VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN

[AUTONOMOUS]

An ISO 9001:2008 Certified Institution
Affiliated to Periyar University
(Approved by AICTE and Re-accredited with "A" Grade by NAAC)
Recognized Under 2(f) and 12 (b) of UGC Act, 1956.
Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

DEPARTMENT OF BIOTECHNOLOGY

Bachelor of Science

B. Sc SYLLABUS

[For the Candidates admitted on 2021-2024 onwards under Autonomous, CBCS & OBE pattern]
(I to VI SEMESTERS)

SPONSORED BY

ANGAMMAL EDUCATIONAL TUST

ELAYAMPALAYAM – 637 205, TIRUCHENGODE Tk., Namakkal Dt., Tamil Nadu VEERACHIPALAYAM – 637 303, SANKARI Tk., Salem Dt., Tamil Nadu

Tel.: 04288 234670 (4 lines), Fax: 04288 234894

Website: www.vivekanandha.ac.in e.mail: info@vicas.org

B.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small-medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic Sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
PSO: 3	To gain vertical mobility in career that will make students more competent to face national/international qualifying exams with practical knowledge acquaintance and in modern biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social, ethical, legal and cultural aspects of the society
PSO: 5	To understand the over-all theme/concepts of each specialization in biotechnology and analysing the frequency of its applicability in industry, research and for the goodness of Society

SYLLABUS FRAMEWORK

Subjects	Inst.	Credits	Subjects	Inst.	Credits
9	Hour/Week		C C	Hour/Week	
	emester I	1 0	Semester II		
Language I	6	3	Language II	6	3
English I	6	3	English II	6	3
Core I	5	5	Core II	6	5
Allied I	4	3	Allied II	4	4
Core practical I	4	3	Core practical II	3	3
Allied practical I	3	3	Allied practical II	3	2
VAC - YOGA	2	2	VAC – EVS	2	2
Total	30	22	Total	30	22
Se	mester III		Sem	nester IV	•
Language III	6	3	Language IV	6	3
English III	6	3	English IV	6	3
Core III	5	5	Core IV	5	5
Allied III	4	3	Allied IV	4	3
Core practical IV	4	3	Core practical IV	4	3
Allied practical	3	3	Allied practical IV	3	3
IV			•		
SBEC I	2	2	SBEC II	2	2
Total	30	22	Total	30	22
Se	emester V	<u> </u>	Sen	nester VI	
Core V	5	5	Core VII	5	5
Core VI	5	5	Core VIII	5	5
Core practical V	5	3	Core practical V	5	5
Core practical VI	5	3	Elective II	5	4
Elective I	4	3	NMEC II	2	2
NMEC I	2	2	SBEC IV	2	2
SBEC III	2	2	Library/Sports	1	-
Library/Sports	1	-	Mini project	5	5
Extension activity	1	1	Extension activity	-	1
Total	30	24	Total	30	29
Grand total		1	•	•	140

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2021-2024 onwards) YEAR I

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total	
	SEMESTER I								
21U1LT01	I	Language I	Tamil I	6	3	25	75	100	
21U1LM01			Malayalam I						
21U1LH01			Hindi I						
21U1LF01			French I						
21U1LE01	II	Language II	Foundation English I	6	3	25	75	100	
21U1BTC01	III	Core I	Cell Biology & Genetics	5	5	25	75	100	
21U1BTCP01	III	Core I	Lab in Cell	4	3	40	60	100	
		Practical	Biology & Genetics						
21U1BCA01	III	Allied I	Biochemistry I	4	3	25	75	100	
21U1BCAP01	III	Allied	Lab in	3	3	40	60	100	
		Practical I	Biochemistry I						
21U1VE01	IV	Value	Yoga	2	2	25	75	100	
		Education I							
		Total		30	22	205	495	700	
			SEMESTER II						
21U2LT02	I	Language II	Tamil II	6	3	25	75	100	
21U2LM02			Malayalam II						
21U2LH02			Hindi II						
21U2LF02			French II						
21U1LE02	II	Language II	Foundation English II	6	3	25	75	100	
21U2BTC02	III	Core II	Microbiology	6	5	25	75	100	
21U2BTCP02	III	Core	Lab in	3	3	40	60	100	
		Practical II	Microbiology						
21U2BCA02	III	Allied II	Biochemistry II	4	4	25	75	100	
21U2BCAP02	III	Allied	Lab in	3	3	40	60	100	
		Practical II	Biochemistry II						
21U2VE02	IV	Value	Environmental	2	2	25	75	100	
		Education II	Studies						
		Total		30	22	205	495	700	
	Grand	Total of First	Year	60	48	410	990	1400	

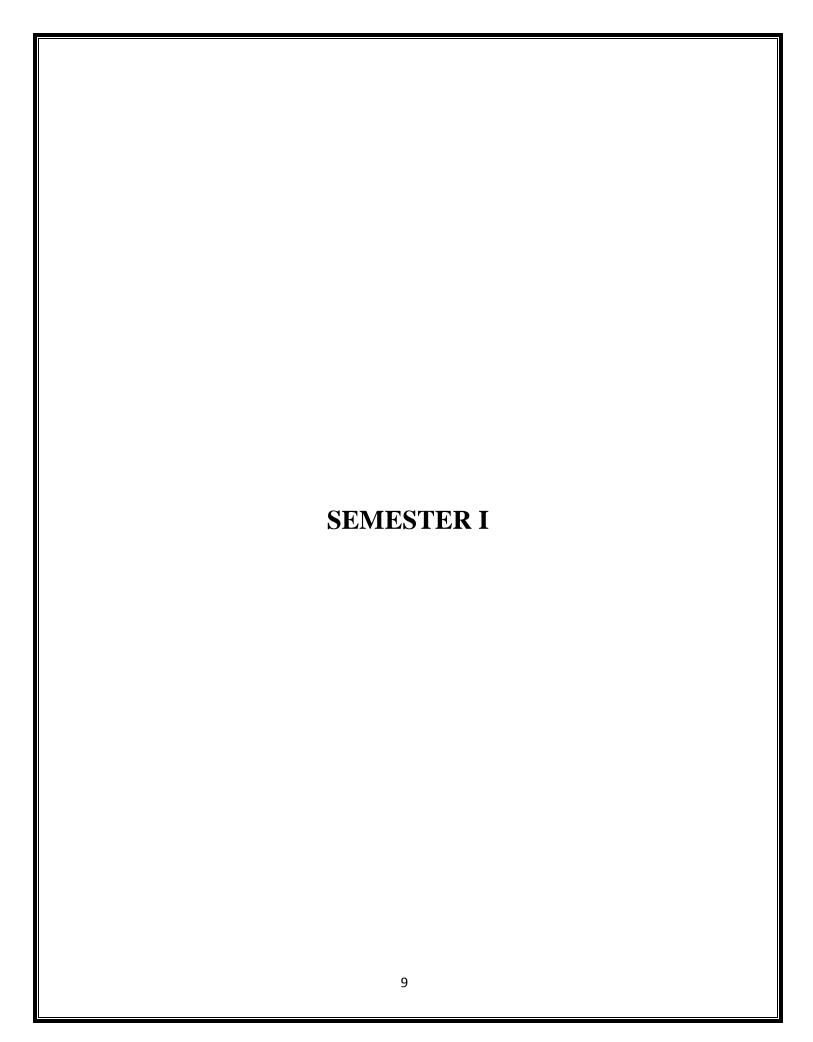
YEAR II

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total
SEMESTER III								
21U3LT03 21U3LM03	I	Language III	Tamil III	6	3	25	75	100
21U3LH03			Malayalam III Hindi III					
21U3LF03			French III					
21U3LE03	II	Language III	Foundation English III	6	3	25	75	100
21U3BTC03	III	Core III	Molecular Biology	5	5	25	75	100
21U3BTCP03	III	Core Practical III	Lab in Molecular Biology	4	3	40	60	100
21U3BOA01	III	Allied III	Plant Science I	4	3	25	75	100
21U3BOAP01	III	Allied Practical III	Lab in Plant Science I	3	3	40	60	100
	IV	SBEC I	Optional	2	2	25	75	100
		Total		30	22	205	495	700
			SEMESTER 1					
21U4LT04	I	Language IV	Tamil IV	6	3	25	75	100
21U4LM04			Malayalam IV					
21U4LH04			Hindi IV					
21U4LF04			French IV		_			
21U4LE04	II	Language IV	Foundation English IV	6	3	25	75	100
21U4BTC04	III	Core IV	Genetic Engineering	5	5	25	75	100
21U4BTCP04	III	Core Practical IV	Lab in Genetic Engineering	4	3	40	60	100
21U4BOA02	III	Allied IV	Plant Science II	4	3	25	75	100
21U4BOAP02	III	Allied practical II	Lab in Plant Science II	3	3	40	60	100
	IV	SBEC II	Optional	2	2	25	75	100
		Total		30	22	205	495	700
G	rand T	otal of Second	Year	60	44	410	990	1400

YEAR III

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V	7				
21U5BTC05	III	Core V	Immunology	5	5	25	75	100
21U5BTC06	III	Core VI	Plant Biotechnology	5	5	25	75	100
21U5BTCP05	III	Core practical V	Lab in Immunology	5	3	40	60	100
21U5BTCP06	III	Core practical VI	Lab in Plant Biotechnology	5	3	40	60	100
	III	Elective I	Optional	4	3	25	75	100
	IV	SBEC III	Optional	2	2	25	75	100
		NMEC I	Optional	2	2	25	75	100
21U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health Management	1	-	-	-	-
Total					23	245	555	800
_			SEMESTER V	Ι		l	L	1
21U6BTC07	III	Core VII	Bioprocess technology	5	5	25	75	100
21U6BTC08	III	Core VIII	Animal Biotechnology	5	5	25	75	100
21U6BTCP07	III	Core practical VII	Lab in Bioprocess technology and Animal biotechnoogy	5	5	40	60	100
	III	Elective II	Optional	5	4	25	75	100
	IV	SBEC IV	Optional	2	2	25	75	100
	IV	NMEC II	Optional	2	2	25	75	100
21U6BTMP01	IV	Research Activity	Mini project	5	5	40	60	100
		Extension activ	ity	-	1	-	-	-
		Library/Sports	Reference/Health Management	1	-	-	-	-
	ı	Total	,	30	29	205	495	700
	Tota	l of Third Year			140	1270	3030	4300

LIST OF ELECTIVE PAPERS					
GRADE	SUBJECT	SUBJECT CODE			
	Pharmaceutical Biotechnology	21U5BTE01			
Elective I	Enzymology and Enzyme Technology	21U5BTE02			
	Tissue Engineering	21U5BTE03			
	Genomics and Proteomics	21U6BTE04			
Elective II	Biophysics and Bioinstrumentation	21U6BTE05			
	Environmental Biotechnology	21U6BTE06			
	LIST OF SKILLED BASED ELECTIVE P	PAPERS			
	Lab in food processing and technology	21U3BTS01			
SBEC I	Developmental Biology	21U3BTS02			
	Food biotechnology	21U3BTS03			
	Lab in poultry science	21U4BTS04			
SBEC II	Marine Biotechnology	21U4BTS05			
	Forensic science and technology	21U4BTS06			
	Lab in Bioinformatics	21U5BTS07			
SBEC III	Biosafety, Bioethics and IPR	21U5BTS08			
	Cancer Biology	21U5BTS09			
	Lab in Entrepreneurship in Biotechnology	21U6BTS10			
SBEC IV	Nano Biotechnology	21U6BTS11			
	Biofarming	21U6BTS12			
	LIST OF NON-MAJOR ELECTIVE PA	PERS			
NMEC I	Biosafety, Bioethics and IPR	21U5BTN01			
NIVIEC I	Bioinformatics	21U5BTN02			
NMEC II	Concepts of Biotechnology	21U3BTN03			
INIVILLE II	Biotechnology for Society	21U3BTN04			


	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN				
KL	CPD	DESCRIPTION			
K1	Remember	Retrieving, recognizing and recalling knowledge from long-term memory			
K2	Understand	Constructing meaning from oral, written and graphic messages through interpreting			
К3	Apply	Carrying out or using a procedure through executing or Implementing			
K4	Analyse	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing and attributing			
K5	Evaluate	Making judgments based on criteria and standards through checking and critiquing			
K6	Create	Putting elements to form a coherent or functional hole, reorganizing elements into a new pattern or structure through generating, planning or producing			
Note: 1	KL: Knowledg	e Level; CPD: Cognitive Process Dimension			

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR MODEL AND SEMESTER EXAMINATION

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 20 X 1	K1 & K2	20	Multiple choice questions	
B: 1 out of 2 (5 X 5) Either or choice	K2, K3, K5 & K6	25	Short notes	75
C: 3 out of 5 X 10	K3, K4, K6	30	Essay type descriptive	

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR CIA I & II EXAMINATIONS

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 10 X 1	K1 & K2	10	Multiple choice questions	
B: 1 out of 2 (1 X 5)	K2, K3, K5 & K6	5	Short notes	25
C: 1 out of 2 (1 X 10)	K3, K4, K6	10	Essay type descriptive	

CELL BIOLOGY & GENETICS

Paper : CORE I **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 : 21U1BTC01 Paper Code External : 75

PREAMBLE

To make the students to understand the basics concepts living cellular organization and cellular function and to impart knowledge of classical genetics

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquire the conceptual knowledge of fundamentals of Cellular architecture	K1
CO2	Understand the functions of cellular organelles of cell, nucleus and familiarize with cellular physiology	K1 & K2
CO3	Have a comprehensive knowledge on cellular energetics and basics of genetics	K2 & K4
CO4	Gain expertise in gene interaction mechanisms and ploidy levels	K3 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	L	M	M	M	L
CO2	M	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	M	S	S

UNIT	CONTENT	HOURS	
I	History of cell biology and cellular architecture: Cell theory.	15	
	Classification of cell types (prokaryotic & eukaryotic). Cytoskeleton		
	movements (Sliding & Contraction). Organization of plant and animal cell.		
	Cell wall and cell membrane. Cytoskeletal structures (Micro tubules,		
	Micro filaments and intermediary filaments). Nutrient transport (Active,		
	passive & facilitated diffusion).		

П	Subcellular organelles and Chromosomal organization: Structure and functions of Endoplasmic reticulum, Golgi apparatus, Chloroplast, Ribosomes, Mitochondria, Vacuoles, Lysosomes, Glyoxysomes, Peroxysomes, Nucleus. Chromosome: Morphology, Structure.	15
III	Cell cycle, Cell communication and cell death; Cell cycle - Mitosis and Meiosis, Signal transduction: definition, signals, ligands and receptors. Endocrine, paracrine and autocrinesignaling mechanism of signal transmission, G Protein coupled receptors- structure, regulatory GTPases, heterotrimeric G proteins and effector molecules of G Proteins. Cell death - types. Necrosis - causes and mechanism. Apoptosis: morphology, causes and mechanism Differences between apoptosis and necrosis.	
IV	Cellular energetics & History of genetics: Concepts of Phenotype, genotype, heterozygous, homozygous, allele-dominant & recessive, wild type mutant), character, gene, gene locus, hybrids. Chromosome, Centrosome, telomere, Chemical composition of chromatin, structural organization of heterochromatin. ATP formation. Mendelian Principles, Segregation, Independent Assortment, Dominance relations, Multiple alleles, Incomplete dominance, Over dominance.	15
V	Gene interaction and Chromosome variation: Gene interaction, Epistasis, Sex determination and sex linkage in diploids, Linkage and crossing over. Sex determination on XX-XY, XX-XO, ZW-ZZ, ZO-ZZ types in animals. Chromosomal variation in number (Ploidy) and changes in chromosomal structure (addition, deletion, duplication, translocation & inversion).	

SUGGESTED READINGS:

- 1. Alberts et al., 1994. Molecular Cell Biology of Cell Bruce, Galand publications NY.
- 2. Jack D. Bruke Cell Biology The William Company
- 3. Lodish et al., (2008). Molecular Cell Biology, 6th ed. Wilson J and Hunt T (2002). Molecular Biology of the Cell: A Problems approach, 4th ed.
- 4. EJ Gardner, MJ. Simmons and DP Snustad, 2006. Principles of Genetics 8th edition, John Wiley & Sons Publications.
- 5. Karp G. 2008. Cell and Molecular Biology, 5th edition. John Wiley and Sons Inc. Hardcover. ISBN: 978-0-470-04217-5.
- 6. PS. Verma and VS Agarwal. 1986. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company, New Delhi.
- 7. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 8. Abouelmagd and Ageeley. Basic Genetics. 2 nd ed. Univ Publ. 2013.
- 9. Twyman. Advanced Molecular Biology. BIOS Sci Publ. 2000.
- 10. Karp. Cell & Molecular Biology 8 thed 2016. Wiley.
- 11. Elrod S. Schaum's Outline of Genetics. 5 th ed. McGraw Hill. 2010.
- 12. Fletcher et al. Instant Notes in Genetics. 4th ed. Garland Science. 2012.
- 13. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.

MODEL QUESTION PAPER (CELL BIOLOGY AND GENETICS)

NAME OF THE COURSE: CELL BIOLOGY AND GENETICS	COURSE CODE: 20U1BTC01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. The cell was first discovered by							
a. Schwann b. Robert Hooke		c. Debary	c. Debary d. Tatum				
2. Cell theory was proposed by							
a. Schleiden and Schwa		c. Leeuwen H		d. Beetle and Tatum			
3. Microfil	aments are composed	mainly of a prote	eins call	ed			
a. Actin	b. Tubulin	c. Myosin		d. chitin			
4. The sub	units of prokaryotic rib	oosome are					
a. 60s + 40s	b. 70s + 30s	c. 60s + 3	30s	d. 50s + 80s			
5. The plan	nt cell wall mainly com	nposed of					
a. Cellulose	b. Starch	c. Protein		d. Lipid			
6. Smootl	n endoplasmic reticulu	m is the site of _					
a. Protein	b. Carbohydrate		c. Amino acid d. Lipid				
synthesis synthesis			esis	synthesis			
7. The cell	theory not applicable	to					
a. Bacteria	b. Algae	c. Viruse	c. Viruses d. F				
8. Which o	one the power house of	the cell?					
a. Cell wall	b. Mitochondria	c. Nuclei	c. Nucleus d. R				
9. Apoptos	is cannot kill the follo	wing cells					
a. Cell infected with virus	b. Cell with DNA damage	c. Cancer cel	ls	d. Immune cell			
10. Special	enzymes are released	during necrosis	from				
a. Lysosomes		. Cytoplasm		Golgi bodies			
11. Chromosomes are duplicated during the cell cycle in							
a. B phase	b. G phase	c. S phas	e	d. P phase			
12. Spindle fiber is formed during							
a. Anaphase	b. Telophase	c. Prophase		d. Pro metaphase			
13. Which	of the following is the	13. Which of the following is the end product of respiration process?					

a.	Release of	b. Release of CC	O ₂ c. Anabolism	d. Transfer of CO ₂			
	oxygen						
	14. Who is leg	arueu as the father of	genetics:				
	a. Bateson	b. Morgan	c. Mendel	d. Watson			
	15. Mendel exp	perimental material w	vas				
a.	Pisum	b. Lathyrus	c. Oryza	d. Mirabilis jalappa			
	sativum	odaratus	sativa				
	16. What was t	the most commonly u	ised "energy currer	ncy" of cells for all			
	organisms?	•					
	a. ATP	b. ADP c.	Inorganic phospha	ate d. DNA			
	17. What does	t-RNA bind with	?				
	a. DNA	b. mRNA	c. Northing	d. rRNA			
	18. Lethal gene	es were first discover	ed by?				
a.	William	b. Lucien Cuenot	c. Clarence Cook	d. Gluecksohn-			
	Ernest			Waelsch			
	Castle			'			
	19. Repetition	of a chromosomal se	gment means	?			
a.							
	20. Walter Sutton and Theodore Boveri formally proposed that chromosomes						
	contain the	genes in the year of					
	a. 1903	b. 1901	c. 1920	d. 1930			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE (QUESTIONS
21. A) Write the classification of cell types?	(OR)
B) Write a short note on Cytoskeleton?	
22. A) Explain structure and functions of nucleus?	(OR)
B) Structure and morphology of chromosomes?	
23. A) Differences between apoptosis and necrosis?	(OR)
B) Explain the types of cell signaling?	
24. A) Write a short note on ATP formation?	(OR)
B) Redox potential of the cell membrane?	
25. A) What is gene and how to interact?	(OR)
B) Chromosomal theory of inheritance?	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN CELL BIOLOGY& GENETICS

Paper : CORE PRACTICAL I **Total Hours** : 60 Hours/Week : 4 **Exam Hours** : 05 Credit : 3 Internal : 40 Paper Code : 21U1BTCP01 External : 60

PREAMBLE

To make the students to understand the basics microscopy, cell division, histology, subcellular organelle isolation and mendelian principles

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring hands on skills on microscopy and visualization of	K1 & K2
	prokaryotic and eukaryotic cells	
CO2	Exposure towards various stages of cell division	K1 & K2
CO3	Gain knowledge on basics concepts organelle isolation and	K4
	Estimation	
CO4	Performing and validating mono and dihybrid crosses experiments	K3 & K4 &
	and result interpretation	K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	M	S
CO4	S	S	S	M	M

Exp. No	Title	Hours
1	The Microscope: the bright field microscope, use of oil immersion (100x),	8
	Measurements: ocular and stage micrometers, measuring depth, measuring	
	area and measuring volume.	
2	Enumeration of cells (cell counting by Neubauer chamber).	4
3	Preparation of mitotic cells stages from onion root tip squash	4
4	Preparation of meiosis cell stages from Grass hopper testis cells.	8
5	Isolation of chloroplast from spinach leaves	4
6	Observation of specialized cells (Nerve cell, sperm cell, Muscle cell and	8
	Cardiac cell).	
7	Staining of macro molecules (Carbohydrate, Lipid and Protein)	4
8	Histochemistry: preparation of permanent slides, Periodic acid Schiff	8
	(PAS) reaction	
9	Mono & Dihybrid cross	4
10	Buccal smear preparation (Bar body preparation)	4

MODEL QUESTION PAPER (LAB IN CELL BIOLOGY & GENETICS)

NAME OF THE COURSE: LAB IN CELL BIOLOGY & GENETICS	COURSE CODE: 21 U1BTCP01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIM	ENT						
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS				
1. (i) Explore any one of the stages of mitosis from the onion root tip squash (A) sample.							
` · ·	sults for observation		(OR)				
(ii) Isolate the	mitochondria fron	n the given plant sample	(A). Display the results for				
observation			(OR)				
(iii) Perform t	otal blood cell cou	nt (cell counting by Neu	bauer chamber) from the				
	1 , ,	the results for observation	on				
MINOR EXPERIM	ENT						
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS				
2. (i) Perform car	oohydrate staining	from the given leaf samp	ole (B). Display the results				
for observatio	n		(OR)				
(ii) Isolate chl	oroplast from the g	given leaf sample (B). Di	splay the results for				
observation			(OR)				
(iii) Determine	e the sex of the ind	ividual from given bucc	al epithelial cell sample (B)				
by appropriate	e method. Display	the results for observatio	n				
SPOTTERS			(5 X 4 = 20 MARKS)				
3. Identify the giv	en spotters C, D, E	E, F & G and comment or	n them				
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$				
VIVA-VOCE			5 MARKS				
TOTAL			60 MARKS				

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

BIOCHEMISTRY I

Paper	: ALLIED I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 21U1BCA01	External	: 75

PREAMBLE

To make the students to understand the basics biological molecules existing the living cell systems. Students also acquire knowledge on their biological functions and their importance in cell growth and development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring knowledge on carbohydrate and its types in biological systems.	K1 & K2
CO2	Understanding the basic concepts on proteins and amino acids and their properties	K1 & K2
CO3	Under the role of biological catalysts (Enzymes) and lipids, their role in basic biochemical reactions	K2, K3 & K4
CO4	To gain over all information on vitamins, their physiological functions and deficiency symptoms and consequent diseases	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Carbohydrates — Carbohydrate — classification, monosaccharide"s (glucose, fructose, galactose & xylose)- physical and chemical properties, disaccharides (sucrose, lactose), polysaccharides (glycogen, starch, pectin, keratin sulphate & chondroitin sulphate).	12
II	Amino acids and proteins: Classification, Structure, Essential and Non-essential amino acids. Definition, Classification, Functions and Properties of protein. Proteins structure -primary, secondary, tertiary and quaternary structures.	12
III	Enzymes: Definition, holo enzyme, apo enzyme, active site, Enzyme units,	12

	classification, Lock and Key model and Induced fit hypothesis. Enzyme					
	kinetics (MM & LB plot), factors affecting enzyme activity.					
IV	Lipids: Classification, structure, function and properties of simple, compound, Derived, Essential fatty acids and Non-essential fatty acids, cholesterol.					
V	Vitamins: Classification, occurrence, deficiency symptoms and biochemical functions of vitamins (Fat soluble and water soluble vitamins).	12				

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G. Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY I)

NAME OF THE COURSE: BIOCHEMISTRY I	COURSE CODE: 21 U1BCA01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS								
1. The general form	nula of mo	onosaccha	ride is					
a. CnH ₂ nOn	t	o. Cn ₂ H ₂ O	n		c. CnH ₂ O ₂ n		d. CnH ₂ nO ₂ n	
2. The aldose sugar	is							
a. Glycerose	b. 1	Ribulose		c. Eı	rythrulose	d.	Dihydoxyacetone	
3. Polysaccharides	are		<u> </u>					
a. Polymers		b. Acids			c. Proteins		d. Oils	
4. The most import	ant epime	r of gluco	se is					
a. Galactose	b.	Fructose			c. Arabinose		d. Xylose	
5. A heteropolysac	chraide ar	nong the f	ollowi	ng is	S			
a. Inulin		b. Cellul	ose		c. Heparin		d. Dextrin	
6. An example of a	saturated	fatty acid	is		_			
a. Palmitic acid	b	o. Oleic ac	id		c. Linoleic acid		d. Erucic acid	
7. Molecular formu	la of cho	lesterol is						
a. C27H45OH	b.	b. C29H47OH			с. С29Н47ОН		d. C23H41OH	
8. Sphingomyelins	are							
a. Phospholipids	b.	b. Nitrolipids c. Glycolip		ids	d. Alcohol			
9. The end product	of saponi	fication is					1	
a. Glycerol	b.			c. S	c. Soap		d. Both (A) and (C)	
10. All proteins con	ntains							
a. Same 20 amino acids	b. Diffe	erent no acids			nino acids ring in nature		d. Only a few amino acids	
11. Sulphur contain					ing in nature		acias	
_			c. Valine		d. Asparagine			
12. An essential an	12. An essential amino acid in man is							
a. Aspartate	a. Aspartate b. Tyrosine c. Methionine d. Serine			d. Serine				
13. Which of the fo	ollowing i	s a dipepti	de?				l	
a. Anserine				d. β –Lipoprotein				

