   | 2   | 2   | 2   | 2          | 2          | 2          | 2   | 3    |
| CO5 | 2          | 2   | 2   | 2   | 2   | 2          | 2          | 2          | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | <b>PSO10</b> |
|-----|------|------|------|------|------|------|------|------|------|--------------|
| CO1 | 3    | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2            |
| CO2 | 3    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3            |
| CO3 | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3            |
| CO4 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3            |
| CO5 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3            |