	14. Vitamins are							
	a. Accessory	b. Generally			c. Produced in			d. Proteins in
	food factors	synthe	esized in th	ie	end	ocrine		nature
		body			glar	nds		
	15. One manifestat	ion of vitamin	A deficier	ncy is				
	a. Painful joints	b. Nigh	nt blindnes	S	c. Lo	ss of hair		d. Thickening of
	· ·							long bones
	16. Vitamin K is fo	ound in						
	a. Green leafy pla	ints	b. M	eat	c. Fish			d. Milk
	17. In human body	highest conce	ntration of	ascor	bic acid is	s found in -		<u> </u>
	a. Liver b. Adrenal cortex				. Adrenal			d. Spleen
	a. Livei b. Adienal contex			o. Haronar moduna			u. spicen	
	18. A nucleoside co	onsists of						
	a. Nitrogenous	b. Purine or		c. Pur	Purine or pyrimidine d		d	Purine + pyrimidine
	base	pyrimidine	e base +	ba	base + phosphorous			base + sugar +
		sugar						pl osphorous
	19. RNA does not						<u>.</u>	
a.	Uracil	b. Adenine		c	c. Thymine			d. Ribose
20. The major catabolic product of pyrimidine				ines ir	human is	S		
	a. Alanine	b. Urea		c.	Uric acid		d	G anine

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain Polysaccharides	(OR)			
B) Write the structure and importance of maltose.				
22. A) Classify the fatty acids with examples.	(OR)			
B) Write the structure of cholesterol.				
23. A) Explain the reactions of amino acid with ninhydrin	(OR)			
B) Describe the primary structure of protein				
24. A) Write about energy rich bond	(OR)			
B) Explain oxidative phosphorylation				
25. A) Write about Vitamin E	(OR)			
B) Explain the structure & sources of Vitamin C				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Classify the carbohydrate with examples	
27. Classify the lipids with examples	
28. Write the structural organisation of protein	
29. Explain the double helical structure of DNA	
30. Write the structure, physiological function & deficiency symptoms of Vitamin A	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN BIOCHEMISTRY I

Paper	: ALLIED PRACTICAL I	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 21U1BCAP01	External	: 60

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

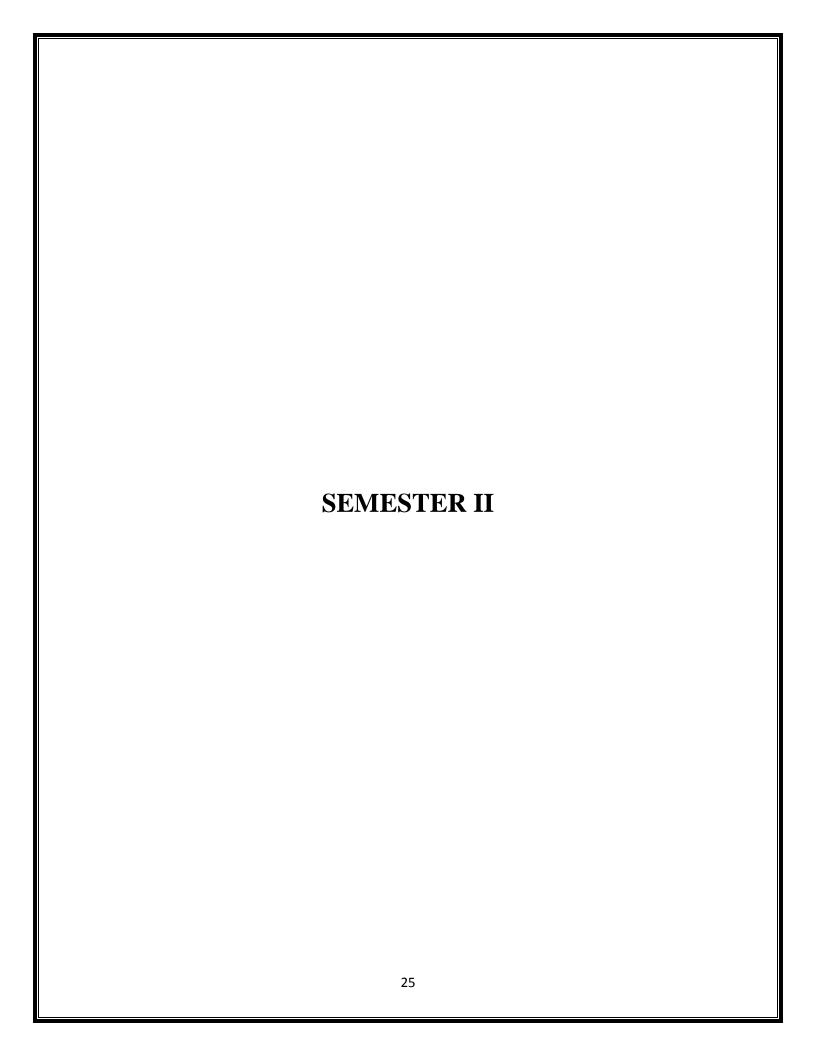
On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring knowledge on qualitative analysis of carbohydrates.	K3, K4 & K5
CO2	Acquiring knowledge on qualitative analysis of aminoacids.	K3, K4 & K5
CO3	Under the role of thin layer chromatography in the separation of amino acids	K3, K4 & K5
CO4	Under the role of thin layer chromatography in the separation of Lipids	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	M	S	M	S	M
CO4	M	S	M	S	M

Ex. No	CONTENT	HOURS
1	PREPARATION OF SOLUTION Normal, Molar, Percentage solution and calculation	3
2	Analysis of sugars a) Monosaccharides - Glucose, Fructose.	6
3	Analysis of sugars a) Monosaccharides - Galactose, Pentose.	6
4	Analysis of sugars b) Disaccharides - Sucrose, Maltose and Lactose.	6
5	Analysis of sugars c) Polysaccharide – Starch	3


6	Analysis of amino acids a) Histidine b) Tyrosine	6
7	Analysis of amino acids c) Tryptophan d) Methionine	6
8	Analysis of amino acids e) Cysteine f) Arginine	3
9	Separation of amino acids by paper chromatography	3
10	Separation of lipids by thin layer chromatography	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY I)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY I	COURSE CODE: 21U1BCAP01	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Systematically analyze the give carbohydrate sample (A)	and display the results for
observation	(OR)
(ii) Separate the given lipid sample (A) by thin layer chron	natography.
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Separate the given amino acid sample (B) by paper chron	matography and display
the results for observation	(OR)
(ii) Systematically analyze the give amino acid sample (B)	and display the results for
observation.	
RECORD	$(1 \times 10 = 10 \text{ MARKS})$
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

MICROBIOLOGY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21U2BTC02	External	: 75

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand historical prospective on the evolution of	K1 &K2
	microbiology and gaining the concepts microscopic techniques	
CO2	To acquire knowledge on the basic concepts on prokaryotic	K1 &K2
	cellular structure	
CO3	To acquaintance of basic nutritional requirements of	K2, K3 & K4
	microorganism and their growth pattern and media requirements	
CO4	To know about the anti-microbial therapy and their mode of	K2, K3, K4 & K5
	action on controlling the growth of microorganisms	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	DEFINITION AND SCOPE OF MICROBIOLOGY: History and	15
	recent Developments: Contributions of Leevenhoek, Louis Pasteur,	
	Robert Koch, Elie Metchnikoff, Edward Jenner, Alexnder fleming,	
	Spontaneous generation, Biogenesis of Microbiology. Nobel prize	
	winners in the field of Medicine.	
II	MICROSCOPY: Simple and Compounds microcopes. Dark field	15
	contrast, Fluorescence microscopes. Electron microscopes (TEM &	
	SEM). Stain and staining techniques - Simple, differential and	
	special staining (Endospore and Capsular).	

III	CELLULAR STRUCTURES OF PROKARYOTES: Ultra	15
	structure and functions of bacterial cell wall, Plasma membrane,	
	Flagella, Pili and capsule. Ultra structure of fungi, Viruses and	
	cyanobacteria.	
IV	STERILIZATION AND CULTURE TECHNIQUES: Physical	15
	and chemical methods. Growth of bacteria - multiplication -	
	nutritional requirements. Factors affecting growth. Growth	
	curve, Determination of growth. Media and its types, Culture	
	techniques (pure culture, anaerobic culture). Cultivation of	
	anaerobes, Chemoautotrophs, chemoheterotrophs and	
	photosynthetic microbes. Culture collection, preservation,	
	lyophilization and freeze drying	
V	ANTIMICROBIAL CHEMOTHERAPY: Definition and	15
	types of antibiotics. Mode of action of broad and narrow	
	spectrum antibiotics. Anti-microbial resistance. Mechanisms of	
	resistance. Test for	
	evaluating anti-microbial effect. Microbial metabolism- Microbial	
	metabolism. Photosynthesis in microbes. Role of chlorophylls, carotenoids and phycobilins, Calvin cycle.	

SUGGESTED READINGS:

- 1. Microbiology concepts and application by Paul A. Ketchum, Wiley Publications 2010.
- 2. Fundaments of Microbiology- Frobisher, Sauders & Toppan publications 1975.
- 3. Microbiology Ronald M. Atlas 1993.
- 4. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 5. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 6. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 7. Fundamentals of Bacteriology Salley 1996.
- 8. Microbiology Pelczar, Chan, Krieg, Tata McGraw Hill Publications 2005.
- 9. Frontiers in Microbial technology P.S. Bisen, CBS Publishers 1994.
- Biotechnology: International Trends of perspectives A.T.Bull, G. Holl,
 M.D.Lilly, Oxford & TBH publishers 1987.
- 11. General Microbiology-C.B.Powar, H.F. Daginawala, Himalayan Publishing House 2011.

${\bf MODEL\ QUESTION\ PAPER\ (MICROBIOLOGY)}$

NAME OF THE COURSE: MICROBIOLOGY	COURSE CODE: 21U2BTC02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. The third kin	1. The third kingdom, protista, as suggested by E.H. Haeckel includes					
a. bacteria		b. algae		c. fungi		d. all the above
2. Who discov	ered the	bacteria that ca	use chole	era?		
a. Pierre Berthelot b. Robert Koch c. Louis Pasteur d. Rudolf Virchow					. Rudolf Virchow	
3. Which we	re the i	nvestigators live	d at the s	ame time?		
a. Darwin and Woe	se	b. Koch and Pas	steur	e.Van Leeuenhoel Ricketts	k and	d. Berg and Hooke
4. Which of the	e follov	ving is not found	in the ki	ingdom Monera?		
a. Organelles	b. C	rganized cell str	ructure	c. Ability to rep	roduce	d. Ability to use energy
5. Resolving p	ower of	a microscope is	a function	on of		
a. Wavelength of li used	ght	b. Numerical ap of lens syste		c. Refractive inde	ex d.	Wavelength of light used and numerical aperture of lens system
6. In fluorescent except the			of the fol	lowing performs	the funct	ion of removing all light
a. Exciter filter	•	b. Barrier f	ilter	c. Dichroic 1	mirror	d. Mercury arc lamp
7. In Phase con	ntrast m	icroscopy, the ra	ate at whi	ich light enters thi	ough obj	ects is
a. Constant		rsely proportion ir refractive indi		c. Directly propo to their refrac indices		d. Exponentially related to their refractive indices
	ng the f					ture of the specimen?
a. Transmission Electron Micros		b. Scanning Ele Microscope		c. Compound Microscope	d.]	Phase Contrast Microscope
9. Which of the	e follov	ving is an examp	le for pro	okaryotic cell?		
a. Hydra		b. Euglena		c. Chlamydomonas d.		d. mycoplasma
10. The unifying feature of the archaea that distinguishes them from the bacteria is						
a. Habitats which are extreme environments with regard to acidity		b. Absence of a nuclear mer temperature		c. Presence of a cell wall containing a characteristic outer membrane d. Cytoplasmic r that are 70S		d. Cytoplasmic ribosomes that are 70S
		is used in the pro	oduction	of		
a. cheese	b	. citric acid	c. gl	uconic acid	d. ci	tric acid and gluconic acid

12. Fungi are sensitive to which of the following antibiotics						
a. Penicillin	a. Penicillin b. Tetracyclin c. Chloramphenicol d. Griseofulvin					
13. SDA that supports	13. SDA that supports the growth of fungi is composed of					
a.Glucose and ammonia b. Maltose and peptone c. Sucrose and peptone d. Peptone						
14. The portion of the	growth curve where a rap	oid growth of bacteria is ob	served is known as			
a. Lag phase	b. Log phase	c. Stationary phase	d. Decline phase			
15. The generation tin	ne for E.coli is					
a. 20 min	b. 35 min	c. 39 min	d. 13 min			
16. What is the color of	of colonies of Staphylocol	ccus aureus upon its growt	h in nutrient agar ?			
a. Pink	b. Red	c. Violet	d. Yellow			
17. Which bacteria ha	ve an unusual capsule am	ong the following?				
a. H. influenzae	b. K. pneumonia	c. S. pneumoniae	d. B. anthracis			
18. What is the chemi	cal nature of endotoxins?					
a. Protein b.	Polysaccharide c	. Lipo polysaccharide	d. lipid			
19. Nystatin is effective	ve in curing?	-				
a. Deep mycoses b. Dermatophytosis c. Systemic mycoses d. Candidiasis						
20. Which drug is used for treatment of leishmaniasis?						
a.Chloroquine phosphate	a.Chloroquine phosphate b. Metronidazole c. Sodium stibogluconate d. Suramin					

21. A) Explain the contributions of Louis Pasteur	STIONS (OR)
B) Explain about Biogenesis and Abiogenesis with examples	(011)
22. A) Describe the working mechanism of phase contrast microscope	(OR)
B) Explain about SEM	` ′
23. A) Write a short note on ultra-structure of bacterial cell	(OR)
B) Explain the structure of Fungi	
24. A) Explain the process of reproduction in bacteria	(OR)
B) Brief various media involved in growth of microbes	
25. A) Elaborate the antimicrobial resistance	(OR)
B) Explain the types of antibiotics	
SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUE	ESTIONS
26. Give detailed account on History of microbiology	
27. Give detailed account on TEM and specimen preparation	
28. Differentiate the Gram positive and negative organisms with example	es
29. Write a detailed account on various sterilization techniques	
30. Explain different types of antibiotics and antimicrobial resistance	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN MICROBIOLOGY

Paper	: Core practical II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 21U2BTCP02	External	: 60

PREAMBLE

To make students on understanding basic microbiological techniques, aseptic practices in laboratory. The candidate also shall know how to maintain and culture the microorganisms in laboratory and their biochemical identification mechanisms.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand and implement the principles of aseptic practices in	K1, K2 & K3
	Laboratory	
CO2	To gain knowledge on the media preparation and culturing the	K2, K3 & K4
	Microorganism	
CO3	To identify the microorganisms by staining techniques and	K3, K4 & K5
	biochemical tests	
CO4	To check the growth pattern of microorganisms towards various	K4, K5 & K6
	classes antibiotics	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	M	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	General Laboratory rules to be followed in microbiological	3
	Laboratory	
2	Sterilization techniques (Dry heat, Moist heat, Filtration - membrane	4
	and HEPA filters)	
3	Preparation of nutrient media (Solid, semi - solid and liquid)	5
4	Isolation of pure culture (Streaking methods – simple, continuous,	2
	quadrant and "T" streaking)	

5	Simple and negative staining	3
6	Differential staining (Gram"s staining, Capsule staining, Spore	10
7	Fungal staining (LCB)	5
8	Determination of bacterial motility (Hanging drop method)	5
9	Biochemical characterization of microorganisms (IMViC), TSI test, Carbohydrate fermentation test, Urease test, Catalase test	12
10	Antibiotic sensitivity test (Kirby-Bauer method)	10

MODEL QUESTION PAPER (LAB IN MICROBIOLOGY)

NAME OF THE COURSE: LAB IN MICOROBIOLOGY	COURSE CODE: 21U2BTCP02	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIME	ENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS		
1. (i) Perform Gram's staining for the given sample (A). Display the results for observation.					
			(OR)		
(ii) Perform LCB staining for the given fungal (A) and display the results for observation. (OR)					
(iii) Identify the mo	tility of the give	n bacterial strain (A) and	display the results for		
Observation					
MINOR EXPERIME	ENT				
Ехр: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Determine the sensitivity pattern of the given bacterial culture (B) against the given					
antibiotics (OR)					
(ii) Perform quadrant streaking from the bacterial sample (B) and display the results for					
observation (OR)					
(iii) Perform catalase test for the given bacterial culture (B) for hydrogen peroxide					
production and display the results for observation					
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$					
3. Identify the given spotters A, D, H, F & G and comment on them					
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $					
VIVA-VOCE			5 MARKS		
TOTAL			60 MARKS		

BIOCHEMISTRY II

Paper	: ALLIED II	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 21U2BCA02	External	: 75

PREAMBLE

To make students on understanding basic biochemical reaction mechanisms of various biomolecules. The students also acquire knowledge on their regulation and also about the concepts of various endocrine systems and their deficiency consequences in human being.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of thermodynamics and energy production in living systems	K1 & K2
CO2	To understand the basic concepts of carbohydrate metabolism and their energy yield	K1, K2 & K4
CO3	To understand the basic concepts of protein & lipid metabolism and their energy yield	K1, K2 & K4
CO4	To understand the basic concepts of human endocrine system	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio energetics – Laws of thermo dynamics, Concepts of free energy and standard free energy, Exergonic and Endergonic reactions. Electron transport chain. Inhibitors of ETC. Oxidative phosphorylation, High energy compounds.	12
II	Carbohydrate metabolism: Glycolysis, Citric acid cycle with Energetics, glycogenesis, Glycogenolysis, HMP shunt.	
III	Protein metabolism: Transamination, oxidative and non-oxidative deamination, decarboxylation- urea cycle. Interrelationship of carbohydrates, proteins and fat metabolism.	
IV	Lipid metabolism: Basic principles of lipid metabolism. Oxidation of	12

	saturated $(\alpha, \beta \text{ and } \omega)$ and unsaturated fatty acids. Oxidation of odd chain fatty acids, Cholesterol biosynthesis and its importance.		
V	Endocrinology – Definition, Classification of Hormones, secondary		
	messenger(cAMP) Biological function and disorders of Pancreatic	12	
	Hormones (Insulin and Glucagon), Thyroid hormone (thyroxin).		

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G. Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY II)

NAME OF THE COURSE: BIOCHEMISTRY II	COURSE CODE: 21U2BCA02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. In exergonic reaction heat is						
a. Consumed b	b. Liberated	Liberated c. No change in heat d. Enthalphy transfer than 1			Enthalphy in more than 1	
2. Hydrogen is transfe	erred through a seri	es of e	nzyme s	ystems to form		-
a. Oxygen	b. Water		c. Carbo	hydrate	d. AT	P
3. One molecule of A	ATP is equal to	m	olecules	of NADP		
a. 1	b. 2		e.3		d. 4	
4. Oxidative phospho	rylation occurs in -		-			
a. Chloroplast	b. Mitochondr	ia	c.	Endoplasmic r	eticulum	d. Tonoplast
5. In which of the foll	lowing phase in gly	colysis	s does the	e ATP is consu	med?	
a. Payoff phase	b. Interphase		c. Prepa	ratory phase	d.	Gap phase
6. The term glycogen	olysis defines				<u> </u>	
a. Break down of	b. Breakdowi	n of	c. S	ynthesis of		d. Synthesis of
glucose	glycogen			glucose		glycogen
7. HMP stands for						
a. Hexo kinase	o. Hexose mono nit	rate	c. He	xose mono	d.	Hexose mono
shunt	shunt	shunt phosphate shunt butyrate shunt		•		
8. Which of the follow	wing enzyme mainl	y invo	lved in th	ne process of gl	ycogene	sis?
a. Glucagon lyase	a. Glucagon lyase b. Glycogen lyase c. Glycogen synthase d. Glucagon synthase			ucagon synthase		
9. Transamination of						
a. Deaminase	b. Transaminas	e	c. Transl	ketolase	d. Trans	s decarboxylase
10. Which of the follo	owing aminoacid in	volvec	l in Urea	cycle?		
a. Serine	b. Typtophan		c. Aspar	agine	d. Ci	trulline
11. SGOT is an enzyr	ne that catalyzes		reaction		•	
a. Deamination	b. Trans deaminati	ion	с. Т	ransamination		d. Decarboxylation
12. Non-oxidative deamination reactions is accomplished by						
a. The conversion of	a. The conversion of b. Conversion of c. Removal of d. None of		d. None of the			
	alpha amino group COOH group to			group	above	
to ammonia	to ammonia CO ₂ as nitrogen 13. Lipid metabolism entails the					
•	_		T		1	
a. Synthesis of	b. Oxidation of fa	atty		ction of fatty		d. Conversion of fatty
fatty acids	acids		acid	<u>S</u>		acids in to glycerol

14. Fatty acid synthase is a multi-enzyme complex composed of sub units				
a. 1	b. 2		c. 3	d. 4
15. Phenanthrene	nucleus is found in			
a. Stigmesterol	b. Ergosterol		c. Cholesterol	d. Levosterol
16. The precursor	for the cholesterol biosy	nthesis	is	
a. Acyl Co-A	b. Acetyl Co-A	(c. Aceto acetyl Co-A	d. Keto acyl Co-A
17. Ductless gland	ls secretes			
a. Serum	b. Hormone		c. Plasma	d. CSF
18. Hyper insulini	sm leads to		1	
a. Decreased lev	b. Increased le of glucose	vel	c. Increased level of glucagon	d. Increased rate of muscle
				phosphorylation
19. Which of the	following is an example	for seco	ondary messenger?	
a. cGMP	b. cTMP	c. c	UMP	d. cAMP
20. Thyroid hormone is highly concentrated on				
a. Baso lateral	b. Baso lateral		c. Baso lateral	d. Baso lateral
plasma membr	rane plasma memb	orane	plasma	plasma
of active	of active		membrane of	membrane of
histiocytes	hepatocytes		active thyocytes	active
				thrombocytes

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write short notes on standard free energy	(OR)	
B) Write about the inhibitors of ETC		
22. A) Explain the energetics of glycolysis	(OR)	
B) Write shortly on the process of glycogenesis		
23. A) Write short notes on transamination reactions	(OR)	
B) Write short notes on oxidative deamination reactions		
24. A) Explain the energetics of beta oxidation of fatty acids	(OR)	
B) Explain the oxidation of odd chain fatty acids		
25. A) Explain the clinical manifestations of hypo parathyroidism	(OR)	
B) Explain the complications faced by a victim having hyperglycemia		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on electron transport chain
27. Give a detailed account on TCA cycle
28. Elaborately discuss on Urea cycle with neat chemical reactions
29. Write an essay on cholesterol biosynthesis with neat chemical reactions
30. Explain the biological function thyroid hormone. Add a note on hypo and hyper thyroidism

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ALLIED - LAB IN BIOCHEMISTRY II

Paper : ALLIED PACTICAL II **Total Hours** : 60 Hours/Week **Exam Hours** : 03 : 3 Credit : 3 Internal : 25 Paper Code : 21U2BCAP02 External : 75

PREAMBLE

To make students on understanding basic biochemical calculations and preparing reagents and solutions. The students also gain knowledge on estimating quantitatively the biomolecules substances.

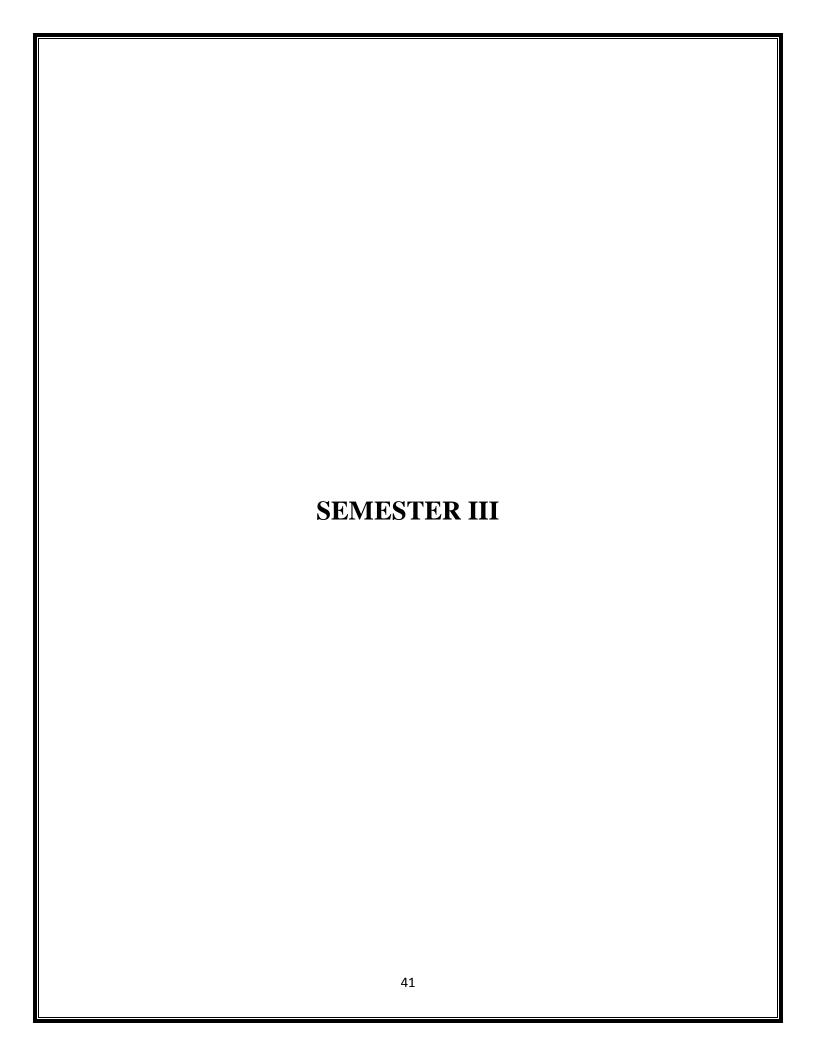
COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Become familiar in preparing different strengths of solutions for	K1, K2, K4 & K5
	the basic requirement of executing biochemical experiments	
CO2	To know about the quantitative determination on the strength of	K1, K2, K4 & K5
	various specific biomolecules	
CO3	Gaining knowledge on using basic instruments such as	K1, K2, K4 & K5
	colorimeter and UV spectrophotometer for measuring the colour	
	intensity developed in the reaction mixture	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	M


Ex. No	CONTENT	HOURS
1	Estimation of glucose by ortho toluidine method	3
2	Estimation of glycine by formal titration method	3
3	Estimation of ascorbic acid by 2,4 dichloro phenol indo phenol method	3
4	Estimation of urea by diacetyl monoxime method	3
5	Estimation of DNA by diphenylamine method	3
6	Estimation of RNA by orcinol method	3
7	Estimation of protein by lowry"s method	3
8	Estimation of cholesterol by zak"s method	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY II)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY II	COURSE CODE: 21U2BCAP02	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Estimate the amount of glycine present in the given sample (A)	(OR)
(ii) Estimate the amount of ascorbic acid present in the given samp	ole (A)
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
(ii) Estimate the amount of RNA present in the given sample (B)	
$\mathbf{RECORD} \tag{1 x 10}$	0 = 10 MARKS
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

MOLECULAR BIOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21U3BTC03	External	: 75

PREAMBLE

To make students on understanding basic structure of genetic materials (DNA & RNA) and molecular concepts of a gene expression and its regulatory mechanisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of DNA/RNA structure and experimental evidences as genetic material	K1, K2
CO2	To under the mechanisms of replication of DNA and it regulation	K1, K2, K4
CO3	To know about the transcription process and its modifications into functional mRNA and translation into proteins	K1, K2, K4
CO4	To under the concepts of gene regulation and know about the mechanisms of transposition	K2, K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	M	S
CO3	S	S	M	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS				
	Genetic material: Evidences showing DNA and RNA as genetic material;					
I	DNA- Chemical composition & molecular structure, Watson and Crick"s					
	model - its biological significance; Forms of DNA (A, B, C, D & Z).Central					
	dogma of molecular biology.					
	DNA replication : Origin & Models of - Meselson and Stahl"s experiment -					
	types of replication - Mechanism of DNA replication in prokaryotes and					
II	eukaryotes - Enzymology of replication. DNA repair- causes of DNA					
	damage & biochemical mechanism of DNA repair. Homologous					
	recombination- Holliday model					
	Transcription: RNA types and functions; RNA polymerase; Transcription	16				
III	in prokaryotes and eukaryotes; Post transcriptional modification -					

_								
	Transcription and processing of RNA in prokaryotes;Post transcriptional							
	modifications, splicing, spliceosomes. Editing, Nuclear export of mRNA							
	Transcription and processing of RNA in prokaryotes.							
	Translation & Protein synthesis: Genetic code: Properties of genetic code;	16						
	codon- anticodon interaction- Wobble hypothesis and elucidation of genetic							
IV	code; Translation in prokaryotes and eukaryotes; Post translational							
	modification of proteins & molecular chaperonins.							
	modification of proteins & molecular chaperonins.							
	Regulation of gene expression: Gene expression in transcriptional level	15						
\mathbf{v}	(lac and trp operon); gene expression in bacteriophages. Transposons –							
	types and mechanism of transposition. Gene							
	silencing . Recombination – Homologous and Non – homologous							
	recombination. Molecular techniques; DNA finger printing, DNA							
	Microarray, Gene Mapping, Protein Micro array.							

SUGGESTED READINGS:

- 1. David Freifelder . 1990. Molecular Biology, 2nd Edition. Narosa Publishing house
- George M. Malacinski. 2008. Essentials of Molecular Biology, 4th Edition. Narosa Publishing house
- 3. Veer Bala Rastogi. 2010. Fundamentals of Molecular Biology. Ane Books India
- 4. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losile. 2008. Molecular Biology of the gene, 5th Edition. Pearson Education.
- 5. Lodhish, Berk, Matsun dairg, Kaiser, Krieger, Scott, Zipursky and Darnell. 2004. Molecular Cell Biology, 5th Edition. W. H. Freeman and Company
- 6. Robert F. Weaver. 1999. Molecular Biology. WCB Mc Graw Hill
- 7. E. D. P. De Robertis & E. M. F De Robertis, Jr. 2001. Cell and Molecular Biology, 8th Edition. Lipin cott William and Wilkins
- 8. Lehninger. 2005. Principles of Biochemistry. Nelson Cox, CBS Publishers
- 9. Alexander Mc Lenna, Andy Bates, Puil Turner & Mike White. 2015. Molecular Biology, 4th Edition. GS Garlan Sciences, Taylor and Francis Group
- 10. George M. Malacinski & David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 11. Richard R. Sinden. 1994. DNA Structure and function. Academic press
- 12. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 13. Pragya Khana. 2008. Cell and Molecular Biology. IK International Publishing House
- 14. William D. Stanfield, Jaine S. Colome and Raul J. Cano. 2008. Shaum's Outline- Molecular Cell Biology. Tata Mc Graw Hill
- 15. H.S. Bhamrah & Kavita Juneja. 2002. Molecular Cell Biology. Anmol Publications
- 16. G. P. Jeyanthi. 2009. Molecular Biology. MJP Publishers
- 17. N. Vidhyarasthi & D. M. Chelan. 2007. Molecular Biology. IK International Publishing House
- 18. P.S. Verma & V. K. Agarwal. 1998. Concepts of Molecular Biology. S. Chand and Company Ltd
- 19. Phil Turner, Alexander Mc Lennan, Andy Bates & Mike White. 2001. Molecular Biology, 3rd Edition. Bios Instant Notes
- 20. H. D. Kumar. 2000. Molecular Biology, 2nd Edition. Vikas Publishing House
- 21. AVSS Sambamurhty. 2008. Molecular Biology. Narosa Publishing House

MODEL QUESTION PAPER (MOLECULAR BIOLOGY)

NAME OF THE COURSE: MOLECULAR BIOLOGY	COURSE CODE: 21U3BTC03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. Number of hydrogen bonds between adenine and thymine is							
a. 1	b. 2		c. 3			d. 4	
2. Difference between RNA and DNA lies on							
a. Sugar	b. Phosphate group	c. Ni	trogenous bas	se	d.	None of the above	
3. The distance be	etween two adjacent nitr	rogenous l	pase pair is	<i>[</i>	۸°		
a. 2.4	b. 3.4	c.4.4			d. 5.4	1	
4. DNA in chromo	some is tightly packed v	with					
a. Histones	b. Glycoproteins	c	Lipoproteins	,	d. C	Glycoproteins	
5. Which of the fol	lowing mode of replicat	tion is obs	erved in a liv	ing cell?)		
a. Conservative	b. Dispersive	c. Se	mi-Conservat	ive	d.	None of the above	
6. Which of the fol	lowing protein relaxes t	he friction	nal pressure fo	ound on	the re	eplication fork?	
a. Helicase	b. Gyrase		c. Topoisomerase d. SSB		d. SSB		
7. Which of the fol	llowing maintains the sin	ngle stran	ded nature of	DNA?			
a. Helicase	b. Gyrase		c. Topoisome	rase	(d. SSB	
8. Photo reactivation	on of DNA is catalyzed	by					
a. Gyrase	b. Topoisomerase	c. U	Vr B		d. Ph	otolyase	
9. The regulatory e	elements in a DNA is co	ntrolled by	y				
a. Cis elements	b. Trans elements	c. S	tructural elen	nents	d.	Control elements	
10. Introns in mRN	NA is removed by						
a. Editing	b. Splicing	c. Cap	ping	d. Po	oly ad	enylation	
11. Difference bety	ween holo and core enzy				•		
a. Alpha subunit	b. Beta subunit		c. Epsilon sub	unit		d. Zigma subunit	
12. Formation of lariat is commonly found during							
a. Transcription b. Post transcriptional c. Translation d. Post transla							
12 Foot and as in	modifications modifications 13. Each codon is characterized by						
	<u> </u>						
a. Singlet b. Doublet nucleotide c. Triplet nucleotide d. None of the above nucleotide					l. None of the above		

	14. The starting codon AUG codes for which of the following amino acid?					
	a. Cysteine	b. Methionine		c. Serine	d. Threonine	
	15. Glycosylation of	proteins describes the	additi	on ofto the grow	ing poly peptide chain	
	a. Glucose	b. Gelatin	c.	Chalmoogric acid	d. Vitamin A	
	16. Which of the following	lowing machinery invo	lved i	n post translational modif	ications of proteins?	
	a. Molecular	b. Molecular		c. Molecular channels	d. Molecular	
	motors	chaperons			locomotors	
	17. The function of trans acetylase is to					
a.	Transfer of	b. Transfer of CH	I ₃ C-	c. Transfer of CH ₂ C=C	d. Transfer of	
	CH ₃ C=O group	OH group		group	CH ₃ COOH group	
	18. Ty element is for	and in				
	a. Bacteria	b. Fungi		c. Protozoa	d. Yeast	
	19. Retroposons is commonly found in					
	a. Retroviridae b. Rhinoviridae		?	c. Adenoviridae	d. Poxviridae	
	20. Catabolic repress	sion refers to				
	a. Regulon	b. Operon		c. Citron	d. Recon	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	TIONS
21. A) Explain the experiments that proves DNA as genetic material	(OR)
B) Explain the structure of tRNA and mRNA with neat sketch	
22. A) Explain the Meselson"s & Stahl experiment	(OR)
B) Write shot notes on prokaryotic DNA polymerase	
23. A) Explain RNA splicing	(OR)
B) Explain the process of transcription termination	
24. A) Explain Wooble hypothesis	(OR)
B) Explain the properties of genetic code	
25. A) Explain the mechanism of transposition	(OR)
B) Explain the structure of lactose operon	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain the chemical and physical structure of DNA
27. Give a detailed account on DNA replication in prokaryotes
28. Give a detailed account on Eukaryotic transcription
29. Explain the process of translation in prokaryotes
30. Explain the lac operon. Add a note on its regulation

LAB IN MOLECULAR BIOLOGY

: Core practical III **Total Hours** Paper : 75 Hours/Week : 4 Exam Hours : 05 Credit : 3 Internal : 40 : 21U3BTCP03 Paper Code External : 60

PREAMBLE

To make students on understanding basic procedure in isolation separating purifying proteins. The students gain knowledge in DNA quantification and gene transfer methods

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about the isolation, purification and quantification of protein	K1, K2, K3, K4 & K5
CO2	To know about the separation and quantification of DNA	K1, K2, K3, K4 & K5
CO3	To know about the various types of gene transfer techniques	K1, K2, K3, K4 & K5 K1, K2, K3, K4 & K5
CO4	To identify and isolate the mutated bacterial by special techniques	K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of protein	4
2	Estimation of protein by Lowry"s method	4
3	Purification of protein by dialysis	4
4	Separation of proteins by native – PAGE	4
5	Separation of DNA by agarose gel electrophoresis	4
6	Quantification of DNA by UV-visible spectrophotometer	4
7	Induction of mutation in bacterial cells UV light	4
8	Bacterial DNA transformation by CaCl method	4
9	Bacterial conjugation	4
10	Isolation of auxotrophic mutants by replica plating technique	4

${\bf MODEL\ QUESTION\ PAPER\ (LAB\ IN\ MOLECULAR\ BIOLOGY)}$

NAME OF THE COURSE: LAB IN MOLECULAR BIOLOGY	COURSE CODE: 21U3BTCP03	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPE	ERIMENT				
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Isolate prot	1. (i) Isolate protein from the given sample (A). Display the results for observation. (OR)				
(ii) Separate	the protein from the gi	ven sample (A) by SDS-F	PAGE. Display the results for		
observation.			(OR)		
		ple (A) in to given host co	ell by appropriate method.		
Display the r	esults for observation				
MINOR EXPE	CRIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Purify the given protein sample (B) by dialysis. Display the results for observation (OR)					
(ii) Separate	the given DNA sample	e (B) electrophoresis and o	lisplay the results for observation		
		(OR)			
, ,	(iii) Perform catalase test for the given bacterial culture (B) for hydrogen peroxide production				
1 ,	he results for observati	on			
SPOTTERS			(5 X 4 = 20 MARKS)		
3. Identify the g	given spotters A, D, H,	F & G and comment on the	nem		
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$		
VIVA-VOCE			5 MARKS		
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE I

Total Hours Paper : ALLIED III : 60 Hours/Week : 4 **Exam Hours** : 05 Credit : 3 Internal : 40 External Paper Code : 21U3BOA01 : 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on basics of fungi and algae	K1 & K2
CO2	To gain knowledge on basics of bryophytes	K1 & K2
CO3	To gain knowledge on basics of lichens	K1 & K2
CO4	To gain knowledge on basic concepts of plant physiology	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	S	S	S
CO3	S	M	S	S	S
CO4	M	S	S	M	M

UNIT	CONTENT	HOURS		
I	ALGAE: General characteristics of algae. Study on thallus structure,			
	reproduction and life cycle of Gellidium, Gracillaria and Polysiphonia.	12		
	Economic importance of algae in industries.			
II	FUNGI: General characteristics of fungi. Study on thallus structure,			
	reproduction and life cycle of Agaricus, Penicillium and Saccharomyces	12		
	cerevisieae. Economic importance of fungi.			
III	LICHENS: General characteristics of fungi. Study on thallus structure,			
	reproduction of foliose, Crustose, Fruticose and Squamulose groups of	12		
	lichens			
IV	BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS: General characteristics. Study on the structure, reproduction and life cycle of bryophytes (<i>Marchantia</i>), Pteridophytes (<i>Lycopodium</i>), Gymnosperms (Cycus) and their economic importance.	12		
V	PLANT PHYSIOLOGY: Absorption of water (Active and passive). Photosynthesis (Light and Dark reactions). Cyclic and non-cyclic photophosphorylation. Transpiration and its types (Stomatal transpiration).	12		

SUGGESTED READINGS:

- 1. Vashishta BR, AK. Sinha. (2010). Botany for Degree student Fungi. S. Chand & Co. New Delhi.
- 2. Pandey SN, Mishra SP and Trivedi PS. (2009). A text book of
- 3. Botany, Vol II, Vikas Publishing House Pvt. Ltd., Delhi.
- 4. Rao, KN, Krishnamoorthy KV and Rao GS. (1979). Ancillary Botany S. Viswanathan Pvt., Madras.
- 5. Text Book of Algae. (2018). KS. Bilgrami and LC Saha, 1st edition, CBS Publishers.
- 6. Algae. (2011). OP. Sharma, Tata Mc Graw Hill Education.
- 7. Advances in Mycology. (2012). Sohan Sharma, random Publications Publishers and Distributors, New Delhi.
- 8. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited.
- 9. BP Pandey. (1986). Text Book of Botany, Vol I & II Chand. S & Co. New Delhi.
- 10. Fuller. HJ and Tippo O. (1949). College Botany, Henry Holt & Company.
- 11. Ganguly AK. (1975). General Botany Vol I. (1971) and Vol II. The new Book stall, Calcutta.

LAB IN PLANT SCIENCE I

Paper	: ALLIED PRACTICAL III	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 21U3BOAP01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant Kingdoms	K4, K5 & K6
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

1.	Sectioning of given specimens	$(3 \times 8 = 24 \text{ marks})$
	a. Algae (or) Fungi	8 marks
	b. Bryophyte (or) Pteridophyte	8 marks
	c. Gymnosperms	8 marks
2.	Identification of spotters (Permanent slides)	$(4 \times 3 = 12 \text{ marks})$
	d. Algae (or) Fungi	4 marks
	e. Bryophyte (or) Pteridophyte	4 marks
	f. Gymnosperms (or) Lichens	4 marks
3.	Identification of spotters (Morphology)	$(3 \times 3 = 9 \text{ marks})$
	g. Algae	3 marks
	h. Fungi	3 marks
	i. Bryophyte/Pteridophyte/Gymnosperm	3 marks
4.	Identification of the given setup (Physiology)	$(3 \times 1 = 3 \text{ marks})$
	j. Ganong"s photometer (or) Wilmutt"s bubbler	
5.	Identification of spotter (Economic importance)	$(1 \times 2 = 2 \text{ marks})$
	k. Gellidium (or) Penicillium (or) Yeast	
6.	Record	10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I LAB IN IN FOOD PROCESSING AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 21U3BTS01	External	: 60

PREAMBLE

To make students on understanding basic concepts of food quality management and deals with various food processing concepts and technologies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge of food preservation	K4, K5 & K6
CO2	To gain knowledge of self-life of different foods	K4, K5 & K6
CO3	To gain knowledge on the economic importance of Dairy and	K4, K5 & K6
	Dairy products	
CO4	To gain experimental knowledge on Food processing	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	To study different types of blanching of fruits and vegetables	4
2	Preservation of food by canning	4
3	To perform cut out analysis of caned product	4
4	Preservation of food by high concentration of sugar i.e. jam	4
5	Preservation of food by high concentration of salt/acid i.e. pickle	4
6	Preservation of food by addition of chemicals i.e. tomato ketchup	4
7	Preservation of milk by pasteurization and sterilization	4
8	Determination of total fat, protein in milk and milk products	4
9	Estimation of synthetic Food colours from canned food. Natural Food	4
	coloring agents	
10	Detection of adulterants in edible oil and ghee	4

MODEL QUESTION PAPER (LAB IN FOOD POCESSING AND TECHNOLOGY)

NAME OF THE COURSE: LAB IN FOOD PROCESSING AND TECHNOLOGY	COURSE CODE: 21U3BTS01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXP	PERIMENT				
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Perform cutout analysis of the given canned food sample (A). Display the results for					
observation	n.		(OR)		
(ii) Preserve	e the given food sample ((A) by sugar/salt/acid	(OR)		
(iii) Estimat	te the amount of total fat	from the given milk samp	le (A)		
MINOR EXPERIMENT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Perform food preservation by chemical additives for the given food sample (B) (OR)					
(ii) Perform pasteurization of milk from the given milk sample (B) (OR)					
(iii) Estimat sample (B)	te the amount of synthetic	c Food colour in the given	sweet/confectionary/beverage		
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$					
3. Identify the	given spotters A, D, H, I	F & G and comment on the	em		
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $					
VIVA-VOCE 5 MARKS					
TOTAL	OTAL 60 MARKS				

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I DEVELOPMENTAL BIOLOGY

Paper : SBEC I **Total Hours** : 40 Hours/Week **Exam Hours** : 03 : 2 Credit : 2 Internal : 25 Paper Code External : 75 : 21U3BTS02

PREAMBLE

To make students on understanding basic concepts of mammalian developmental systems and also to deals with the developmental system plants

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of animal system development	K1, K2 & K3
CO2	To understand the concepts of vertebrate system development	K1, K2 & K3
CO3	To understand the concepts of plantsystem development	K1, K2 & K3
CO4	To understand the concepts of invertebrate system development	K1, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	M

UNIT	CONTENT	HOURS
I	Basic concepts of development in animal system-I Stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, lineages of three germ layers. Embryo development	8
п	Basic concepts of development in animal system-II Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development, model organisms in Developmental biology.	8
Ш	Early Development in invertebrate / vertebrate models Drosophila, <i>C.elegans</i> , Xenopus, Mouse/ human, Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), and body plan patterning. Hormones involved in reproduction.	8

IV	Late Development in invertebrate /vertebrate models Organogenesis- development of central nervous system in vertebrates, vulval formation in <i>C.elegans</i> . Distribution of cytoplasmic substances in the egg–Metamorphosis (Insects and amphibians) – Hormone control of metamorphosis.	8
V	Basic concepts of development in Plant system Organization of the plant cell, plant meristems and cell fate; root and shoot development; secondary growth; vascular development; Outline of experimental embryology. Sexual reproduction; flower development; mechanisms of gametogenesis and fertilization.	8

${\bf MODEL\ QUESTION\ PAPER\ (DEVELOPMENTAL\ BIOLOGY)}$

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
DEVELOPMENTAL BIOLOGY	21U3BTS02	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. How many cleavages are completed in 16 cell stages of frog"s egg?					
a. 3	b. 8	c. 4	d. 12		
2. The expulsion of	completely developed	foetus from the uterus	is known as		
a. Ovulation	b. placentation	c. gestation	d. parturition		
3. For fertilization o	f frog"s egg	1			
a. Sperms of same species are essential	b. Sperms do not need penetration	c. Sperms of any animal can fertil	d. Only presence of male is sufficient		
4. Grey crescent is p	present in				
a. Zygote of frog	b. Brain of rabbit	c. Eye of frog	d. Retina of cockroach		
5. Which of the follo	owing does not show m	netamorphosis?			
a. Frog	b. Housefly	c. Hydra	d. Mosquito		
6. The first phase in	the sexual reproduction	n of organisms is			
a. Spermatogenesis b. Oogenesis c. Spermiogenesis d. Gametogene					
7. The formation, de	evelopment and matura	tion of the female gam	nete is called		
a. Ovulation	b. Oogenesis	c. Vitellogenesis	d. Folliculogenesis		
8. During fertilization of	on the spermatozoa pen	etrate through the egg	membranes with the help		
a. Flagellum b. A	crosome c. Sperm lacrosom	lysins released from the ne	d. Mitochondira located at the middle piece		
9. During normal de	evelopment the activation	on of the egg is achiev	ed by		
a. Vitellogenesis	b. Oogenesis	c. Spermatogenesis	d. Fertilization		
10. When the eggs a	re released from the ov	vary of frogs they are a	it the		
a. primary oocyte stage	b. secondary oocyte	stage c. ootid stage	d. matured ova stage		
11. The formation o	f the neural tube is kno	wn as			
a. Neurulation	b. Tubulation	c. Craniation	d. None of the above		
12. During metamor	phosis, the disappearar	nce of larval organs is	called		
a. Histogenesis	b. Paedogenesis	c. Histolysis	d. Paedomorphosis		
13. Cleidoic eggs ar	e found in				
a. Birds	b. mammals	c. insects	d. molluses		
14. Metamorphosis is a characteristic feature of					

a. Direct ontogenic development	b. Indirect ontogenic development	c. Chordates d.	Embryogenesis in mammals		
15. The sexual embryo of the male and female frogs is called					
a. Copulation	b. Amphimixis	c. Syngamy	d. Amplexus		
16. Human egg is					
a. Centrolecithal	b. Microlecithal	c. Mesolecithal	d. Telolecithal		
17. Which of the fo	llowing develops from ed	ctoderm?			
a. Spinal cord and	b. Liver and heart	b. Liver and heart c. Eye and skin			
brain					
	18. In order to become structurally and functionally a spermatozoan, each spermatid has to undergo a process of differentiation called				
a. Spermiation	b. Spermiogenesis	c. Spermatogenesis	d. Androgenesis		
19. In the human fe	male, the primary oocyte	s remain small without a	ny growth for		
a. 4-5 years	b. 6-8 years	c. 8 - 10 years	d. 12 -14 years		
20. The sperm produces substances of enzymatic nature of sperm lysin. In mammals, it is called					
a. Hyaluronidase	b. Hyaluronic acid	c. Androgamone	d. Cryanogamone		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
(OR)				
(OR)				
(OR)				
(OR)				
(OR)				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. What are the stages of a developing embryo? Give illustrations.
27. Why <i>Drosophila melanogaster</i> is used as model organisms? Comment on it.
28. Justify the statement - <i>Caenorhabditis elegans</i> as an emerging model for studying the basic biology.
29. Describe germ layers and organs produced by them in detail.
30. Draw the structure of plant cell and elaborate its cell inclusions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I FOOD BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 21U3BTS03	External	: 60

PREAMBLE

To make students on understanding basic concepts of food preservation methods by applying technological basics. The paper also deals with the food spoilage, food adulteration and development of value added products

COURSE OUTCOMES

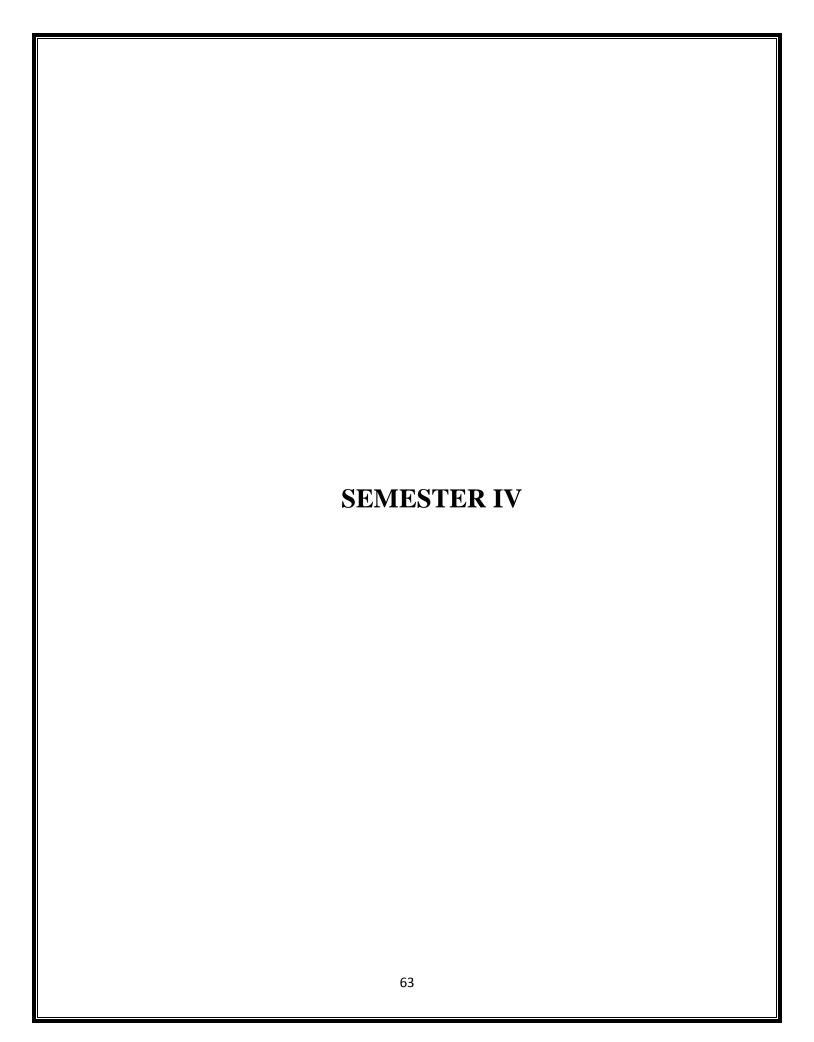
On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of basic food preservation methods	K1 & K2
CO2	To understand the role of water in food spoilage and preservation	K1 & K2
CO3	To explore the physical factors involving in food processing	K1 & K2
CO4	To make familiar with food sanitation and its importance	K2, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES						
COs	PO1	PO2	PO3	PO4	PO5	
CO1	S	S	S	S	S	
CO2	S	S	S	S	S	
CO3	S	S	S	S	S	
CO4	S	S	M	M	M	

UNIT	CONTENT	HOURS
I	Food Preservation by application of Heat: Principles of Heat	8
1	Transfer, Blanching, Pasteurization, Heat Sterilization.	o
II	Food Preservation through Water Removal: Forms of Water in Foods, Sorption of Water in Foods, Water Activity, Drying Technology, Evaporation Technology.	8
III	Food Preservation through Physical and Chemical methods :Chilling, Freezing, Radiation, Ionizing, Microwave, Salt, Smoke, Sugar, Other Chemical Additives.	8
IV	Sensory evaluation of food quality, quality factors for consumer safety. FSSAI, HACCP, FDA. Food Packaging, Food Plant Sanitation, Environmental Aspects of Food Processing.	8
V	Genetically Modified Food – Bovine somatotropin, alpha lactalbumin & lactoferrin in milk, Edible vaccine (Cholera vaccine – potatoes & Hepatitis B vaccine - maize)	8

${\bf MODEL\ QUESTION\ PAPER\ (FOOD\ BIOTECHNOLOGY)}$


NAME OF THE COURSE: FOOD	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	18U3BTS03	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. Pasteurization is	the process of he	eating milk		_			
a. Above 121°C	b. Above b	ooiling point		c. Below boiling	point	d. Above 150 °C	
2. Cold sterilisation	2. Cold sterilisation refers to the preservation of food by						
a. Refrigeration	b. Radia	ition	c. De	hydration		d. Lyophilisation	
3. Who is regarded	as the father of	canning?			<u> </u>		
a. Nicolas appert	b. Louis	Pasteur		c. John hall	1	d. Bryan dokin	
4. The reason for fo	ood spoilage is						
a. Growth of micro	organism	b. Autolysis	S	c. Rancio	dity	b. All the above	
5. Before drying, v	egetables should	be					
a. Autocleave	b.Salted			b. Blanche	ed	c. Sulfured	
6. A food additives	that prevent col	our and flavo	our loss	S			
a. Enzymes	b. Yeast		c. F	c. Fruit buffer d. Ascorbic acid		d. Ascorbic acid	
7. Preventing the g	rowth of pathoge	ens in food		•	•		
a. Danger zone	b. Contamination	c. Food	presei	rvation	d. Cross	s contamination	
8. Jam and jellies a	nd preserves can	be preserved	d by ad	lding sugar a	at conce	ntration of	
a. 65%	b. 75%			c. 40%		d. 30%	
9. A fungus that ca		n					
a. Bacteria	b. Mold			c. Yeast		d. Virus	
10. A type of food containers	=	nnique that in	ivolves	s sealing foo	d in ster	ilized air light	
a. Irradiating	b. Cann	ing		c. Freezing		d. Drying	
11. Iodized salt contains iodine in the form of							
a. NaCl	b. KIO3 c. Kl d. Na		d. Na				
12. The first synthe	etic sweetening a	gent used as_	•		?		
a. Cyclamates	b. Aspar	b. Aspartame c. Sucralose d. Sacchar		d. Sacchavrin			
13. Agar-agar is us	ed as						

a.	Antibiotic b	. Stabilizer and thickness	c. Nutrient supplement	d. Colouring agent		
	14. Frozen storage is generally operated at temperature of					
	a0°C b18°C c50°C			d. 60°C		
	15. What is the bes	st method in storing nuts?				
a.	Vacuum packing	b. Smoking	c. Drying	d. Freezing		
	16	Standard help ensure food qual	ity?			
	a. National	Packing	b. Legal	c. All of these		
	17. The freezing pe	oint for pure water is				
	a. 10	b. 28	c. 15	d. 32		
	18. Corn syrup is a	mixture of		1		
	a. dextrose and maltose	b. Dextrose and Galactose	c. Galactose and Maltose	d. Glucose and Galactose		
	19	is essential for forming haem	oglobin in the blood			
a.	Calcium	b. Iron	c. Phosphorn	d. Magnesium		
		ely digested in the		_		
	a. Stomach	b. Mouth	c. Small intestine	d. Mouth		
	SECTIO	ON - B (5 X 5 = 25 MARKS) A	ANSWER ALL THE OUES	STIONS		
	21. A) Write short	notes on pasteurization t notes on principles of food pr		(OR)		
	22. A) Explain dry			(OR)		
		(OR)				
23. A) Notes short notes on freezing? B) Explain the role of radiation in food preservation (OR)						
	24. A) Write short i	(OR)				
	B) Describe the role of salt and sugar in food preservation?					
	25. A) What is food B) Food laws ar	(OR)				
	b) Food laws al	iu regulations:				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Write the essay on food preservation principles and application?	
27. Explain the evaporation methodology?	
28. Write an essay on the physical, chemical methods of food preservation?	
29. Write an essay on the environmental aspects of food processing?	
30. Roles and scientific uses of water in food processing industries?	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

GENETIC ENGINEERING

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21U4BTC04	External	: 75

PREAMBLE

To make students on understanding basic principles of gene manipulation and its application in the development of novel pharmaceutical and drug products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about DNA manipulating enzymes and its role in rDNA	K1 & K2
	Technology	
CO2	To gain knowledge on different types plasmid vectors and their	K1 & K2
	Usage	
CO3	To acquire knowledge on basic gene cloning strategies	K2, K3 & K4
CO4	To evaluate the usage and applications of gene cloning for the	K5 & K6
	development value added products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	SCOPE AND MILESTONES OF GENETIC ENGINEERING: Biomolecular tools and their applications in genetic engineering: Restriction endonucleases and its types, DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I. Ligation(cohesive & blunt end ligation) – linkers & adaptor.	15
II	GENE CLONING VECTORS: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors and artificial chromosomes (YAC and BAC). DNA sequencing (Maxam-Gilbert and Dideoxy) methods. DNA amplification: PCR (Principles & types - RT PCR, Real time PCR and Nested PCR). cDNA synthesis and cloning:	15
	mRNA enrichment, reverse transcription.	

III	CLONING STRATEGIES: Cloning of interacting genes - Yeast two hybrid systems Nucleic acid micro arrays and Site directed mutagenesis. Methods to study gene regulation: DNA transfection, Primer extension, S1 mapping, RNase protection assay.	15
IV	INTRODUCTION TO CLONING: Detection & Screening of clones. Expression strategies for heterologous genes. Vector engineering and codon optimization. <i>In-vitro</i> transcription, expression of cloned genes in prokaryotes (bacteria – Glucose promoter) and eukaryotes (Yeast – Alcohol promoter).	15
V	APPLICATIONS OF rDNA TECHNOLOGY. Transgenic plants with reference to virus and pest resistances, herbicide tolerance and stress tolerance (cold, heat and salt); cytoplasmic male sterility; delay of fruit ripening. Transgenic animals — Pharmaceutical products - insulin. Farm animal production. Recombinant DNA Technology in the production of vaccine. T-DNA tagging and transposon tagging, Transgenic and gene knock out technologies	15

SUGGESTED READINGS:

- 1. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 2. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 4. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.
- 5. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 6. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA. Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 7. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 8. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 9. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 10. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 11. Molecular Biotechnology Glick and Pasternak.
- 12. Principles of gene manipulations Old & Primrose.

MODEL QUESTION PAPER (GENETIC ENGINEERING)

NAME OF THE COURSE: GENETIC ENGINERING	COURSE CODE: 21U4BTC04	DURATION: 3 Hrs
MAX MARKS: 75		

SI	ECTIC	0N - A (20 X 1 = 20)	0 MAR	KS) ANSWER AL	L THE QU	UESTIONS
1. <i>Taq</i> polyme	erase is	s isolated from				
a. E.coli				cillus stereothermophilus		
2 177: 1 6:1	C 11	aquaticus ·		marinus		
	e folio	wing sequence is r	ecogniz			_
a. AA GCTT		b. A AGCTT		c. GTCGA (C	d. GT CGAC
3. RNase H c	eleaves	hybrid				
a. DNA-RNA		b. DNA-DNA	1	c. RNA-RN	A	d. RNA-Protein
4. Which of th	e follo	wing enzyme is us	ed to cr	eate the sticky ends	on DNA?	·
a. Acid phosphatas		Polynucleotidyl ki	nase	c. Terminal deoxy nucleotidyl tran		. Alkaline phosphatase
5. Which of th	e follo	wing vectors conta	ins Ori	"C" sites from two	different s	species?
a. Cosmids		b. M13 vectors		c. Shuttle vector	·s	d. Phagemids
6. The inserti	ional v	ector λgt10 can abl	le to car	ry up too	f foreign D	
a. 4 kb		b. 5 kb		c. 7 kb		d. 8 kb
7. The size of	YRp7	is				
a. 5.8 kb		b. 6.8 kb		c. 5.7 kb		d. 6.7 kb
	e follo	_		closed single strand		
a. Phagemids		b. M13 vector	S	c. Shuttle ve	ctors	d. Cosmids
9. Which of th	e follo	wing DNA is used	as temp	plate in chain termin	nation met	hod DNA sequencing?
a. Plasmid DN	ĪΑ	b. Genomic DN	ĪΑ	c. Viral DNA	A	d. λ DNA
10. Denaturati	on of l	DNA during PCR i	s usuall	y carried out at	°C	1
a. 94		84		b. 64		c. 74
_		NA is partially deg as	raded b	y exonucleases to p	roduce fur	nctional trancriptome. This
a. cDNA libra	-	b. mRNA en	richmer	nt c. DNA		d. DNA
construction				sequer		amplification
•	•	• .	0	e is fused with the g		
	on fact		constru	ct is ligated in to a-	V€	
a. YAC		b. BAC		c. SEN		d. Lambda
13. The glucoa repressed l	-		found	in Aspergillus nidul	ans is indu	iced byand

	a. Starch, Glucose	b. Starch, Fructose	e c. Starch, Galactose	d. Starch, Xylose
	14. The chemical me kb	thod of DNA sequencing	can be used to rapidly sequen	ce DNA that are
	a. < 0.5	b. > 0.5	c. < 1.0	d. > 1.0
	15. The DNA – phos	phate containing mixture	is incubated with the recipient	cells for
a.	24 hrs	b. 48 hrs	c. 72 hrs	d. 98 hrs
	16. Short pulses are §	generated in electroporation	on in higher voltage at the rate	of
	a. 1100 V	b. 1200 V	c. 1300 V	d. 1400 V
	17. Which of the following protein is first manipulated for enhancing its enzymatic activity through protein engineering?			
	a. Amylase	b. Subtilisin	c. Anti-trypsin	d. Chymotrypsin
		<u> </u>	monitoring for the purification of polymers like DNA, RNA,	- I
	a. Enrichment	b. Manipulating	c. Incorporation	d. Sequence specific
	assay	assay	assay	targeting assay
	19. Which of the foll	owing method comes und	er gene tagging technology?	
a.	Selection based gene tagging	b. rDNA tagging	c. Marker assisted tagging	d. Epitope tagging
	20. The given chrom	osome can be engineered	by the principle of	
	a. Addition	b. Point mutation	c. Inversion	d. None of the above

SECTION – B (5 X $5 = 25$ MARKS) ANSWER A	LL THE QUESTIONS
21. A) Write short notes on DNA modifying enzymes	(OR)
B) Write short notes on type III restriction endonuclea	ases
22. A) Write about PBR 322 with neat illustrations	(OR)
B) Explain about the principle of mRNA enrichment	
23. A) Explain the process of site directed mutagenesis	(OR)
B) Explain the principle of S1 mapping with neat illu-	strations
24. A) Give a brief account on codon optimization	(OR)
B) Explain the expression of cloned in eukaryotes wit	th suitable example
25. A) Write short notes on transposon tagging	(OR)
B) Write shortly about gene knock technology	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on restriction endonucleases
27. Give detailed account on M13 vectors
28. Give detailed account on cloning differentially expressed genes
29. Give detailed account on expression of heterologous genes
30. Give detailed account on processing, purification, refolding and characterization of recombinant proteins

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN GENETIC ENGINEERING

Paper : Core Practical IV **Total Hours** : 75 Hours/Week : 4 **Exam Hours** : 06 Credit : 3 Internal : 25 Paper Code External : 75 : 21U4BTCP04

PREAMBLE

To make students on understanding basic principles on the usage of genomic and plasmid DNA in the development of microbial recombinant clones by selection strategies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To isolate genomic and plasmid DNA, and to digest them restriction	K2, K3 & K4
	Enzyme	
CO2	Shall acquire practical knowledge on ligating vector and target DNA	K2, K3, & k4
CO3	Shall know about the amplification strategies of cloned vector	K3, K4 & K5
CO4	To demonstrate the selection of recombinant clones by using selectable markers	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Genomic DNA from E.coli	10
2	Isolation of Plasmid DNA mini prep and maxi prep from E.coli	10
3	Construction of restriction map of a plasmid by Hind III and BamHI	10
4	Ligation of DNA and plasmid by T4 DNA ligase	5
5	Purification of DNA fragment from gel by electro-elution	5
6	Amplification of ligated plasmid by PCR	10
7	Transformation of recombinant DNA in Host <i>E.coli</i> by CaCl method	10
8	Selection of recombinant clones by (IPTG-X-gal: Blue white selection)	15

MODEL QUESTION PAPER (LAB IN GENETIC ENGINEEING)

NAME OF THE COURSE: LAB IN GENETIC ENGINEERING	COURSE CODE: 21U4BTCP04	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
4. (i) Isolate	4. (i) Isolate genomic DNA from the given bacterial sample (A). Display the results for			
observat	tion		(OR)	
(ii) Isola	ate plasmid DNA from t	he given bacterial sample	e (A). Display the results for	
observat	tion		(OR)	
` /		n of the given DNA sam	ple (A) using the given	
<u> </u>	lay the results for observ	ation		
MINOR EXPERIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
5. (i) Perfo	orm ligation of the given	DNA sample (B) using	DNA ligase. Display the	
results for observation (OR)			(OR)	
(ii) Perform DNA transformation in the given host cell sample (B) using calcium				
chloride (OR)				
(iii) Purify the given DNA sample (B) by electro elution. Display the results for				
observation				
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$				
6. Identify the given spotters C, D, E, F & G and comment on them				
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$	
VIVA-VOCE			5 MARKS	
TOTAL 60 MAR		60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE II

Paper	: ALLIED IV	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 21U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospectives.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic concepts of phyllotaxy	K1 & K2
CO2	To make clear cut understanding of Bentham"s and Hooker's Classification	K1 & K2
CO3	To understand the concepts of plant anatomy and ecology	K4 & K5
CO4	To understand the concepts of plant embryology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES COs PO1 PO₂ PO3 PO4 PO5 CO1 M M M CO₂ S S S S M S S CO₃ M M S CO4 S S S S S

UNIT	CONTENT	HOURS
I	EXTERNAL MORPHOLOGY: Phyllotaxy. Types of leaf – simple and	
	compound. Inflorescence – Rocemose, Cymose and special types (Head &	12
	Cyathium). Terminology with reference to flower description.	
П	TAXONOMY: Bentham & Hooker"s system of classification. Study of major plant families and their economic importance (<i>Annonaceae</i> , <i>Rubiaceae</i> , <i>Cucurbitaceae</i> , <i>Asteraceae</i> and <i>Poaceae</i>).	12
III	ANATOMY: Simple & Permanent tissues: Parenchyma, Collenchyma & Sclerenchyma. Complex permanent tissues: Xylem & Phloem. Primary structure of dicot root and stem; monocot root and stem.	12
IV	PLANT ECOLOGY: Climatic factors, morphological and anatomical adaptations in hydrophytes and xerophytes.	12
V	EMBRYOLOGY: Structure of anther and male gametophyte. Types of ovule and female gametophyte (Polygonum). Fertilization process. Structure and development of dicot embryo (Capsell - <i>Bursa pastoris</i>).	12

- 1. Bhijwani SS and Bhatnagar SP. (2009). The embryology of angiosperms. Vikas Publishing House Private Limited, New Delhi.
- 2. Davis PH and Heywood VM. (1965). Principles of Angiosperm Taxonomy. Oliver and Boyd, Edinburgh.
- 3. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited, New Delhi.
- 4. Pandey BP. (2001). Plant Anatomy. S.Chand and Company Private limited, New Delhi.

LAB IN PLANT SCIENCE II

Paper	: ALLIED PRACTICAL IV	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 21U4BOAP02	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospective.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the practical concepts of general plant families	K1 & K2
CO2	To understand the microscopic observations of anatomy	K1 & K2
CO3	To acquire practical exposure in sectioning of plant tissues	K1, K2 & K4
CO4	To acquire basic experimental approach on mounting and preparation of permanent slides	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

ii) Dicot stem or Dicot root

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	M
CO2	S	S	S	M	S
CO3	M	S	S	S	M
CO4	S	S	M	S	S

1.	Identification of plant families (Any two out of five)	$(2 \times 5 = 10 \text{ marks})$
	a. Annonaceae, Rubiaceae and Cucurbitaceaei	5 marks
	b. Asteraceae and Poaceae	5 marks
2.	Identification of spotters (Economic importance)	$(5 \times 3 = 15 \text{ marks})$
	c. Annonaceae	3 marks
	d. Rubiaceae	3 marks
	e. Cucurbitaceae	3 marks
	f. Asteraceae	3 marks
	g. Poaceae	3 marks
3.	Sectioning of given plant part (Morphology)	$(2 \times 5 = 10 \text{ marks})$
	h. i) Monocot stem or monocot root	

i. i) Hydrophyte
 ii) Zerophyte
 4. Dissect and mount anyone stage of the given plant embryo (j) (1 x 6 = 6 marks)
 5. Identification of spotters (Permanent slides) (3 x 3 = 9 marks)
 k. Anatomy (Simple and complex tissue) 3 marks
 l. Embryology (Transverse section of anthers and types of ovules) 3 marks
 m. Ecology (Zerophyte - Nerium and Hydrophyte - Hydrilla) 3 marks
 6. Record

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

LAB IN POULTRY SCIENCE

Total Hours Paper : SBEC I : 40 Hours/Week : 2 Exam Hours : 03 Credit Internal : 25 : 2 Paper Code : 21U4BTS04 : 75 External

PREAMBLE

To make students on gaining practical exposure on poultry science and technology and its economic management and quality analysis of poultry products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Evaluate quality control parameters of poultry for disease	K4, K5 & K6
	Diagnosis	
CO2	To evaluate the microbial contamination of poultry products for quality enhancement	K4, K5 & K6
CO3	To evaluate poultry micro flora	K4, K5 & K6
CO4	To validate the preservation of poultry products and evaluation of its nutritive quality	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	S	S	S

Ex.no	CONTENT	HOURS
1.	Post-mortem examination of chickens and laboratory diagnosis of diseases	4
2.	Sero monitoring of viral infections in poultry	4
3.	Surveillance of common diseases prevailing in commercial poultry farms	5
4.	Screening of Salmonella of zoonotic importance in poultry and related Products	4
5.	Monitoring the health management in commercial poultry farms	5
6.	Isolation and prevalence of Microbes in poultry products	5
7.	Egg preservation by various methods	4
8.	Egg quality analysis	4
9.	Protein and Lipid estimation from egg samples	5

MODEL QUESTION PAPER (LAB IN POULTRY SCIENCE)

NAME OF THE COURSE: LAB IN POULTRY SCIENCE	COURSE CODE: 21U4BTS04	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform the e	numeration of microbes	from the given poultry s	ample (A) (OR)	
(ii) Perform pre	eservation of the given eg	gg sample (A) by salt me	ethod (OR)	
(iii) Estimate th	e protein level in the giv	ven poultry sample (A) b	y Lowry's method	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform lipid	2. (i) Perform lipid estimation from the given poultry sample (B) (OR)			
(ii) Perform preservation of given egg sample (B) by freezing (OR)				
(iii) Find out th	(iii) Find out the thickness of given egg shell sample (B) by Gauge meter			
SPOTTERS		(5 X	X 4 = 20 MARKS	
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE	VIVA-VOCE 5 MARKS			
TOTAL 60 MARKS		60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

MARINE BIOTECHNOLOGY

Total Hours Paper : SBEC I : 40 Hours/Week : 2 **Exam Hours** : 03 Credit : 2 Internal : 25 Paper Code : 21U4BTS05 External : 75

PREAMBLE

To make students on understanding the significance and importance of marine micro biota and its rational applicability in the development of industrially important products. The students also gain knowledge on the environmentally hazardous management marine ecosystem.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basics of marine ecosystem and its pollution issues	K1 & K2
CO2	To understand basic biodegradation and bioremediation marine ecosystem pollutants	K2 & K4
CO3	To understand the principles of bio fouling	K2 & K4
CO4	To acquire knowledge of wastewater treatment in marine ecosystem	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	M
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Marine organisms and environment interaction: Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction; Green - house gases (CO2 and Methane)	8
II	Pollution: Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans) and accumulators: Application of Protein biomarkers; Biosensors and biochips.	8
III	Biomaterial interaction: Biodegradation and Bioremediation; Biodegradation of natural and synthetic waste materials; Bioremediation;	8

	Separation, purification and bio removal of pollutants.	
IV	Fouling and corrosion: Biofouling; Biofilm formation; Marine fouling and boring organisms - their biology, adaptation; Factors influencing the settlement of macrofoulers; Antifouling and Anti boring treatments; Corrosion Process and control of marine structures.	8
V	Introduction to marine pharmacology: Terms and definitions; Medicinal compounds from marine flora and fauna - marine toxins, antiviral and antimicrobial agents.	8

- 1. Recent Advances in Marine Biotechnology Volume 3 Milton fingerman et al., 1999.
- 2. Cynobacterial and Algal Metabolisms and Environment Biotechnology Tasneem Fatma, 1999.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000.
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Environmental Biotechnology Gareth M.Evams et al., 2003
- 6. Biotechnology, Recombinant DNA Technology, Environmental Biotechnology S.Mahesh et al., 2003

MODEL QUESTION PAPER (MARINE BIOTECHNOLOGY)

NAME OF THE COURSE: MARINE BIOTECHNOLOGY	COURSE CODE: 21U4BTS05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. Which of the foll	1. Which of the following is/are example(s) of conventional source of energy?				
a. Fossil fuels	b. Solar energy		c. Tidal energ	gy	d. all of the above
2. Global warming	is caused due to				
a. Decrease in	b. Decrease in C	O_2	c. Decreas		d. increase in
CO ₂ conc.	conc.		SO_2 c	onc.	NO_2 conc.
3. Which is the mos	t primitive group of a	lgae?	1		
a. Blue green algae	b. Red algae		c. Brown	n algae	d. Green algae
4. Ability to fix atm	ospheric nitrogen is fo	ound	in		
a. Leaves of some	b. Chlorella		c. Some n	narine	d. Some Blue
crop plants			Red a		green algae
5. Which of the foll	owing bacterium is ca	lled a	as the superbug	that cou	ld clean up oil spills?
a. Bacillus subtilis	b. Pseudomono	as	c. Pseudo		d. Bacillus
	*	putida denitrif		ificans	denitrificans
6. Which of the foll	owing is a major caus	e of p	pollution?		
a. Plants b. Bacterial spore c. Fungi d. Hydrocarbon gas		ydrocarbon gas			
7. Minamata disease	e is caused by pollution	on of	water by		
a. Mercury	b. Lead	b. Lead		c. Tin d. Methyl iso	
8. To reduce the wa be the best choice	ter pollution which of ce?	the f	following genet	cically mo	dified organism will
a. Plant	b. Animal	c.	Bacteria		d. None of the above
9. Purification strate	egies in municipal wa	ter su	pplies involves	3	
a. Sedimentation	b. Filtration		c. Disinfe	ction	d. All the above
10. Sedimentation of	of large particulate ma	tter is	s enhanced by -		
a. Aluminium b. Potassium c. Potassium			d. Chlorine		
11. Septic tank is					
a. An aerobic condition	b. An aerobic		An anaerobic co		d. An anaerobic
I ————————————————————————————————————	with growth condition with with growth biological		-	condition with	
treatment system	suspended growth biological		treatment systen	11	suspended growth treatment system
	treatment system				

12. The process of converting environmental pollutants into harmless products by naturally occurring microbes is called				
a. Ex situ bioremediation	b. Intrinsic bioremediation	c. Extrinsic bioremediation	d. None of these	
13. Dry corrosion is	also called as			
a. Chemical corrosion	b. Electrochemical corrosion	c. Wet corrosion	d. Oxidation corrosion	
14. Which of the fol	lowing comes under the w	vet corrosion?		
a. Concentration cell corrosion	b. Oxidation corrosion	c. Liquid metal corrosion	d. Corrosion by other gases	
15. Initial attachmer	nt of microorganisms often	involves		
a. Flagella and is reversible	b. Flagella and is irreversible	c. Exopolymers and is reversible	d. Exopolymers and is irreversible	
16. What is the valu	e of fouling factor for sea	water?		
a. 0.0001-0.0002 m ² K/W	b. 0.0002-0.0003		d. 0.0004-0.0005 m ² K/W	
	ch the biological processe is called	s are used to purify water	er in a wastewater	
a. secondary sewage treatmen	b. primary sewag t treatment	e c. wastewater reduction	d. biochemical reduction	
18. Aggregates of m	nicrobes as tiny masses in a	activated sludge process	is called	
a. Activated sludge	e b. Masses	c. Colloidal masses	d. Floccules	
19. High BOD indic	19. High BOD indicates			
a. Less polluted water	b. Less number of organisms	c. More polluted water	d. None of the above	
20. BOD/COD ratio	will always be	•	•	
a. = 1	b. > 1	c. <1	d. None of the above	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Describe the food and feeding habits of marine organisms	(OR)
B) Briefly describe the pigments present in marine organisms	
22. A) Discuss the role of microbes in the sea	(OR)
B) Discuss the sources of pollution in marine environment	
23. A) Discuss the current status of seaweed farming in India.	(OR)
B) Give an account on the NMR characterization of biomolecules.	
24. A) Discuss the role of biotechnology in fouling and corrosion	(OR)
B) Give an account of bio-deterioration in marine environment	
25. A) Describe the composition, fate and effects of sewage pollution in sea	(OR)
B) Give account of the sources and treatment of oil pollution in sea.	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Discuss "Sea is a Biological Environment".
27. Discuss the sources of pollution and treatment methods in marine environment.
28. Give a detailed account on Biodegradation and Bioremediation
29. Describe the Corrosion process and control measures
30. Give detailed account on various techniques involved in waste water treatment using Microbes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

FORENSIC SCIENCE AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U4BTS06	External	: 75

PREAMBLE

To make students on understanding the importance of forensic principles and technology and its practical applicability in identifying the candidate who convicted the crime scenery. The students also gain added skills in terms tracing the victim death by means of adapting the measurable molecular approaches.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gain knowledge on forensic science laboratories across India	K1, K2 & K3
CO2	Acquires knowledge on fingerprint identification system	K3, K4, & K5
CO3	Know whereabouts on the FAI and the concepts of fatality Forensics	K3, K4, & K5
CO4	Understand the concepts of DNA finger printing technology	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

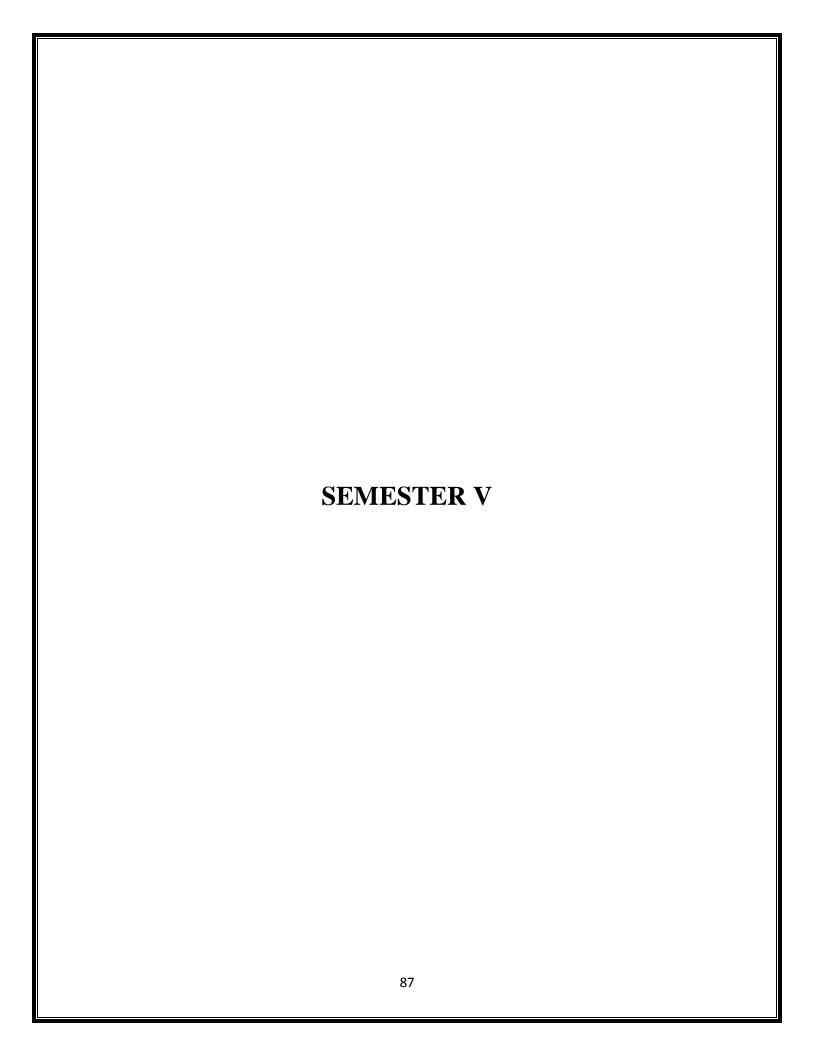
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction, definition, Scope and branches of forensic science. Central F.S.L. and State F.S.L. Biological Evidence: Nature, collection, identification, evaluation of hair and fibres.	6
II	Definition and Classification of fingerprints (Henry system). Taking fingerprints from living and dead persons. Automatic fingerprint identification system (AFIS).	7
III	Forensic Art Illustration: Introduction, Finding and identifying human face image. Post mortem drawing, methods of superimposition.	5
IV	Fatality Forensics: Introduction, cause, manner and characteristics of death, Road traffic fatality (RTF) investigation. General classification of RTFs.	5
V	DNA Fingerprinting (DFP) technology: An overview, Applications of DFP in forensic investigations, paternity disputes. DNA Profiling practice in India with reference to criminal cases.	7

- 1. Richard Saferstein, 2001, Criminalistic: An Introduction to Forensic Science. 7th edition Prentice-Hall, New Jersey.
- 2. Chowdhri, S., Forensic Biology B.P.R. &D, Govt. of India.
- 3. Cammins, H. and Middle C., 1961. Fingerprints Palms and Soles. Dover Publications.
- 4. Furley, M.A. and Hamington, J.J. Forensic DNA Technology.
- 5. Kirby, DNA Fingerprinting Technology.
- 6. Epplen, J.T. and Eabjulm, T., 1999. DNA Profiling and DNA Fingerprinting Bukhaagar Verlag, Switzerland.
- 7. Taylor, 2000. Forensic Art and Illustration, CRC Press.

MODEL QUESTION PAPER (FORENSIC SCIENCE AND TECHNOLOGY)

NAME OF THE COURSE: FORENSIC SCIENCE AND TECHNOLOGY	COURSE CODE: 21U4BTS06	DURATION: 3 Hrs
MAX MARKS: 75		


SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The dark portion of the fingerprint is called						
a. Core	b. Valley	c. Delta	d. Ridge			
2. The most commo	on type of fingerprint	pattern is				
a. Whorl	b. Accidental	c. Loop	d. Arch			
3. Fingerprints disso	olved in this only grov	w back with scars on the	m making them more unique			
a. Base	b. Water	c. Acid	d. Neutral			
4. Most common fin same side they of		as ridges that enter from	the right and exit from the			
a. Arch	b. Whorl	c. Wheel	d. Loop			
5. The region in sk	in found in between t	the epidermis and dermis	s is thelayer			
a. Top	b. Subcutaneo		d. Basal			
6. The study of fing	erprint is called					
a. Dactylography	b. Printology	c. Anthropometry	d. None of the above			
	aper can be sprayed w purple print appear	with this chemical that re-	acts with amino acids in			
a. Ninhydrin	b. Iodine	c. Cyanocrylate	d. Silver nitrate			
8. What is the basis	for the determination	of the primary classifica	ation of fingerprints?			
a. The presence or absence of arch patterns	absence of arch presence or absence of loop absence of m		d. The presence or absence of minutiae			
9. For most fingerpo	rint examiners, the ch	emical of choice for visu	alizing latent prints is			
a. Ninhydrin	b. Iodine	c. Chlorate	d. Silver nitrate			
		visualize latent prints is -				
a. Laser illumination	b. Iodine fuming	c. Cyanocrylate este fuming	d. Silver nitrate reagent			
11. Identical twins have identical						
a. Genetic makeup b. Eyes c. Fingerprints d. None of the above			d. None of the above			
12. Fingerprints formation is						
a. An on-going	b. Complete by the	c. Occurring at	d. Occurring during fetal			
lifetime process	age	birth	development			
13. The only way to permanently change your fingerprint is to						

a. Damage dermal papillae	b. Wash with acid	c. Sand the ridges	d. Burn the skin			
14. The most common ridge pattern is						
a. Arch	b. Whorl	c. Wheel	d. Loop			
15. Fingerprints are -						
a. Valuable evidence	b. Individual evidence	c. Class evidence	d. Always good			
16. DNA finger print	ing was developed by		1			
a. Francis Crick	b. Khorana	c. Alec Jeffrey	d. James Watson			
17. The technique to	distinguish the individua	lls based on their DNA pa	rint patterns is			
a. DNA fingerprinting	b. DNA profiling	c. Molecular fingerprinting	d. All the above			
18. The DNA fingerp	orint pattern of a child is		,			
a. Exactly similar to that of both of the parents		c. 100% similar to the mother"s DNA print	d. 50% bands similar to father and rest similar to mother			
19. Each individual h		print as individuals differ	in			
a. Number of minisatellites on chromosome	b. Location of minisatellites on chromosome	c. Size of minisatellites on chromosome	d. All the above			
20. DNA profiling technique to demonstrate the similarity between different plant species with reference to some specific protein coding DNA sequences is called						
a. Phyto blot	b. Garden blot	c. Plant profiling	d. All the above			

IONS		
21. A) Write short notes Organizational set up of Forensic Science Laboratories (OR)		
(OR)		
(OR)		
(OR)		
(OR)		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on Organizational set up of Forensic Science Laboratories
27. Write an essay on digital comparison of finger prints
28. Write elaborately on Forensic artist in court
29. Give a detailed fatality forensic science
30. Write an essay on quality assurance measures of DNA fingerprinting

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

IMMUNOLOGY

: Core V Paper **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 : 25 Credit : 5 Internal Paper Code : 21U5BTC05 External : 75

PREAMBLE

To make students on exposing themselves to know in underlying concepts of biology of the immune system and how immunity being developed in human beings. In addition the students also know whereabouts on the mechanisms on the host pathogen interaction, principle defence mechanisms against infectious diseases and basic immune diagnostic techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire knowledge on history on immunology development, and cells and their role in developing overall host immune system	K1 & K2
CO2	Knowing about the functions and properties of immunoglobulin and its expression in genetic level	K1 & K2
CO3	Acquire knowledge on antigen recognition and its processing principles by host immune system	K1, K2 & K4
CO4	Acquire basic concepts of immune regulatory molecules and their role in defence and concepts of autoimmunity	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	HISTORY AND SCOPE OF IMMUNOLOGY: Types of Immunity. Cells of Immune system. Organs of Immune response and their functions. Haematopoiesis. Antigen- properties, classes, epitopes, haptens and adjuvants. Factors influencing antigenicity.	13

II	IMMUNOGLOBULINS AND ITS EXPRESSION: Immunoglobulin- Structure, types, properties and functions. Immunoglobulin gene re-arrangements. Generation antibody diversity. Somatic hyper mutation. Ig gene expression and its regulation.	15
Ш	ANTIGEN PROCESSING AND PRESENTATION: MHC – types and importance- distribution and function. Antigen processing and presentation to T- lymphocytes. Major classes of MHC genes and its regulation. Antigen – Antibody reactions – Agglutination, precipitation, RIA, ELISA, FACS and Immunopanning. Hybridoma Technology	17
IV	CYTOKINES, IMMUNE CELL ACTIVATION AND ALLERGIC REACTIONS: Definition of cytokines, classification and types of cytokine, Biological functions of cytokines. Cytokine receptors. T-cell and B-cell activation and differentiation. Hypersensitivity reactions and its types. Plasma cells and memory cells	15
v	AUTOIMMUNITY: Definition, types of autoimmune disorders. Mechanism of autoimmunity. Immunodeficiency disorder. Vaccines and its types. Immune response to bacterial, protozoal, parasitic diseases. Immuno deficiency diseases (HIV). Transplantation immunology – types of grafts. Mechanism of graft rejection. Immunosuppressive therapy.	15

- 1. Ivan Riot Blackwell, 1988. Essentials of Immunology (6th Edition): Scientific Publications, Oxford,
- 2. Paul W.E (Eds) Ravan prss 1988. Fundamentals of Immunology:, New York,
- 3. Harlow and David Lane, 1988. Antibodies A laboratory Manual: cold spring harbor laboratory.
- 4. Janis Kuby Immunology, 1997. WH Freeman & Company, New York.
- 5. Tizard,1995.Immunology IV Ed Saunders college publishers, New York.
- 6. Robert M.Coleman., 1992. Fundamental Immunology. 2 nd edition., Wim. C.Brown Publishers.
- 7. Eli Benjamini et al., 1991. Immunology A short course –Wiley Publishers, NY.

MODEL QUESTION PAPER (IMMUNOLOGY)

NAME OF THE COURSE: IMMUNOLOGY	COURSE CODE: 21U5BTC05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. The ability of an organism to resist infections by the pathogens is called?						
a. Infection	b. Hypersensitivity	c. Immunity	d. Allergy			
2. Which of the follow	ving is NOT a poly morpho nu	•	<i>5.</i>			
a. Eosinophil	b. Mast cell	c. Macrophage	d. Basophil			
3. Name the first cell which recruited at the place of infection.						
a. Nk cell	b. Basophil	c. Neutrophil	d. Macrophage			
4. Which of the follow	ving cell is a multipotent cell?	.1				
a. T-cell	b. B-cell	c. HSC	d. Monocytes			
5. Which of the follow	ving antibody gives a primary	immune reaction?				
a. IgG	b. IgM	c. IgA	d. IgE			
6. What is the origin o						
a. Pancreas	b. Liver	c. Thymus	d. Bone marrow			
7. Who discovered the	e structure of immunoglobulir	n by treating it with beta-	-mercaptoethanol?			
a. Nisonoff	b. Edelman	c. Porter	d. Whittekar			
8. Name the heavy cha	ain of IgG.					
a. M	b. E	c. α	d. γ			
	ving is NOT the characteristic					
a. Large in size b. Fo	oreignness c. Highly compl	d. Reproduce on	ly by binary fission			
10. Name the molecul	le which constitutively express	sed on the dendritic cell?				
a. Class I MHC	b. Class II MHC	c. APC	d. Antigen			
11. Which of the follo	owing polypeptide is important	t for the expression of M	HC I on the cell membrane?			
a. Interferon	b. β ₂ -microglobin	c. Lymphokine	d. Interleukin			
12. Name the part of p	processed antigen that binds to	the MHC molecule and	recognized by T-cells?			
a. Immunoglobulin	b. Paratope	c. Epitope	d. Chaperone			
13. Name the cytokine	es which released in response	to virus infection?				
a. Monokines	b. Interferons	c. Lymphokines	d. Interleukins			
14. Name the nerve stimulator which is responsible for the pain of the inflammation.						

a. Bradykinins	b. Prostaglandin	c. Histamines	d. K	inins			
15. Name the class of immunoglobulin which takes part in hypersensitivity reaction?							
a. IgG	a. IgG b. IgM c. IgA d. IgE						
16. Out of these, which t	ranscription factor does not	take part in B-cell activ	ration?				
a. Abl	b. NF- kB	c. Jun	d. Fo	S			
17. Which among the fo	17. Which among the following is not an autoimmune disease?						
a. Myasthenia gravis b	. Systemic lupus erythemat	osus c.Grave"s diseas	se d. Si	ckle cell disease			
18. Vaccination was inve	ented by?	<u>'</u>	'				
a. Jenner	b. Pasteur	c. Koch	d. Sa	lk			
19. Heat killed vaccines are							
a. Dead cells of bacteria b. Dead cells of virus c. Dead cells of fungi d. A & B							
20. The major molecule responsible for graft rejection is							
a. B-cells b. T-cells c. MHC d. antibodies							

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE Q	UESTIONS				
21. A) Explain the organs involved in immune system (OR					
B) Write a short note on factors influencing antigenicity					
22. A) Give a short note on antibody production	(OR)				
B) Explain the IgA and IgM					
23. A) Explain the process of MHC regulation	(OR)				
B) Describe Apoptosis					
24. A) Explain Type II hypersensitivity	(OR)				
B) Brief about the classification of Cytokines					
25. A) Explain Autoimmunity	(OR)				
B) Describe AIDS and HIV types.					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give an detailed account on cells involved in Immune system
27. Explain Immunoglobulin"s types, structure and functions
28. Give a detailed account on Antigen processing and presentation
29. Describe the types of hypersensitivity
30. Give detailed account on various types of vaccines and explain with suitable example

PLANT BIOTECHNOLOGY

: Core VI **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit Internal : 5 : 25 Paper Code : 21U5BTC06 External : 75

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and basic tissue culture techniques and their principles	K1 & K2
CO2	Gaining knowledge on plant secondary metabolites and their role in defence mechanisms	K1 & K2
CO3	To acquire knowledge on the generation novel plant varieties by genetic manipulation strategies	K3, K4 & K5
CO4	Exposing towards the application of secondary metabolites in drug development and value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, types of media, media preparation, plant growth regulators. Applications of crop improvement in agriculture, horticulture and forestry.	12
II	PLANT TISSUE CULTURE TECHNIQUES: Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
Ш	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors Genetic engineering & crop improvement, herbicide resistance, insect resistance, virus resistance, plants as bioreactors. Production of antibodies.	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization - drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Organic food-Production,types and Identification of organic foods.	15

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited,1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- 10. Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

${\bf MODEL\ QUESTION\ PAPER\ (PLANT\ BIOTECHNOLOGY)}$

NAME OF THE COURSE: PLANT	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	21U5BTC06	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS											
1. Who is the father of tissue culture?											
a. Bonner	b.Ha	berland	dt	C	c Lait	bach b.			Gaı	Gautheret	
2.The growth of plan	2.The growth of plant tissues in artificial media is called										
a. Gene expression			b. Transg			c. Plant tissue culture			d. Cell hybridization		
3.Ais a	n exc				tissue	used	in microprop	pagatio	n.		
a.Microshoot			.Medium				c.Explant			d.Scion	
4.Cellular totipotency	y is th	ne prop	erty of								
a. Plant		b. Ani	mal		C	e. Bacı	teria			d. All of these	
5. In plant tissue cult	ure, v	vhat is	the term (ORGANC	OGEN	IESIS	means?				
a. Formation of callus culture			b. Formation of root & c. shoot from callus culture		c. Genesis of organ		d. None of the above				
6. In a cell, protoplas	t con	sists the	e followin	ng EXCEI	PT						
a. Cell wall			b. Cell membrane		c. Nucleus		d.	d. Cytoplasm			
7.In a callus culture											
a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxin promote root formation		ion	b. Increasing level of auxin to a callus induces shoot formation and increasing level of cytokinin promote root formation		c. Auxins and cytokinins are not required			Only auxin is required for root and shoot formation			
8.The phenomenon of callus is known as			on of mat	ure cells t	to the	meris	stematic state	e leadin	ig to	the formation of	
a. Redifferentiation	on	b.	Dediffer	rentiation		c.	either (a) or	(b)		d. none of these	
9. T-DNA transfer and processing into plant genome requires products of which of the following genes?											
a. vir A,B b. vir G,C c.vir D,E d. All of these											
10. Which of the following are used as selection marker for the cells transformed with <i>Agrobacterium</i> ?											
a. Neomycin phosphotransferase		b. Streptomycin phosphotransferase c. Hygromycin phosphotransferase above			d. Any of the above						
11. Which technique is used to introduce genes into dicots?											

a. Electroporation	b. Particle acceleration	b. Particle acceleration c. Microinjection			d. Ti plasmid infection		
12. Genome is							
a. Genes on nuclear DNA b. Nuclear DNA + mitochondrial c. Nuclear DNA + d. Nuclear DNA + Mitochondrial DNA + Chloroplast DNA Chloroplast DNA							
13. The process of expres	13. The process of expression of foreign genes in a plant is called						
a. Gene expression b. Transgenesis c. Genetic transformation d. Cell hybridization							
14. Which of the following	ng is considered as a visua	ıl marker?		'			
a. Antibiotic marker	b. Resistance marker	c. Sele	ctable marker	d. Sc	reenable marker		
15. Name the first transge	enic virus resistant plant?						
a. Rice	b. Cotton	c. Toba	acco	d. '	Tomato		
16. Which of the following	$^{\mid}$ ng is supplemented with v	itamin A in o	order to impro	ve its nut	ritional quality?		
a. Cotton	b. Potato		c. Toma	ato	d. rice		
17. Which of the following	ng is NOT the class of sec	ondary meta	bolite?				
a. Amino acid	b. Terpenes		c. Phen	olics	d. alkaloids		
18. Name the class of sec	condary metabolites which	h is characte	rized by the p	resence of	f the hydroxyl		
group with an aromatic ri	ing?						
a. Glycosides	b. Phenolics	c. A	Alkaloids	d. '	Terpenes		
19. Azolla is used as biof	Tertilizer as it has						
a. Rhizobium	b. Cyanobacteria	c. N	Aycorrhiza		ge quantity of mus		
20. Which sterility is exp	loited in hybrid seed prod	uction?	I				
a.Male genetic sterility	b. Cytoplasmic genetic sterility is found	ic male	c. Cytoplasm sterility	nic	d. Genetic		
	I - B (5 X 5 = 25 MARK)	S) ANSWEI	R ALL THE				
21. A) List out the type P) Montion about	L .			(OR	2)		
B) Mention about auxin. 22. A) Write note on callus induction. (OR)							
B) Explain embryo culture.							
23. A) Briefly discuss particle bombardment. (OR)							
B) Biosynthesis pathway of cytokine-explain. 24. A) What is called selectable marker? Explain with two examples. B) Write note on virus resistance. (OR)							
25. A) Explain about sali				(OR	2)		
B) Briefly explain Cytoplasmic male sterility.							

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.
27. Explain protoplast isolation, culturing and fusion.
28. Draw and explain agrobacterium mediated gene transfer.
29. Write note on genetic engineering in plants.
30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN IMMUNOLOGY

: Core Practical V **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 40 : 3 Internal Paper Code : 21U5BTCP05 External : 60

PREAMBLE

To make students on practical exposure towards immunological techniques in-terms of handling of laboratory animals, qualitative and quantitative estimation of antigen - antibody specificity.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gaining knowledge on handling of laboratory animals	K1 & K2
CO2	Knowing about the methods of immunization of bleeding and separation serum and plasma from blood	K2, K3 & K4
CO3	Analysis of qualitative and quantitative estimation of antigen and antibody interaction	K4, K5 & K6
CO4	To know about the basic principles of blotting techniques in terms of practical approach	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	M	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Handling of laboratory animals	5
2	Methods of bleeding and routes of immunization	10
3	Preparation of Serum and plasma	5
4	ABO Blood grouping (Rh typing) (Agglutination)	5
5	WIDAL test (Agglutination)	5
6	ASO test (Agglutination)	5
7	Pregnancy test (Agglutination inhibition)	5
8	Radial immune diffusion test (Precipitation test)	5
9	Rocket Immuno electrophoresis test (Precipitation)	5

10	Ouchterlony	double	immunodiffusion	technique	(ODD)	5
	(Precipitation)					3
11	Counter current	immunoe	lectrophoresis (CIE) (Precipitation)		5
12	DOT ELISA tes	st				5
13	Western Blottin	g- Demon	stration			10

MODEL QUESTION PAPER (LAB IN IMMUNOLOGY)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6 Hrs
IMMUNOLOGY	21U5BTCP05	
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Identify the Blood group for the given sample (A) and display the results for observation					
•			(OR)		
(ii) Perform Radial	immune electrophoresis	for the given serum and	anti-serum sample (A)		
			(OR)		
(iii) Perform WIDA	L test for the given plan	t sample (A)			
MINOR EXPERIMEN	T				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Prepare Serum/	Plasma from the given b	olood sample (B). Displa	y the results for		
observation			(OR)		
(ii) Perform DOT	ELISA for the given se	rum sample (B)). Displ	ay the results for		
observation			(OR)		
(iii) Perform ASC	O test from the given blo	od sample (B)). Display	y the results for		
Observation					
SPOTTERS		(5 X	4 = 20 MARKS)		
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $					
VIVA-VOCE			5 MARKS		
TOTAL 60 MARKS					

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN PLANT BIOTECHNOLOGY

Paper : Core Practical VI **Total Hours** : 75 Hours/Week Exam Hours : 03 : 5 Credit : 3 Internal : 40 : 60 Paper Code : 21U5BTCP06 External

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT			
1	Isolation of Plant genomic DNA	5		
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5		
3	Preparation of MS media	10		
4	Establishment of seed germination from carrot seeds	5		
5	Establishment of shoot tip culture using MS media	10		

Ī	6	Establishment and maintenance of callus culture	10
Ī	7	Micro propagation of callus culture (Shoot & Root systems)	10
=	8	Isolation of protoplast (Enzymatic method)	5
•	9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column chromatography	10
	10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT BIOTECHNOLOGY	COURSE CODE: 21U5BTCP06	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT						
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS			
1. (i) Isolate plant g	1. (i) Isolate plant genomic DNA from the given plant sample (A) (OF					
(ii) Perform shoot ti	p culture from the given	explant sample (A)	(OR)			
(iii) Perform callus	induction from the giver	explant (A)				
MINOR EXPERIMEN	T					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Isolate protopl	ast from the given plant	mesophyll tissue sample	e (B) (OR)			
(ii) Prepare synth	etic seeds from the give	n plant seed sample (B)	(OR)			
(iii) Separate chlo	prophyll pigments from	the plant leaf extract san	ple (B) by appropriate			
Method						
SPOTTERS		(5 X	4 = 20 MARKS)			
3. Identify the given spotters C, D, E, F & G and comment on them						
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $						
VIVA-VOCE 5 MARKS						
TOTAL	TOTAL 60 MARKS					

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE - I

PHARMACEUTICAL BIOTECHNOLOGY

Paper : Elective I **Total Hours** : 75 Hours/Week : 4 **Exam Hours** : 03 Credit : 3 Internal : 25 : 75 Paper Code : 21U5BTE01 External

PREAMBLE

This paper encodes information on pharmacology, drug designing, sources and applications of drug discovery. Students also understand the basic and applications of pharmacology and sources of drug. Also enables them to understand the concepts of rDNA technology in drug designing.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the principles of pharmacology and its development History	K1 & K2
CO2	To understand principles of action of drugs and mechanism of action to wards various diseases	K2, K3 & K4
CO3	To understand the concepts of developing therapeutic agents through genetic engineering principles	K4, K5 & K6
CO4	To explore the applications of pharmaceutical chemistry and its Development	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	S	S	S
CO3	M	S	S	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to pharmacology : History & development in pharmacology. Principles of pharmacology. – Pharmacology in the 20 th century – Drugs – Sources, dosage forms and routes of administration	15
II	Drug names & Classification systems: General Principles of Drug action	15

	Pharmacokinetics, Pharmacodynamics, measurement of drug action.				
	Diagnosis and Chemotherapy: Prenatal diagnosis: Invasive Techniques-				
III	Amniocentesis, Fetoscopy, Non Invasive Techniques – Ultra Sonography.	15			
	Diagnosis using protein & enzymes markers, DNA/RNA based				
	diagnostics. Therapeutic drugs – Protein synthesis inhibitors,				
	Antibacterial, antifungal, anti protozoal, antiviral, anti helmithic,				
	anticancer, anti-inflammatory drugs.				
	Introduction to r-DNA technology: production of biological: Human				
IV	Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting				
	factor VIII. Synthetic therapy: Synthetic DNA, therapeutic ribozymes,				
	synthetic drugs				
V	Production and applications: Probiotics, anticancer and anti-	15			
•	inflammatory agents. Biochips, biofilms and biosurfactants. Tissue	15			
	Engineering, Recombinant vaccines and Cell adhesion based therapy				

- 1. A Text Book of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.
- 2. Pharmacology H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingston.
- 3. Basic Pharmacology Foxter Cox. Butterworth"s 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure
- 5. Pharmaceutical Biotechnology S.S. Purohit, Kaknani, Saleja
- 6. Pharmacology Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Williams Edition.
- 7. Integrated pharmacology Page, Curtis, Sulter, Walker, Halfman. Mosby Publishing Co.

MODEL QUESTION PAPER (PHARMACEUTICAL BIOTECHNOLOGY)

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
PHARMACEUTICAL BIOTECHNOLOGY	21U5BTE01	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
Clinical pharmacology was established by?						
a. Schwann b. Robert Hooke c. W				William Withering		d. William Wroth
2. The most w	idely us	ed drug classification	n syste	ems are?		
a. ATC		b. ADP		c. AKT		d. ATP
3. The drugs th	nat are ta	aken though nasal ro	ute is	called		
a. Subcutaneous		b. Ear drops		c. Inhaler		d. Intraosseous
4. Parenteral	adminis	tration can be perfor	med b	y?	I	
a. Injection		b. Oral		c. Tablet		d. Powder
5. The action of	of drugs	on the human body	is calle	ed as?		,
a. Pharmacodynan	nics	b. Pharmacokinetic	es	c. Drug action		d. Transporter protein
6. What the b	ody doe	es with the drug is ca	lled as	?		,
a. Drug action	b. Pha	rmacodynamics	c. Ph	armacokinetics	d. Tr	ansporter protein
7. Initial conse	quence	of drug-receptor co	mbinat	tion is called	-	
a. Pharmacody	namics	b. Drug action	n	c. Drug Effect d	. Phar	macokinetics
8. Biochemica	l and ph	ysiological changes	that o	ccur as a consequenc	e of d	rug action called
a. Drug action		b. Drug Effect	ug Effect c. Pharmacodynamics		ics	d. Pharmacokinetics
9. A group of 1	material	s that fight against p	athoge	enic bacteria?		
a. Antibacterial ag		b. Antiviral agents		c. Antifungal agent	S	d. Anticancer agents
10. Anti-inflan	nmatory	drugs make up abou	ut half	of?		
a. Analgesics		b. Prostaglandins		c. Paracetamol		d. Aspirin
11. Abnormal	cell gro	wth called as		?		
a. Cancer		b. Viral		c. Cell growth		d. Tissues
12. Fungal cell wall synthesis inhibition as?						
a. Nystatin	a. Nystatin		b. Caspofungin		c. Azoles	
13. Insulin hormone produced by?						
a. Pancreas		b. Liver		c. Mitochondria	ì	d. Kidney

	14. Erythropoietin is a hormone produced primarily by?								
	a. Liver	b. Kidney	d. Mitochondria						
	15. Factor VIII is an es	sential blood-clotting prote	ein, also known as?						
a.	Anti-hemophilic factor	b. Coagulation	c. Glycoprotein	d. Embolism					
	16. Erythropoietin also known as								
	a. Hematopoietin	b. Glycoprotein cytokine	c. Erythropoiesis	d. Hypoxia					
	17. Probiotics are often	called as ?							
	a. Helpful" Bacteria	b. Helpless" Bacteria	c. Helpful Virus	d. Helpless Virus					
	18is	the property of a substance	e or treatment that reduces	inflammation?					
	a. Anti-cancer	b. Anti-inflammatory	c. Inflammatory	d. Cancer					
	19are a different surfaces?	collective of one or more t	ypes of microorganisms th	at can grow on many					
a.	Biofilms b.	Anti-inflammatory	nti-inflammatory c. Biochips						
	20. Bio surfactants are	also called as							
	a. Microbial surfactants	b. Bacterial surfactants	c. Viral surfactant	d. Biochips					

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS						
21. A) Explain the history and development of pharmacology.	(OR)					
B) Explain the various routes of administration of drug.						
22. A) Explain about pharmaco kinetics	(OR)					
B) Write brief notes on the measurement of drug action						
23. A) Write shortly about Anticancer drugs	(OR)					
B) Write short notes on antibacterial drugs						
24. A) Write short notes on Erythropoietins	(OR)					
B) Write short notes on Interleukins?						
25. A) What is probiotics? Explain in brief	(OR)					
B) Write short notes on Biochips						

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on pharmacology?
27. Explain in detail on the general principle of drug action?
28. Write an essay on therapeutic drugs?
29. Write an essay on r-DNA technology?
30. Explain in detail about the production and application of drugs?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 21U5BTE02	External	: 75

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit measurement and extraction	K1 & K2
	measurement and extraction	
CO2	To explore to the usage of enzymes at molecular level such as active site, isoenzymes and their biochemical fundamentals	K3 & K4
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial Enzymes	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT					
I	Enzymes : Introduction, Definition, History, Classification and Nomenclature of enzymes. Intracellular localization of enzymes, Extraction and purification of enzymes. Enzyme units. Substrate specificity.					
11	Active site: Salient features, Theories of ES complex formation – Lock and Key, Induced fit and Substrate strain theory. Structure and functions of coenzymes, Isoenzymes and their separation rates. Collision and transition state theories. Factors affecting enzyme activity	15				

	Enzyme kinetics: Order of reaction, Activation energy, Kinetics of enzyme								
III	catalyzed reactions - Steady state kinetics - Michaelis Menten equation,								
111	and its transformation. Bi - substrate reaction - random, ordered and ping								
	pong mechanisms. Enzyme - Enzyme interaction. Protein ligand binding								
	Enzyme inhibition: Reversible and irreversible inhibitors. Mechanism of								
IV	catalysis - acid base, electrostatic, covalent, metal ion and enzyme								
1 1	catalysis, electrostatic proximity and orientation effects. Mechanism and								
	action of chymotrypsin, lysozyme and carboxy peptidase. Isoenzymes-								
	multiple forms of Isoenzymes								
1 7	Immobilization of enzymes: Methods and application. Clinical and	15							
·	Industrial application of enzymes, Enzyme engineering – site directed								
	mutagenesis. Methods for protein sequencing. Methods for analysis of								
	secondary and tertiary structures of enzymes.								

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY	COURSE CODE: 21U5BTE02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS									
Enzymes are broadly classified intotypes									
a. 4	b. 5	j	c. 6			d. 7	7		
2. The function of is	2. The function of isomerases is								
a. Geometrical changes	b	b. Isomeric changes	c. Steric	changes	d. Supe	er nui	meric changes		
3. Enzyme activity of	lepen	nds on							
a. Substrate conc.		b. Substrate availability		bstrate inding site		d. A	ll the above		
4. Which of the follo	owing	g method is used in se	parating sp	ecific enzym	es from	its cı	rude sample?		
a. Dialysis	a. Dialysis b. Native PAGE c. 2D PAGE d. Isoelectric focusing								
5. Which of the folloactive site of enz		g concept model descr ?	ribes the con	nformational	change	s occ	urring at the		
a. Lock & Key model	b. Ir	nduced fit hypothesis	c. Substra	ate strain cor	ncept	d. No	one of the above		
6. Michealis – Ment	on ec	quation describes							
a. Rate of enzyme activity	ty	b. Rate of substrate	activity	c. ES form	ation		d. All the above		
7. Bi substrate reacti	ions i	indirectly describes the	e concept o	f					
a. Lock & Key concept	b.	. Induced fit hypothesi	s c. Subs	trate binding	theory	d. I	None of the above		
8. Which of the follo	owing	g physical factor affec	ts the enzy	me activity?					
a. Enzyme conc.		b. Substrate Conc.	c. Bii	nding site		d. p	Н		
9. Which of the follo	wing	g is an example for iso	enzyme?						
a. ACTH		b. GH	c. LE	Н		d. F	SH		
10. Activation energ	y is t	the energy required for	r						
a. Activating enzyme	b. <i>A</i>	Activating substrate	c. Activati	ing co	d. Ac	tivati	ng physical factors		
11. The kinetics of e substrate concen	•	me – catalysed reaction ons are	ns can be ar	nalysed in ter	rms of st	eady	state models if the		
a. More than an order		Less than an order of		han the rate	d .]		than the rate of		
of magnitude		magnitude lower than		gnitude		_	nitude lower than		
_	higher than the the enzyme level higher than the the enzyme level								
enzyme level				ne level					
12. The reaction between ADP and phosphocreatine works under the principle of									

a.Random mechanism	o. Doub	le displacen	nent me	echanism	c.	Ping pong	g mechanism	d. B & C	
13. Which of the following	owing ty	vpe of enzyr	ne inhi	bition shows	s an i	ncrease in	ı KM value v	with constant	
	Vmax?								
a. Competitive b.	. Non –	- Competitiv	/e	c. Un – Co	mpet	itive	a. None	e of the above	
14. Allosteric enzymes displays a sigmoidal curve in contrast to thedisplayed by Michealis – Menton enzymes									
a. Hyperbolic curve b.	. Parab	olic curve	c. Q	uadratic curv	/e	d. Tr	anscendenta	l curve	
15. Chymotrypsin is									
a. Cysteine protease	e l	o. Serine pi	rotease	c. P	rolin	e protease	d. Le	ucine protease	
16. Carboxypeptidase	e A3 (Cl	PA3) involv	ed in tl	he protein di	gesti	on by			
a. Pancreatic cells		b. Liver	cells	c. Ma	st ce	lls	d. Tun	nour cells	
17. Which of the follo	owing n	nethod is co	mmonl	y used in ma	aintai	ning enzy	me activity		
a. Entrapment meth	od	b. Encap	sulatio	n c.	Imm	obilizatio	n d. A	All the above	
18. Which of the following	owing e	nzyme is us	ed in le	eather indust	ries?		·		
a. Amylase		b. Lipase	;	c. Pro	tease	e	d. DNA	Ase	
19. Which of the follo	owing te	echnology is	follov	ved for enric	hing	the enzyn	ne activity?		
a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above									
20. Which of following	ng enzyi	me is used a	is dewo	orming agent	?				
a. Tryspin		b. Papair	1	c. An	nylas	e	d. Prot	ease	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QU	ESTIONS
21. A) Explain about enzyme units	(OR)
B) Explain about substrate specifity	
22. A) Explain about isoenzymes	(OR)
B) Explain the factors affecting the enzyme activity	
23. A) Explain the steady state kinetics of enzymes	(OR)
B) Write short notes on the order of the enzyme reaction	
24. A) Explain the mechanism of action of chymotrypsin	(OR)
B) Write short notes on mechanism of enzyme catalysis	
25. A) Explain the process of site directed mutagenesis	(OR)
B) Explain about enzyme engineering	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on the classification of enzymes
27. Give detailed account on iso-enzymes
28. Give detailed account on MM and LB plot
29. Give detailed account on enzyme inhibition and its types
30. Give detailed account on industrial applications of enzymes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

TISSUE ENGINEERING

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 21U5BTE03	External	: 75

PREAMBLE

This paper deals with the use of combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. Tissue engineering involves the use of tissue scaffold for the formation of new viable tissue for a medical purpose.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the key topics in tissue engineering	K1, K2 & K3
CO2	To understand the stem cells and animal cells, processes, and strategies to regenerate or repair damaged tissues	K3 & K4
CO3	To develop students ability to identify, formulate and adapt engineering solutions to unmet biological needs	K4 & K5
CO4	To give students a knowledge of how the biomedical industry is regulated and the route to market of for tissue engineered products	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents. Measurement of tissue characteristics, appearance, cellular component, ECM component, and physical properties.	15
II	Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix & Cell-Cell Interactions, telomeres and Self renewal, Control of cell migration in tissue	15

	engineering.	
III	Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.	15
IV	Stem Cells: Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers. Stem cell systems - Liver, neuronal stem cells with characteristics: embryonic, adult, haematopoietic, fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells and induced pluripotent stem cells.	15
V	Stem cell therapy, Molecular therapy, <i>in-vitro</i> organogenesis, Neurodegenerative diseases, spinal cord injury, heart disease and muscular dystrophy. Stem cells and Gene therapy: Physiological models, tissue engineered therapies, product characterization. Preservation of stem cells: freezing and drying. Patent protection and regulation of tissue engineered products and ethical issues.	15

SUGGESTED READINGS

- 1. Bernhard O.Palsson, Sangeeta N.Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 2. Raphael Gorodetsky, Richard Schäfer. "Stem cell based tissue repair", Cambridge: RSC Publishing, c2011.
- 3. John P. Fischer, Antonios G. Mikos, Joseph D. Bronzino. "Tissue Engineering", CRC Press, 2012.
- 4. Larry L. Hench, Julian R. Jones. "Biomaterials, Artificial Organs and Tissue Engineering", CRC Press, 2005.
- 5. C. S. Potten, "Stem Cells", Academic Press, 1997.

MODEL QUESTION PAPER (TISSUE ENGINEERING)

NAME OF THE COURSE: TISSUE ENGINEEING	COURSE 21U5BTE03	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

ar and	A T	A (1 X7 00 00	MADI	(a) ANIGNTED A	TT TIT	EOLE	CELONIC
SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. The formation of blood vessel from the pre-existing blood vessel is known as							
a. Angiogenesis		Vascularization		c. Osteogenesis			d. Phagocytosis
2. The Major Histor	compa	tibility Comple	exes (M	IHCs) are			
a. Signaling molecules	b. (Growth factors	c. Ce	ell surface marke	rs	d. Cell	adhesion molecules
3. Bone Morphogen	nic Pro	otein (BMP) is	a				
a. Cell surface marker		b. Growth	factors	c. Horm	one	(d. Neurotransmitter
4. Polyglycolic Acie	d (PG	GA) scaffold is		-			
a. Biotolerant	b.	Bioactive		c. Bioinert			d. Biodegradable
5. In tissue engineer	ring, h	narvested cells a	re froze	en away and stor	ed in		
a. Liquid hydrogen		iquid nitrogen		c. Liquid helium	n	(d. Autoclave
6. Cell signaling co	mpou	nds cytokines a	re a gro	up of			
a. Proteins and peptides	b	. Fats and trigly	cerides	c. Carbohyd	rates	d. Ho	ormones and steroids
7. c-AMP and c-GN	/IP fur	nctions as					
a. Hormone	b.	Receptor		c. Second mes	ssenge	r	d. Ligand
8. The signals which	h affe	ct only cells of	the sam	e cell type as the	emitti	ng cell	are
a. Endocrine		b. Autocrine		c. Paracrine			d. none of these
9. Carbon nanotube	s are ı	used for tissue e	enginee	ring scaffolds as	they ar	e	
a. Biocompatible		b. Biodegrada	able	c. Biopolyn	ners		d. none of these
10. PLA degrades v	vithin	the body to for	m			ı	
a. Amino acid	b. C	Glycolic acid	c.	Lactic acid		d. Pho	osphoric acid.
11. An example of	CAM	is					
a. Cadherin	b. P	rotease		c. Growth horm	none	d.	Serine
12. For skin grafting	-					<u> </u>	
a. Biodegradable	b. B	Bioactive	c.	Biocompatible		(d. Both (a) and (c)
13. Endocrine signa	ling is	s performed by					
a. Enzymes	b. Ho	ormones	(c. Cytokines			d. Carbohydrates
14. Programmed Ce	14. Programmed Cell death is also known as						
a. Apoptois	b. Ly	sis	c. Deg	eneration	d.	Defori	mation
15. The protein of c	ell tha	at binds to a spe	cific m	olecules is know	n as		
a. Ligand		b. Receptor		c. Hormon	ne		d. Cytokine
16. Notch is a cell s	urface	e protein that fu	nctions	as a			

a. Receptor	b. Hormone	c. Protein-A	d.	Cytokine.			
17. Solid Free Forming is	17. Solid Free Forming is a fabrication technique for						
a. 2D scaffold b.	3D scaffold	e. Micro scaffold	d. Nano	o-patterned scaffold			
18. Hydrogels can also be	18. Hydrogels can also be used as scaffolds for						
a. Cell growth b. Cell	delivery c. C	ell growth and cell del	livery	d. None of these			
19. GABA is a			·				
a. Neurotransmitter	b. Neuro inhibitor	c.Contact inhib	oitor	d. Contact excitator			
20. The family of receptors that play an important role in cell adhesion is							
a. Somatostatin	b. Interleukins	c. Integrins	d.	Interferons			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) What are the different types of tissues in the mammalian body?	(OR)
B) Classify tissue based on their structure and function	
22. A) Briefly explain the different types of stem cells	(OR)
B) Briefly explain the process of cell placement on scaffold	
23. A) Describe different kinds of matrix materials used in tissue engineering	(OR)
B) Mention the importance of growth factors in the field of tissue engineering	
24. A) With the help of sketch, explain the process of differentiation of stem cells into cell lines	(OR)
B) What are the different risk factors involved with skin grafting?	
25. A) Mention the basic clinical goals and fundamental challenges of tissue engineering	(OR)
B) What are the basic criteria of a scaffold used for tissue reconstruction?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. With the help of a flow-chart, explain the different processes involved in wound healing
27. Describe the signalling pathway for cell's response to the ligand
28. Describe the engineering materials used in scaffold fabrication. Mention the parameters for scaffold selection.
29. With the neat sketch, explain the mechanism of adhesion between leukocytes and endothelial cells
30. Demonstrate bioreactor for achieving nutrient transport in an engineered tissue construct

SBEC - III

LAB IN BIOINFORMATICS

: SBEC III **Total Hours** Paper : 30 Hours/Week : 2 Exam Hours : 03 Credit Internal : 25 : 2 Paper Code : 75 : 21U5BTS07 External

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the basic concepts of functional and computational genomics and proteomics	K2, K3, K5 & K6
CO2	To acquire knowledge on the usage of biological software on generating databases both online/offline	K2, K3, K5 & K6
CO3	To understand the existence of globally available online soft wares and databases for nucleic sequence retrieval	K2, K3, K5 & K6
CO4	To understand the usage and deposition of sequences in to globally available structural databases	K2, K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp. No	TITLE	HOURS
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3
6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3

8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
10	Program to store a DNA sequence in NCBI : Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN BIOINFORMATICS)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
BIOINFOMATICS	21U5BTS07	
MAX MARKS: 60		

MAJOR EXPERIMENT						
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS			
1. (i) Retrieve the	gene sequence from Gen	nBank (A)	(OR)			
(ii) Find out the	given query sequence (A) by BLAST analysis	(OR)			
(iii) Find out O	RF in the given sequence	e sample (A)				
MINOR EXPERIME	NT					
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS			
2. (i) Retrieve the	(OR)					
(ii) Perform Phylogenetic Analysis for the given organism (A) (OR)						
(iii) Find out th	e RNA sequence from the	ne given DNA sequence	(B)			
SPOTTERS		(5 Σ	X 4 = 25 MARKS			
3. Identify the give	3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $(1 \times 5 = 5 \text{ MARKS})$						
VIVA-VOCE 5 MARKS						
TOTAL 60 MARKS						

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - III

BIOSAFTEY, BIOETHICS & IPR

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U5BTS08	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified	K1, K2 & K4
	Organisms	
CO3	Understand the basic principles of IPR, its types and patenting	K4, K5 & K6
	Procedures	
CO4	Understand the concepts of ethical, legal considerations on the	K4, K5 & K6
	release of genetically modified organisms	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	6
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	6
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non-patentable.	6
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	6

	and general requirements of patent law. Patentable subjects and protection in Biotechnology. Patent infringement- meaning, scope, litigation, case studies.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of human genome project and GM crops, biopiracy and biowarfare.	6

SUGGESTED READINGS:

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY , BIOETHICS AND IPR	COURSE 21U5BTS08	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. Bio-related r	1. Bio-related research activities may not involve					
a. Micro organi	sms	b. Animal cells		c. Plant cells		d. All
2. A pathogen t	hat is unlik	xely to cause any di	sease	e in humans or an	imals	
a. Risk group I	b	o. Risk group II		c. Risk group III		d. Risk group IV
3. Korean hemo	3. Korean hemorrhagic fever is example for					
a. Risk group Il	i b	o. Risk group III		c. Risk group IV		d. Risk group I
4. Physical co	ontainmen	t is achieved by				
a. One type	b	o. Two types		c. Three types		d. Four types
5. Which one o	f the follow	wing is not relevant	to st	erilization technic	que?	
a. Ethanol	b	o. Incinerator		c. Microscope		d. Autoclave
6. Cartagena Pr	otocol on l	Biosafety to the Co	nven	tion on Biologica	l Dive	ersity Effective
from					1	
a. 11 September b. 12 September c. 11 September d. 12 Septemb		d. 12 September				
2003		2003		2004		2004
7. Each Institut	7. Each Institutional Biosafety Committee has a nominee for					
a. DST	b	. DBT		c. UGC		d. ICAR
8. How many R	CGM mee	eting held in 2018?				
a. 7		b. 8		c. 9		d. 6
9. The RCGM s	shall not in	clude the following	g rep	resentative	•	
a. DBT	b. ICMR		c.	UGC	d	. CSIR
10. GEAC estal	olished und	der				
a. MoEF & CC	b.	UGC	(c. DBT		d. DST
11. Trade name	is otherwi	ise called as				
a. Patent	b.	Model	c	Business name		d. Trademark
12	12is any information of commercial value concerning production					
a. Trade name	b.	Trade Secret	(e. Patent	d.	Industrial Design
13. IPR initially	13. IPR initially started in North Italy during the					
a. Renaissance		o. Renaissance		c. Renaissance		d. Renaissance
era. In 1471		era. In 1472		era. In 1473		era. In 1474
14. Protection of	14. Protection of IPR not allow the following					

a. Innovator	b. Brand owner	Brand owner c. Teacher d. Copyright holder				
15. Intellectual property not refers to creations of the mind						
a. Hard work	b. Inventions c. Literary and artistic works d. Names					
16. Which one is co	omes under type of intel	lectual property (IF	P)?	,		
a. Copyright	b. Patent	c. Tradema	ırk	d. All the above		
17. Mathematical a	gorithms are	-	•			
a. Patentable	b. Non patentable	c. Both	d. No	one of the above		
18. Software is a						
a. Patentable	b. Non patentable	c. Both	d. Nor	ne of the above		
19. Patentable biote	echnological inventions	is				
a. Proteins b. I	a. Proteins b. DNA sequences c. Both of the (a) and (b) d. None of the above					
20. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning						
a. 4 b. 3 c. 2 d. 1						

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS
21. A) Explain different levels of biosafety.
B) Explain different types of sterilization methods.
22. A) Explain the role of institutional committee.
B) Explain RCGM and GEAC?
23. A) explain object of Intellectual property law?
B) Explain the importance of IPR?
24. A) Write a note on benefits of patent.
B) Explain patentable and non-patentable biotechnological inventions?
25. A) Define bioethics, explain purpose and scope of bioethics?
B) Explain perspectives and methodology of bioethics?

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain different types of bio-safety measures in laboratory?
27. Explain Cartagena protocol on biosafety.
28. What is IPR and explain their different types?
29. Patent - Definition, History and Law
30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC – III

CANCER BIOLOGY

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U5BTS09	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The students also gain added knowledge on ethical, legal and social considerations on implementing/marketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts of cancer biology and types of tumour	K1 & K2
CO2	Understand the mechanisms of cancer development and chemical involved in carcinogenesis	K1 & K2
CO3	Understand molecular mechanisms and genetic principles of oncogene expression	K3, K4 & K5
CO4	Acquiring the knowledge on developing drug discovery approach in the management and detection of cancer	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Fundamentals of cancer biology: Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes. Development and causes of cancer, Types of cancer, Benign and malignant tumours.	6
II	Principles of carcinogenesis: Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis.	6
Ш	Principles of molecular biology of cancer: Oncogenesis: Oncogenes, identification of Oncogenes, Retroviruses and Oncogenes, detection of Oncogenes, Growth factors related to transformations.	6

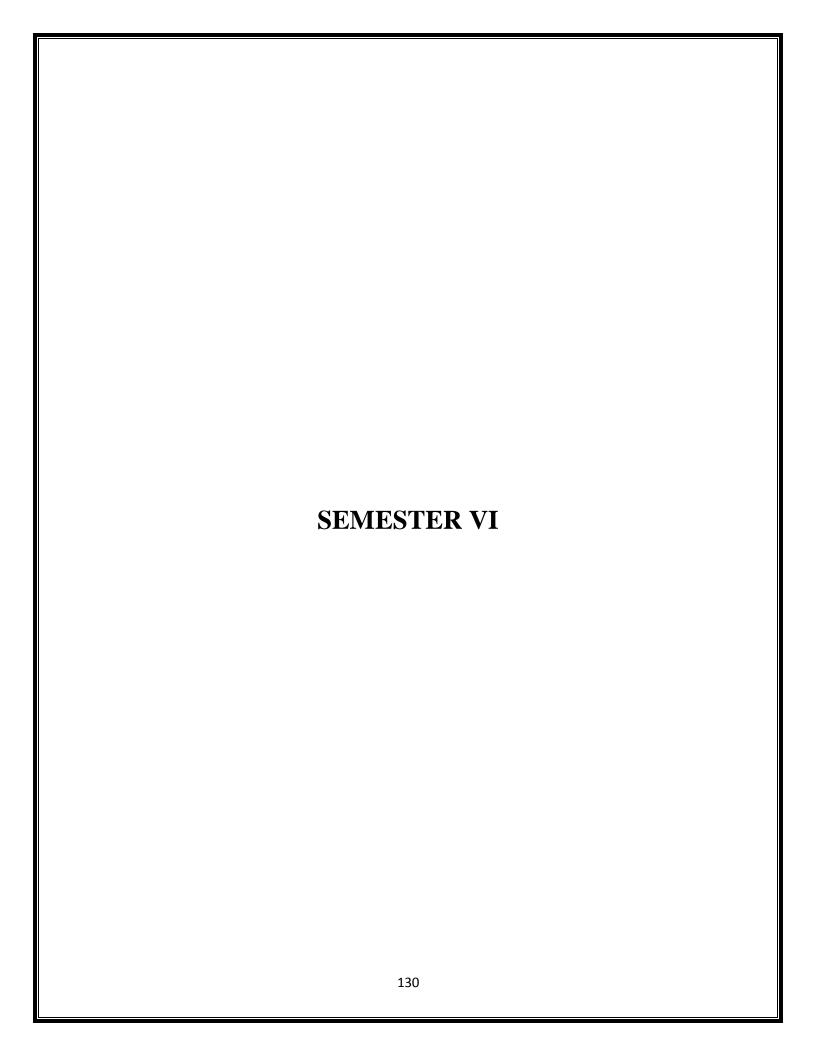
	Principles of cancer metastasis: Clinical significances of invasion,	
IV	heterogeneity of metastatic phenotype, three step theory of invasion,	6
	Proteinases and tumor cell invasion.	
	New molecules for cancer therapy: Different forms of therapy,	
\mathbf{V}	Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of	6
	aggressiveness of Cancer, Advances in Cancer detection.	

SUGGESTED READINGS:

- 1. King R.J.B., Cancer Biology, Addision Wesley Longmann Ltd, U.K., 1996.
- 2. Maly B.W.J., Virology a practical approach, IRL press, Oxford, 1987.
- 3. Dunmock.N.J and Primrose S.B., Introduction to modern Virology, Blackwell Scientific Publications.
- 4. Ruddon.R.W., Cancer Biology, Oxford University Press, Oxford, 1995.

MODEL QUESTION PAPER (CANCER BIOLOGY)

NAME	OF	THE	COURSE:	CANCER	COURSE	CODE:	DURATION: 3 Hrs
BIOLOG	ξY				21U5BTS09		
MAX MA	ARKS:	75					


SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS									
1. Cell cycle is regulated by									
a. Kinase	b. CD	Ks	c. Cycli	ns		d. cAMP			
2. Which of the	following is	tumour suppresso	r gene?						
a. MAP	b. E	GF	c. RB		d. p53				
3. Which of the following is an example for malignant tumour?									
a. Skin cancer	b. Hyperchi	romic macrocytic	anaemia	c. Lung can	cer	d. Liver cancer			
4. Which of the	following is	not a process of n	netastasis?	•					
a. Attachment & Det		b. Invasion		angiogenesis	d.	Tissue degeneration			
5. Which of the	following ch	nemical causes cer	vical cance	er?	•				
a. Asbestos	b. Benz	zapyrene	c. Ethid	ium bromide	(d. Acrylamide			
6. Continuous ex	xposure to a	sbestos causes			'				
a. Intestinal cancer	b. L	ung cancer	c. Li	ver cancer	d. Al	ll the above			
7. Development formation of		a specific site by	the format	ion active tun	nour poly	ps is induced by the			
a. Blood vessels	b. Ble	ood venous	c. Blood capillaries			d. None of the above			
8. Metastatic m	node cancer	spreading is mainl	y achieved	by	system				
a. Respiratory	b.	Nervous	c. C	irculatory		d. Excretory			
9. Development	of blood car	ncer is induced by	which of t	he following	factor?	·			
a. Epithelial	b.	Endothelial	c. C	hristmas		d. Vascular growth			
growth facto	or	growth factor	factor			factor			
10. Oncogenes a	re expressed	l from			L				
a. RB gene	b. Prot	ogenes	c. Tumor s	supressor gen	es	d. Proto oncogenes			
11. Which of the following gene is responsible for cancer development by retroviruses?									
a. RTase	a. RTase b. DNase c. Retro transposons d. None of the above				None of the above				
12. Eye cancer is	s caused due	to the mutation in	1	gene					
a. CAT b. RB c. Rho d. CRISPER					d. CRISPER				
13. Cancer cells of epithelial origin can even shed their typical qualities and characteristics and adopt a like phenotype									

a. Parenchyma	b. Cholenchyma	c. Mesenchyma	d. All the above				
	ween the tumour cell and the tumor	he surrounding stroma is extr	remely important in the				
a. Vasculogenesis b. Capillary synthesis c. A & B d. Angiogenesis							
15. The cell adhesi	on complex runs from the	apical to the basal membrane	es and composed of				
a. Tight junctions	b. Adherent jun	ctions c. Gap junction	d. All the above				
16. Which of the fo	ollowing factor is responsib	ble for the development of liv	ver cancer?				
a. EGF	b. VGF	c. HGF	d. EnGF				
17. Treatment of ca	ancer cells by targeting the	m with cytokines is mode of					
a. Chemotherapy	b. Radiation therap	c. Immunotherapy	d. Hormone therapy				
18. The early stage	of colon cancer is detecte	d due to the expression of	gene				
a. dMMR	b. MACC 1	c. MACC 2	d. dMMR 2				
19. Prostate cancer	aggressiveness can be cor	nveniently detected by					
a. MALDI	b. ESR	c.pCaP	d. NMR				
20. Mammary glan	d tumour is detected accur	rately by	-				
a. Fluorescence in technique	naging b. Electrical impedance scanning	c. Digital mammograp Computer detection system	hy & d. Nanotechnology aided based detection				

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL TH	E QUESTIONS
21. A) Explain the regulation of cell cycle	(OR)
B) Write short notes on signal switches	
22. A) Write short notes on chemical carcinogenesis	(OR)
B) Write briefly on the metabolic consequences of carcinogenesis	
23. A) How will you identify oncogenes	(OR)
B) Write shortly about the growth factors involved in the transformat	ion of normal cell in to cancer
cell	
24. A) Write briefly on the clinical significances of invasion	(OR)
B) Write about three step theory of invasion	
25. A) Explain the different forms of cancer therapy	(OR)
B) Write short notes on radiation cancer therapy	

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give	e a detailed account on tumour suppressor gene
27. Giv	e a detailed account on metabolism of carcinogenesis
28. Wri	te an essay on retroviral oncogenes
29. Exp	lain the basic principles of cancer metastasis
30. Wri	te elaborately on the detection and prediction of cancer

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

BIOPROCESS TECHNOLOGY

: Core VII **Total Hours** Paper : 75 Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 Paper Code : 21U6BTC07 External : 75

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in	K1 & K2
	downstream processing	
CO2	Understand the concepts of designing fermentor both in laboratory	K1, K2 & K3
	and pilot scale and its mode of operation	
CO3	Gaining added information on the production of value added products from microorganisms	K4, K5 & K6
CO4	Propagate mass production of agriculturally important value added	K4, K5 & K6
	Products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	S	M	S
CO3	S	S	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	BASICS OF BIOPROCESS TECHNOLOGY: Introduction,	
	Definition, Scope and applications of Bioprocess. Introduction to	
	fermentation and downstream processing technology. Isolation and screening of industrially important microorganism. Strain improvement, preservation of microorganisms.	15

II	DESIGN OF FERMENTOR: Fermentation types. Design of				
	fermentor – parts and its functions. Types of Bioreactors (Air lift,				
	cyclone, column, packed tower) Mixed bioreactor systems.				
	Monitoring and controlling Bioreactors (pH, temperature and	14			
dissolved oxygen), Instrumentation for process control - Heat and					
	mass transfer, oxygen transfer mechanism. Principles of upstream				
	processing – Media preparation, Inocula development and				
	sterilization.				
III	DOWN STREAM PROCESSING: Basic principles of Down-				
	stream processing – microbial cell disruption methods				
	(Centrifugation, filtration fermentation broths). Cell separation				
	techniques (Ultra filtration, Liquid-Liquid extraction)	15			
	Chromatographic techniques: (Column & Ion exchange), Physical				
	methods (Distillation, Fluid extraction and Electro dialysis).				
	Bioprocess measurement and control system with special reference to				
	computer aided process control.				
IV	INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and				
	applications - organic acids (Citric acid & acetic acid), Enzymes	16			
	(Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins	10			
	(ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).				
V	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance				
	of micro algae and its cultivation (Spirullina & Chlorella). Mass				
	production of Biofertilizer (Rhizobium & Azolla). Mushroom	15			
	cultivation (Milk and button mushroom). Production and applications				
	of Biopesticide (Bacillus thuringiensis).				

SUGGESTED READINGS:

- 1. Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS TECHNOLOGY)

NAME OF THE COURSE: BIOPROCESS TECHNOLOGY	COURSE CODE: 21U6BTC07	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS								
1. Fed batch process belong to								
a. Closed system	b. Continuous		c. Intermediate fed			d. Discontinuous		
	system			batch syste			system	
2. Soyameal, peptor	ne and tryptone are us	sed as	s the	e source of				
a. Carbon	b. Carbon & nitrog			c. Mineral			d. Nitrogen	
3. Batch sterilization	n cycle time consists	of						
a. Two phases	b. Three phases		С	. Four phases		d. Fi	ive phases	
4. Protected fermen	tation uses which of t	he gi	iven	below	-			
a. Sterilized media	b. Pasteurized	c.		steurized media		d. U	nsterilized media	
	media			ith low pH				
5. A spray dryer wo	rks on the principle o	f						
a. Contact drying	b. Sublimation		c	. Lyophilisation	1	d	. Adiabatic drying	
6. Which is not a from	uit or a vegetable base	ed fei	rme	nted product?				
a. Wine	b. Beer		c. Vinegar			d. Sauerkraut		
7. Which of the foll	owing is an upstream	proc	ess'	?				
a. Product	b. Product		c. Media			d. Cell lysis		
recovery	purification			formulati	on			
8. Pyrogen free wat	er is related to							
a. Endotoxin	b. O-polysaccharide		c. Peptidoglycan			e. Teichoic acid		
9. Which one is dov	vn steaming process?					•		
a. Product recovery	b. Screening	c. M	Iedi	a formulation	d	. Ster	rilization of media	
10. Which is the fol	lowing is not a physic	cal m	eth	od for the cells	ruptur	ing?		
a. Milling b. H	omogenization	. Ult	ra s	onication	d.	Enz	zymatic digestion	
11. Ethanol ferment	ation is carried by		-					
a. <i>Lactobacillus</i>	b. E.coli	c. S	Sacc	haromyces cere	evisiae		d. Bacillus sp.	
12. What is the perc	entage range of varia	tion	in re	ecovery costs?				
a. 50-55%	b. 0-20%		c. 5-7%			d. 15-75%		
13. Cell lysis becomes an important operation if the product is								

	a. Extra cellular	b. Heat labile		c. Toxic		d. Intra cellular			
	14 Bacillus thuringiensis is used as								
	a. Insecticide	b. Fungicide	c.	Microbicidal agent		d. Rodenticide			
	15. Yeast cells are g	ood sources of							
a.	Vitamin A&B	b. Vitamin A&	ζD	c. Vitamin B&I)	d. All the above			
	16. The sugar concer	ntration of molasses v	ised	in fermentation ranges	betwe	een			
	a. 10-18%	b. 20-30%		c. 4-5%		d. 30-38%			
	17. The protein found in milk is								
	a. Rennin	b. Pepsin		c. Casein		d. Trypsin			
	18. Spirullina is a								
	a. Edible fungus	b. Bio fertilizer		c. Biopesticidal d		l. Single cell protein			
	19. What is the scien	ntific name of mushro	om?		•				
a.	Funaria sp.	b. <i>Dryopteris</i> sp.		c. Agaricus campestris		d. Fergus sp.			
	20. Agar-Agar is obt	ained from							
	a. Diatoms	b. Gracilaria		c. Fomes		d. Laminaria			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS					
21. A) State the scope and application of bioprocess technology	(OR)				
B) Write notes on strain improvements					
22. A) Explain about airlift bioreactors	(OR)				
B) Illustrate the packed tower bioreactor with its uses.					
23. A) Briefly mention the principles and uses of centrifugation	(OR)				
B) Elaborate on cell separation techniques					
24. A) List out the application of amylases	(OR)				
B) Explicate the production and applications of lysine					
25. A) Highlight the importance of bio fertilizers	(OR)				
B) What are mushrooms? Explain its cultivation methods					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. How will you develop an improved strain through recombination technique?
27. Illustrate the criteria for design of fermenters and specify its functions.
28. Explain basic principles of down streaming process
29. Explain the large scale production of penicillin and state its uses.
30. Describe the production and application of <i>Bacillus thuringiensis</i> .

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ANIMAL BIOTECHNOLOGY

: Core VIII **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 5 Internal : 25 Paper Code : 21U6BTC08 External : 75

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understanding the development of animal cell culture techniques and basic concepts of cell lines	K1 & K2
CO2	Gain knowledge on cell culture, animal cell growth dynamics	K1 & K2
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques	K3 & K4
CO4	Knowing about the principles of ethical, legal and public issues on using genetically animals in producing value added products	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15
II	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15

III	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types, vectors in gene therapy. Production and development of animal vaccines for FMD, BTD, Rabies and anthrax.	15
V	Public aspects of Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and Rabbits.	15

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehonology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: ANIMAL BIOTECHNOLOGY	COURSE CODE: 21U6BTC08	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS										
1. The growth of animal cells in vitro in a suitable culture medium is called?										
a. LB mediu	b	o. MS medi	MS medium		c. N	ITCH"s medium		d. MEM medium		
2. Who introduced HAT medium?										
a. Littlefield			b. Har	n		c.	Amold	(d. Rous and Jones	
3. Name the organism	• •			is pro	epared	by in	oculating directly	y fro	m the tissue of an	
a. Primary cell cu	ılture	b	o. Secondai	y ce	ll cultı	ıre	c. Cell lines		d. Transformed cell culture	
4. What is co	ell line	?								
a. Multilayer culture	b	. Tran	nsformed co	ells	c. I	Multip cells	le growth of	d.	d. Sub culturing of primary culture	
5. Which of	the fol	llowin	ng is NOT	the p	art of	growt	h medium for an	imal	culture?	
a. Starch	b	. Seri	um	n c. Carbon source		source		d. Inorganic salts		
6. Which of	the fol	llowin	ng is NOT	the n	najor f	unctio	on of the serum?	•		
a. Promotion			b. Stimulate						d. Provide	
and bulb	torma	ation	}	growth		cell attachm	ent	transport proteins		
7. For cultur	ing, pl	lasma	from the a	dult	chicke	n is p			n plasma because	
a. It forms a	clear a	and	b. It	is to	o opa	que	c. It doesn't		d. It forms a	
solid coa	_	n even	1				produce		semi solid	
after dilu 8. Disaggreg		of cell	ls can be a	chies	ed by		solid clo	ots	coagulum	
	,41115								1 411.1	
a. Physical disruption	n	b.	Enzymatic digestion	*			eating with chelating gents		d. All the above	
		f orga			oe divi		n the basis of em	ploy		
a. solid medium b. liquid medium c. semi-solid medium d. both (a) and (b)										
10. What are	10. What are the main constituents of culture for animal cell growth?									
a. Glucose a	a. Glucose and Glutamine b. Growth factors c. Cytokines d. All of the above									
11. In anima	11. In animal cell culture, particularly mammalian cell culture, transformation means:									

a. Uptake of new genetic material	b. Phenotypi modificati in culture	c ons of cells	c. both (a) and (b)	d. Release of genetic information
healthy. After an		s found that	there is a lot of la	cells do not look very
a) Ethyl alcohol is being produced in excess	much oxyge	b) The cells have too much oxygen		d) The cells do not have enough oxygen
	nes can be cultured o-cultured indefinite			apparently develop the re called
a) established cell lines	b) primary	cell lines	c) secondary cell lines	d) propagated cell lines
14. Higher dissolved	oxygen concentrati	on in the cu	lture media are to	xic and leads to
a) DNA degradation	b) lipid per oxidation		metabolism is greate	d) all of the above
15. Which of the fol	owing is the techni	que used for	r the embryo cultu	ire?
a) Organ cultures on plasma clots	b) Organ cultures on agar		c) Whole embryo cultures	d) All of these
16. The major pr from organs is th	oblem associated w	ith the isola	tion of free cells a	and cell aggregates
a) releasing the cells from their supporting matrix	b) inhibiting the cells from their supporting matrix		c) disintegrating the cells from their supporting matrix	
17. The technique of	organ culture may	be divided o	on the basis of emp	oloying
a) solid medium b)	liquid medium	c) both	(a) and (b)	d) semi-solid medium
18. An established co			s been sub-cultur	
a) 70 times at an interval of 3 days between subcultures	'	b) 40 times at an interval of 3 days between subcultures		d) 50 times at an interval of 3 days between subcultures
19. In animal cell cul	ture, particularly m	ammalian c	ell culture, transfo	rmation means
a) Uptake of new genetic material	b) Phenotypic modifications		c) both (a)and (b)	d) Release of genetic information
a) Slide culture b) C	arrel flask culture		que? test tube culture	d) Adherent primary culture

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write notes about primary cell culture techniques. (OR) B) Explain the techniques and application in organ culture. 22. A) Write a detailed account on different types of media used in animal cell culture. (OR) B) Explain the behaviour of cell division and cell kinetics.

23. A) Explain the principle and methodology of PCR Techniques	(OR)
B) Give detailed account of the mechanism application of Microinjection	
24. A) Explain the principle, methodology and application of embryo transfer technology	(OR)
B) Write detailed about production and development of animal vaccines.	
25. A) Explain various strategies of ethical issues in Animal Biotechnology.	(OR)
B) Discuss about a special features and applications of Stem cell culture.	

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26.	Write a detailed account on Animal cell culture Steps and maintenance?
27.	Explained in detail about the Animal cell culture Media and Balanced salt solutions?
28.	Describe about the Gene Transfer Techniques in Detail?
29.	Production and development of Animal vaccines with Good examples?
30.	Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 21U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic	K1, K2 & K3
	acid and SCP production. Prepare animal cell media and its	
	sterilization techniques.	
CO2	Understand in determining the microbial growth. To filter sterilize	K1 & K2
	the sensitive media ingredients and filtration technique.	
CO3	Estimating the production of single cell protein by biochemical	K2, K4 & K5
	method. Prepare suspension culture and cultivating viruses in	
	embryonated egg.	
CO4	Analysing milk qualitatively and separating aflatoxin fungal species	K2, K4 & K5
	by chromatographic method. Observation of different types of	
	animal cell lines.	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	M	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production of alcohol from grapes	
3	Production and estimation of citric acid from Aspergillus species	10
4	Estimation of alcohol from grapes	10

5	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by	10
	Lowry's method	10
6	Immobilization of amylase by entrapment method	
7	Determination of bacterial growth by growth curve method	10
8	Determination of Thermal Death point (TDP) of the bacterial sample	10
9	Quality analysis of milk	
	a. MBRT test and	10
	b. Rezasurin test	10
10	Analysis of fungal aflatoxin by TLC	
11	Enumeration of microorganisms from bread	5
12	Production of alcohol from grapes	
13	Production and estimation of citric acid from Aspergillus species	5
14	Estimation of alcohol from grapes	5
15	Production and estimation single cell protein from Azolla and Spirullina by	
	Lowry"s method	5
16	Immobilization of amylase by entrapment method	
17	Determination of bacterial growth by growth curve method	10
18	Determination of Thermal Death point (TDP) of the bacterial sample	10
19	Quality analysis of milk	
	c. MBRT test and	_
	d. Rezasurin test	5
20	Analysis of fungal aflatoxin by TLC	

MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
BIOPROCESS TECHNOLOGY AND	21U6BTCP07	
ANIMAL BIOTECHNOLOGY		
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12		Obs: 5	Res: 3	Total: 20 MARKS
1. (i) I	Estimate the a	amount of alcohol f	rom the given fruit s	sample (A) /Isolate genimice
Di	NA from the	given animal tissue	sample (A)	(OR)
(ii) Estimate the	e amount of citric a	cid from the given b	atch culture medium (A)/
Perform s	ingle cell sus	pension culture from	m the given animal o	cell sample (A) (OR)
(ii	i) Estimation	single cell protein	from the given samp	ole (A) by Lowry"s method/
Perform v	viability test o	of the given animal	cell suspension (A)	sample
MINOR	EXPERIME	NT		
Exp: 6		Obs: 2	Res: 2	Total: 15 MARKS
2. (i)) Perform imi	mobilization of the	given enzyme sampl	le (B)/ Inoculate the given
in	fectious samp	ole in the embryona	ted egg sample (B)	(OR)
(ii) Determine t	thermal Death point	t (TDP) of the bacter	rial sample (B)/ Perform
mo	onolayer cult	ure from the given of	chick embryo fibrob	last cells (B)(OR)
(ii	i) Determine	the quality of the g	iven milk sample (B	b) by MBRT/Resazurin test/
Di	isintegrate the	e given monolayer o	culture (B) by appro	priate method
SPOTTE	RS			(5 X 4 = 20 MARKS)
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE 5 MARKS				
TOTAL				60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

GENOMICS AND PROTEOMICS

: Elective II **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 4 Internal : 25 Paper Code : 21U6BTE04 External : 75

PREAMBLE

This paper deals with the basic principles of genome and its manipulating strategies end up with the development of novel candidate gene.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic structure of genome map in prokaryotic and	K2 & K3
	eukaryotic organisms	
CO2	To understand the mapping of different regions of DNA and its amplification protocols	K2 & K3
CO3	To acquire knowledge on different tools used in the fields of Proteomics	K2, K3 & K4
CO4	To explore with the different application of proteomics in terms of protein mapping	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Genomics -Overview of Genome anatomies. Prokaryotic Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem repeats, Transposons and transposable elements.	15
п	DNA sequencing methods : Shot gun sequencing — Contig assembly. Techniques for gene location: ORF findings, Northern Hybridization, RT-PCR, RACE, S1 nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray technology	15
III	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical	15

	Mapping, Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene therapy for inherited disorders and infectious diseases and ethics.	
IV	Tools of Proteomics : The proteome – the life cycle of protein-analytical techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide Mass finger printing.	15
V	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific features. Protein expression profiling. Identifying protein - protein interactions. Mapping of protein modifications.	15

SUGGESTED READINGS

- 1. Terence A Brown.(2002) Genomes, 2nd Edition, Bios Scientific Publishers.
- 2. Tom Strachan and Andrew P Read (1999) Human Molecular Genetics, 2nd edition, Bios Scientific Publishers.
- 3. Daniel C. Liebler (2002) Introduction to Proteomics, tools for the New biology- Humana press. Totowa, NJ.
- 4. Pennington.S, M. Dunn (2001) Proteomics: From Protein Sequence to Function 1 edition Bios Scientific Publishers.

MODEL QUESTION PAPER (GENOMICS AND PROTEOMICS)

NAME OF THE COURSE: GENOMICS AND PROTEOMICS	COURSE CODE: 21U6BTE04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. The study of full con	nplement of proteins ex	pressed by a genome is	calle	ed	
a. Proteome	b. Proteomics	c. Genomics		d. Protein formation	
2. The effects of protei	2. The effects of protein on an entire organism is described in				
a. Phenotypic function	c. Molecular function	d. S	Structural genomics		
-	ical activity of a protein				
a. Structural genomics	o. Molecular function	c. Cellular function	(d. Phenotypic function	
4. The network of inter	actions engaged in by p	protein at cellular level is	s des	cribed in	
e. Molecular function	F. Phenotypic function	g. Structural genomic	es	h. Cellular function	
5. The goal of structura	al proteomics project is	to			
a. Crystallize and determine the structure of proteins	b. Identify and sequence of all the genes present in the human body c. Introduce new genes to human beings			d. Remove disease causing genes from humans	
6. Conserved gene order	er can be termed as				
a. Ortholog b. Synteny c. Paralog d. Microarray					
7. Sequencing of genor	mic DNA is included in				
a. Structural genomics	b. Molecular function	c. Cellular function	d.	Phenotypic function	
8. Genes of different spother are	pecies, possessing a clea	ar sequence and function	nal re	elationship to each	
a. Ortholog	b. Synteny	c. Paralog		d. Microarray	
9. Rawolfia serpentina techniques is usefu		r the threat of extinction	ı, wh	ich of the following	
a. Genetic engineering	c. In vitro culture c.	DNA fingerprinting	d. F	Hybridoma technology	
10. Transgenic organis	ms are generally				
a.Extinct organisms b. Naturally occurring and endemic c. Produced by plant breeding technique transfer technology					
11. Genes of same spec	cies, similarly related to	each other are			
a. Paralog	o. Ortholog	c. Microarray		d. Synteny	
12. Dolly, the first anim	nal produced by cloning	g is a		•	
a. Cow	b. Sheep	c. Rat		d. Dog	

	13. Collection of microscopic DNA spots attached to solid surface are?					
	a. Ortholog b. Microarray c. Synteny d. Paralog					
	14. Gene therapy is	a technique preferred to cure	inherited diseases by			
a.Repairing the faulty gene b. Introducing the correct copy of the gene c. Adding new cells to the body d. I				to the body d. PCR		
	15. Which of the fol	lowing is a repressible operor	1?	,		
a.	Lac	b. Trp	c. Gal	d. glu		
	16. Explant can be a	,				
a.	Cut part of the plant used in tissue culture		c. Source of growth regulators added to media	d. Solidifying agent		
	17. Which of the fol	lowing is used to transfer gen	es in plants?			
a.	Ti plasmid	b. pBR 322	c. EcoR 1	d. pUC 18		
	18. Which of the fol	lowing bacterium is used for	gene transfer in plants?			
a.	Agrobacterium	b. Azotobacter	c. Rhizobium	d. E.coli		
	19. Which of the fol	lowing is an inducible operon	?			
a. Glu b. Lac c. Gal d. trp		d. trp				
	20. Integrated state of DNA from other organisms in host DNA is termed as					
a.	Plasmids	b. Phasmids	c. Episomes	d. cosmids		
				·		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUES	TIONS	
21. A) Elaborate on the mechanism of DNA Gyrase in nucleic acid replication (OR)		
B) What are lampbrush chromosomes? State its special features.		
22. A) How DNA sequencing is achieved by shot gun method?	(OR)	
B) Write notes on Pharmacogenomics.		
23. A) Enlist the inherited disorders and its treatment by gene therapy	(OR)	
B) Derive the protocol for human pedigree analysis.		
24. A) State the features of MALDI proteome analysis.	(OR)	
B) Briefly write about peptide mass finger printing.		
25. A) State the applications of Global Biochemical Network.	(OR)	
B) Affirm about the micro array techniques for proteins.		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Illustrate the different levels of packaging of DNA in eukaryotes.
27. State the mechanism of gene expression using RT-PCR technique.
28. Describe the implication of Human Genome Project.
29. Explain the principle, process and applications of 2-D gel electrophoresis.
30. Elucidate the principle and mechanism of mass spectroscopy in the analysis of metabolomics.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II

BIOPHYSICS AND BIOINSTRUMENTATION

Total Hours Paper : Elective II : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 4 Internal : 25 Paper Code : 21U6BTE05 : 75 External

PREAMBLE

This paper deals with the basic instrumental principles leading to biological research outputs. It also describes the biophysical concepts of different biomolecules.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Explores student towards the biophysical properties of nucleic acids Proteins	K1 & K2
CO2	Acquiring knowledge with the basic concepts of chromatographic Techniques	K1, K2 & K3
CO3	Acquiring knowledge with the basic concepts of spectroscopic Techniques	K3, K4 & K5
CO4	Exploring towards the use of radiation principles in the field of biomedical science	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	M	M
CO3	S	S	M	S	S
CO4	S	S	S	S	M

UNIT	CONTENT	HOURS
I	Biophysics Of Nucleic Acids: Transitional angles and their ranges. The pseudo-rotation cycle, syn – anti orientation of glycosyl bond. Geometries of Watson- Crick and Hoogsteen base pairs.	10
II	Biophysics Of Proteins: Amino acids – Conformations. Phi and Psi angles. Ramachandran plot. Peptide bond isomerisation. Disulphide bonds, electrostatic forces, van der waals interaction and hydrogen bonds.	12

	Analytical techniques: Principles and applications of Chromatography				
III	III (Paper, thin-layer, column, GC-MS, GLC, Ion exchange chromatography, HPLC). Principles and applications of spectroscopy. (UV- Vis, NMR, Raman				
	spectroscopy, AAS and X-ray crystallography).				
TX 7	Separation techniques: Introduction to electrophoresis. Starch-gel,	12			
IV	polyacrylamide gel (native and SDS-PAGE), agarose-gel electrophoresis, pulse	13			
	field gel electrophoresis, immuno- electrophoresis, isoelectric focusing,				
	Western blotting				
	Radiation Biophysics: Basic concepts of radiography. Measurement of				
\mathbf{V}	radioactivity: GM counter, Liquid and solid scintillation counter. Advantage	10			
	and disadvantage of radio active compounds.				

SUGGESTED READINGS

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi
- 2. Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency. Biophyscial chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 3. Biophysical chemistry Cantor and Schinmel. 2002
- 4. Biophysical chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 5. Biophysics Arora, First edition, Himalaya Publications, New Delhi
- 6. Palanivelu, P (2001). Analytical Biochemistry, and separation techniques, Tulsi Book Centre. Madurai.

MODEL QUESTION PAPER (BIOPHYSICS AND BIOINSTRUMENTATION)

NAME OF THE COURSE: BIOPHYSICS AND BIOINSTRUMENTATION	COURSE CODE: 21U6BTE05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. The right handed double helix of DNA contains base pairs per turn						
a. 9.5				d. 12.5		
2. Which of the followi to the other in the sa		cor	nsidered as a rotation of	of one base with respect		
			-	l. Stagger		
3. The twisting degree of	of B form of DNA is ab	out				
a. 60°	o. 90°		c. 120°	d. 360°		
4. When the ends of a p the strands are		l hel	lical DNA are joined s	so that it forms a circle		
a. Topologically b	. Geometrically	c	. Physically	d. Isometrically		
5. A typical stability o	f a protein domain rang	ge fr	om to kcal/r	mol		
a. 2, 5 b. 3, 6)		c. 3, 7	d. 2, 6		
	6 spectroscopic suggest that lipid binding by apo lipoproteins is mediated via the molten globule-like state in plasma					
a. NMR	a. NMR b. CD		c. AAS	d. Raman		
7. The most common ty	pe of protein folding is	des	scribed by the principl	e of		
a. Tunnel landscape	b. Folding funnel	c.	. Realistic landscape	d. Levinthal paradox		
8. Which of the following angle of proteins folding is essentially flat and fixed to 180°?						
a. Alpha	b. Beta		c. Gamma	d. Omega		
9. Retention factor is re	lated to					
		a &		I. GC		
The sample prepare quantitatively determ				at ionic species are technique is employed?		
a. MS b. G	C	c	AAS	d. Ion exchange		
11. Elemental species of the given sample is determined by						
a. TLC b. GLC			c. GC-MS	d. AAS		
12. Cationic and anioni	12. Cationic and anionic resins are used in					
a. PC	b. TLC		c. AAS	d. IEC		
13. The substances found in colourless solutions can be measured by						
a. Colorimeter	b. UV-VIS		c. NMR	d. X-ray		

14. Sweep generator is used in						
a. NMR	a. NMR b. X-ray c. UV-VIS d. Raman spectrosc		ectroscopy			
15. Nickel oxide is use	ed as monochroma	tor in				
a. X-ray crystallography	b. Raman spectros	сору	c. U	IV-VIS	d. XRD	
16. Activation energy	of a given system	can be co	nveniently	determined b	y	
a. XRD	a. XRD b. NMR c. AAS d. UV-VIS			d. UV-VIS		
17. Becquerel is a unit	17. Becquerel is a unit of measurement of					
a. Fossil age b. Radioactivity c. Carbon dating d. None of the			d. None of the above			
18. Which of the follo	wing particle has r	nedium e	nergy?	,		
a. Alpha b. Beta			c. Gamı	ma	d. Omega	
19. GM counter is used for measuring						
a. Radiation frequency b. Ionizing radiation c. Effect of radiation d. Gamma radiation						
20. The main substance used for nuclear imaging in cardiology is						
a. Thallium isotope	a. Thallium isotope b. Boron isotope c. Uranium isotope d. Tritiated water				d. Tritiated water	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS				
21. A) Write shots notes on syn – anti orientation of glycosyl bond (OR)				
B) Write short notes on transition angles of nucleic acids				
22. A) Write shot notes on peptide bond isomerization (OR)				
B) Write notes on electrostatic forces involved in protein stability				
23. A) Explain the applications of Thin layer chromatography (OR)				
B) Explain the principle of HPLC				
24. A) Explain the instrumentation of Raman spectroscopy	(OR)			
B) List out the applications of atomic absorption of spectroscopy				
25. A) Explain the working principle of solid and liquid scintillation counter	(OR)			
B) Briefly explain the disadvantages of radio active compounds				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on the geometrics of Watson & Crick model.
27. Give detailed account on Ramachandran plot
28. Write an essay on the working principle, instrumentation, applications, advantages and disadvantages of GC-MS
29. Give a detailed account on NMR. Add a note on its applications in the fields of medicine and defence
30. Write an essay on GM counter

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II ENVIRONMENTAL BIOTECHNOLOGY

Paper : Elective II **Total Hours** : 75 **Exam Hours** Hours/Week : 5 : 03 Credit : 4 Internal : 25 Paper Code : 21U6BTE06 External : 75

PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To provide knowledge in environmental impacts in biotechnology	K1 & K2
CO2	To understand the concepts in various bioremediation techniques related environmental aspects	K2 & K3
CO3	To impart new thoughts about biotechnological applications on environmental issues	K3 & K4
CO4	To create awareness regarding the environmental policies for the improvement of environmental safety	K3, K4 & K5
MADDI	NO WITH DEACE AMME OUTCOMES	

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Environment - basic concepts and issues, global environmental problems - ozone depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management.	15
11	An overview of atmosphere, hydrosphere, lithosphere and anthrosphere - environmental problems. Environmental pollution - types of pollution, sources of pollution, measurement of pollution, methods of measurement of pollution, fate of pollutants in the environment, Bioconcentration, bio/geomagnification.	

Ш	Microbiology of waste water treatment, aerobic process - activated sludge, oxidation ponds, trickling filter, towers, rotating discs, rotating drums, oxidation ditch. Anaerobic process - anaerobic digestion, anaerobic filters, upflow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar and antibiotic industries	15
IV	Xenobiotic compounds - organic (chlorinated hydrocarbons, substituted simple aromatic compounds, polyaromatic hydrocarbons, pesticides, surfactants) and inorganic (metals, radionuclides, phosphates, nitrates). Bioremediation of xenobiotics in environment - ecological consideration, decay behavior and degradative plasmids, molecular techniques in bioremediation	15
V	Role of immobilized cells/enzymes in treatment of toxic compounds. Biopesticides, bioreactors, bioleaching, biomining, biosensors, biotechniques for air pollution abatement and odour control. Environmental significance of genetically modified microbes, plants and animals.	

SUGGESTED READINGS

Reference

- 1. Waste water engineering treatment, disposal and reuse, Metcalf and Eddy Inc., Tata McGraw Hill, New Delhi.
- 2. Environmental Chemistry, AK. De, Wiley Eastern Ltd, New Delhi.
- 3. Introduction to Biodeterioration, D.Allsopp and K.J. Seal, ELBS / Edward Arnold.
- 4. Bioremidation, Baaker, KH and Herson D.S., 1994. Mc.GrawHill Inc, NewYork.
- 5. Industrial and Environmental Biotechnology Nuzhat Ahmed, Fouad M. Qureshi and Obaid Y. Khan, 2006. Horizon Press.
- 6. Environmental Molecular Biology, Paul. A, Rochelle, 2001. Horizon Press.

MODEL QUESTION PAPER (ENVIRONMENTAL BIOTECHNOLOGY)

NAME OF THE COURSE: ENVIRONMENTAL BIOTECHNOLOGY	COURSE CODE: 21U6BTE06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. Phytoplanktons pr	1. Phytoplanktons provide food to				
a. Whales	b. Shrimp		c. Snails		d. All the above
2. The term biodiversity hotspot specifically refers to biologically rich areas around the World					y rich areas around the
a. 15	b. 25	c. 35		d.	45
3. The upper reaches	s of the Himalayas form	ing part	of the		
a. Indomalaya ecozo	one b. Palearctic eco	ozone	c. Indo-Burma	L	d. Sundaland
4. Endangered (EN	N), as categorized by		•		
a. LC	b. IUCN		VU		d. CR
	per cent of the tatensive in situ conserva				
a. 4.7	b. 7.7	C	. 5.7		d. 6.7
6. New policy on see	ed development was for	mulated	by the ministry of	of	
a. Science and techn	ology b. Agriculture	c. E	xternal affairs	d. N	lone of the above
7. The Convention o	f biodiversity was open	ed for s	ignature at the Ea	rth s	ummit in
a. 5 th June 1992	a. 5 th June 1992 b. 5 th August 1992 c. 5 th June 1995 d. 5 th August 1995				l. 5 th August 1995
8. The Cartagena Prowas adopted in	_	he Conv	vention, also knov	vn as	the Biosafety Protocol,
a. January 2000	b. February 200	00	c. March 2000)	d. June 2000
9. Arsenic contamina	ation in soil is recovered	d by			
a. Bioleaching b	. Phytoremediation	c. Bior	emediation	d.	Bio feasability
10. Heavy metal tox Systems	icity increases the produ	action o	fthereby	dec	reasing the antioxidant
a. ROS b.	. Hydrogen ions	c. C	rganic nutrients	d	l. Oxygen
	ed as the removal of me by low cost biological m		etalloid species, o	comp	oounds and particulates
a. Bioleaching	b. Bioremediation	С	. Biosorption		d. Phytoremediation
12. Algae are of spec	cial interest in search fo	r and th	e development of	new	biosorbents materials
due to their and their ready availability in practically unlimited quantities in the seas					
and oceans					
a.High filtration capacity	b. High reflection capacity		igh Adsorption capacity		d. High sorption capacity
capacity	capacity	'	apacity		capacity

	13. The bacteria present in the pond decompose the biodegradable organic matter and release				
ŀ	a. CO ₂	b. Ammonia		c. Nitrate	d. All the above
•	14. Laggons are also ca	alled			
•	a. Aerobic ponds b	Oxidation ponds	c. Fa	cultative ponds	d. Aerated ponds
-		industrial wastewate	a typers using		treatment process for ogical floc composed of
Ì	a. Viruses	b. Fungi		c. Helminthes	d. Protozoa
•	16. Research performer resulted in the isola			nental Microbiology h t nutrient removal pro	<u> </u>
•	a. Comamonas denitrificans	b. Brachymonas denitrificans		c. Aeromonas hydrophila	d. All the above
				nerally not successful the tin the waste, and	because of high capital, high percentage of
	a. Incineration	b. Land filling	c.	Source reduction	d. Composting
•	18. Which of the follow	ving is NOT a compo	nent of	bio compost?	
	a. Carbon	b. Nitrogen	C	c. Oxygen	d. Hydrogen
Ì	19. The most common	eath worm used for v	ermicor	nposting is	
b.	a. Eisenia foetida c.	Lumbricus terrest	ris	Lumbricus rubellus	Perionyx excavatus
υ.	20. The most common temperatures of		osting s	ystemsį, red worms fee	d most rapidly at
•	a. 10–25 °C	b. 15–20 °C		c. 15–25 °C	d. 10–20 °C

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write short notes on hot spots of Biodiversity	(OR)	
B) Write short notes on endangered and threatened species		
22. A) Write short notes on cryopreservation	(OR)	
B) Write short notes on Biodiversity Conservation		
23. A) Write short notes on Bioleaching of heavy metals	(OR)	
B) Write short notes on Commercial biosorbents		
24. A) Write short notes on activated sludge treatment	(OR)	
B) Write short notes on percolating filters		
25. A) Write short notes on composting systems	(OR)	
B) Write short notes on vermicomposting		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Give a detailed account on Aquatic common flora and fauna in India	
27. Give a detailed account on tissue culture and artificial seed technology	

- 28. Give a detailed account on Bioremediation
- 29. Give a detailed account on Waste water Treatment
- 30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - IV

LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U6BTS10	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Develop the practical concepts of mushroom, spirullina, sericulture	K3, K4, K5 & K6
CO2	Develop the practical concepts of apiculture, aquaculture and vermicomposting technology	K3, K4, K5 & K6
CO3	Develop the practical concepts of wine production and sauerkraut production	K3, K4, K5 & K6
CO4	Develop the practical concepts of biogas production	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	M	S
CO3	M	S	S	M	S
CO4	M	S	S	M	L

Ex.no	CONTENT	HOURS
1.	Mushroom cultivation	4
2.	Azolla cultivation	4
3.	Spirullina cultivation	4
4.	Sericulture	4
5.	Epiculture	4
6.	Aquaculture (Fish/Prawn/Pearl)	4

7.	Vermicomposting	4
8.	Biogas production	4
9.	Sauerkraut production	4
10.	Wine production	4

MODEL QUESTION PAPER (LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
ENTREPRENEURSHIP IN	21U6BTS10	
BIOTECHNOLOGY		
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Azo	<i>lla</i> cultivation using the	given sample (A)	(OR)	
(ii) Perform Spi	rullina cultivation using	the given sample (A)	(OR)	
(iii) Peform ver	mi composting using the	e given earth worm samp	ole (A)	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform win	2. (i) Perform wine production using the given fruit sample (B) (OR)			
(ii) Perform biogas production using the given raw sample material (B) (OR)			rial (B) (OR)	
(iii) Perform sa	(iii) Perform sauerkraut production using the given cabbage sample (B)			
SPOTTERS	SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$			
3. Identify the given	n spotters C, D, E, F & C	G and comment on them		
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $			5 = 5 MARKS)	
VIVA-VOCE	VIVA-VOCE 5 MARKS			
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - IV

NANOBIOTECHNOLOGY

Total Hours : 40 Paper : SBEC IV Hours/Week Exam Hours : 2 : 03 Credit : 25 : 2 Internal : 75 Paper Code : 21U6BTS11 External

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	Know the concepts of fabrication of bio molecular structures	K3 & K4
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field medicine, health care and drug discovery	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS	
I	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.		
II	Nanomaterials and its properties: Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.		
III	Fabrication and Analysis of biomolecular nanostuructures: Atomic Force Microscopy, Scanning Probe Electron Microscopy and	8	

	Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.	
I	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	8
,	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	8

SUGGESTED READINGS:

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

${\bf MODEL\ QUESTION\ PAPER\ (NANOBIOTECHNOLOGY)}$

NAME OF THE COURSE: NANO BIOTECHNOLOGY	COURSE CODE: 21U6BTS11	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. Who first used the	term nano biotechnology	y?			
a. Norio taniquchi	b. Richard Feynma		c. Eric Drexl	er	d. Sumio
2. 10 nm =m					
a. 10 ⁻⁸	b. 10 ⁻⁹		c. 10 ⁻⁷		d. 10 ⁻¹⁰
3. The size of the na	no particles range from_		nm	•	
a. 100 to 1000	b. 0.1 to 10		c. 1 to 10		d. 1 to 100
4. Nano science can b	e studied with the help of	of			
a. Quantum mechanics	b. Newtonian mechanism		c. Macro dynamic	es	d. Geophysics
5. The size of <i>E.coli</i>	bacteria is		nm		
a. 2000	b. 5000	(c. 50		d. 90
6. What does "F" stan	ds for in AFM?				
a. Fine	b. Force		c. Flux		d. Front
7. The two important	properties of nano subst	ance	es are		
a. Pressure and	b. Sticking and	(c. Sticking and		d. Temperature
friction	temperature		friction		and friction
8. 1 nanometer is $=$					
a. 10 ⁻⁹	b. 10 ⁻⁸	(c. 10^{-7}		d. 10 ⁻⁶
9. Protein-coding ge	nes can be identified by				
a. Transposons	b. ORF	(c. Zoo -blotting		d. Northern
tagging	scanning				analysis
10. Nano particles tar	get the	_cau	sing cells and ren	nove	them from blood
a. Tumor	b. Fever		c. Infection		d. Cold
11. The	to the ceramics a	are s	uperior coating		
a. Nano particles	b. Nano power	(c. Nano crystal coding		d. Nano materials
12. Which one is used	I in electron microscope	?			
a. Electron beams	b. Magnetic fields		c. Light waves		d. Electron beams and magnetic fields

13. Electron microscope can give a magnification up to					
a. 400,000x	b. 100,000x	c. 15000x	d. 100x		
14. Which of these biosensors use the principle of heat released or absorbed by a reaction?					
a. Potentiometri biosensor	b. Optical biosensor	e. Piezo-electric biosensors	f. Calorimetric biosensors		
15. Biosensor ma	ide up of				
a. A probe and a surface	b. A sensing layer and a transducer	c. Transfer the prol molecule	be		
		d. of	,		
		thes			
16. Which mater	ials are suitable for electrica	l signal transducing?			
a. PDMS	b. Sillicon	c. Glass	d. Polyethylene		
17. Which one is	s anti-cancerous agent?				
a. Paclitaxol	b. Insulin c.	Polyethylene glycol	d. Poly glutamic acid		
18. Which of the	following co-solvents are u	sed to increase the solubi	lity of a drug?		
a. Ethanol	b. Sorbitol	c. Glycerin	d. All of these		
19.The size of the	e RBCis	_nm			
a. 50	b. 90	c. 20000	d. 5000		
20. The width o	f a typical DNA molecule i	snm			
a. 1	b. 2	c. 5	d. 10		
	N - B (5 X 5 = 25 MARKS)		-		
	he challenges faced in the fi ort note on nano material fa		y?		
,	no materials and its properti				
	t notes on quantum dots				
23. A) Explain ato	omic force microscope				
_	out scanning probe microsc	_			
-	t notes on types of biosenso				
_	e molecular recognition eler	ments (MRE)			
	ig? Explain its discovery?				
b) Short notes	on nano medicine				
SECTION	$N - C (3 \times 10 = 30 \text{ MARKS})$	S) ANSWER ALL THE (QUESTIONS		
26. Write the essa	y on topology of DNA				
27. Explain the str	ructure and function nano tu	ibes nanowires			
28. Write an essay	on micro array technology	and its applications			
29. Write an essay	on mode action of biosens	ors and application of bio	sensors		
30 Explain about	cancer research and cancer	therany			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - IV

BIOFARMING

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U6BTS12	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the principles of conventional cropping systems and natural Farming	K1 & K2
CO2	Manipulate integrated pest management fo the development of pesticide free plant products	K2 & K3
CO3	Develop the concepts of organic farming	K4 & K5
CO4	Understand the concepts of organic agricultural policy and GMOs	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	L	L
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	S

UNIT	CONTENT	HOURS
Ι	Agro-ecological zones and geographical distribution of crop plants in Tamil Nadu. Cropping systems - different types and their importance in food production- Package and practices followed for major crops and cropping systems in Tamil Nadu.	8
II	Green revolution in India - After effects - Definitions of Natural Farming, Traditional farming - Their concepts and scope - Natural Farming - Institutions- their activities and role.	8
III	Pest - Definition - categories of pests-pest control - natural, artificial-pest management IPM. Store grain pest management. Pesticides consumption and hazards. Role of biopesticides and biofertilizers in IPM.	8
IV	Organic farming - concept and relevance in the agriculture - problems and	8

	remedies - Encouragement and dissemination for effective practicing of organic farming. Production and marketing of Organic products.		
V	Organic agriculture policy, Genetically Modified Organisms as organic regulation	8	

SUGGESTED READINGS:

- 1. Basu, D.N. and Guha, G.S. (1996). Agroclimatic regional planning in India, ARPU, Ahmedabad
- 2. Krishna, K. R., (2010). Agroecosystems of south India, Brownwalker press, Florida
- 3. John H. Perkins, *Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War,* Oxford University Press, 1997.
- 4. Lester R. Brown, Seeds of Change: The Green Revolution and Development in the 1970's, 1970, Praeger Publishers, New York.
- 5. Kogan, M 1998. Integrated Pest Management: Historical Perspectives and Contemporary Developments, Annual Review of Entomology Vol. 43: 243-270 (Volume publication date January 1998)
- 6. Dharam P. Abrol (Editor), Uma Shankar 2013. Integrated Pest Management: Principles and Practice Amazon text book store
- 7. NPCS Board of Consultants & Engineers, (2008). The complete book on organic farming and production of organic compost, Asia Pacific Business Press Inc.
- 8. Shalini Suri, APH, (2012). Organic farming Vedams books from India.

MODEL QUESTION PAPER (BIOFARMING)

NAME OF THE COURSE: BIOFARMING	COURSE CODE: 21U6BTS12	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. Agro ecological zoning can be used as the basis of a methodology for					
a. Calculating maximur	n b. Natural source		c. Land resourc	e appraisal	d. Land use
yield	analysis				planning
2. Some of the nutrie	ents contained in the dea	ad tissues	s are made availab	ole to crops du	iring
	educing the need of				
a. Forage leaves	b. Fertilizer	c. Che	mical fertilizer	d. Soil organ	ic matter
3. World geographic larger region of I	al scheme for recording	g plant dis	stributions (WGS	RPD) is include	ded within the
a. Fauna of India	b. Flora of India	c. Faur	na of Tamilnadu	d. Flora o	f Tamilnadu
4. In Tamilnadu, Coi	imbatore receives an av	erage rai	nfall from North e	east Monsoon	of
a. 444.3mm	b. 443.4 mm		34.4 mm	d. 344.4	mm
5. Natural farming is	an ecological farming	establish	ed by		
a. Yamamoto Komba	i b. Masanobu Fuk	uoka c	. Shizen noho	d. Yoshikazu	ı Kawaguchi
6. Cop rotation and Out	companion planting are	e the met	hods adopted whe	en fa	rming is carried
a. Traditional	b. Organic		c. Mixed crop	d. N	Vatural
7. Green revolution i	n India refers to a perio	d when -		- I	
a. Indian agriculture	b. Indian agricult	ure c. Ir	ndian agriculture	d. Indian	agriculture was
was converted into	was converted in	nto	was converted	convert	ed into industrial
revenue generating	waste manageme	ent	into renewable	system	
system	system		resource system		
	cally can be applied on	ly in a la	nd with assured		
a. Fertilizer supply	b. Soil supply		c. Water supply	d. So	eed supply
Pery Adkisson ar	nd Ray F. Smith receive	ed the	World Food	d Prize for end	couraging IPM
a. 1995	b. 1996	c. 1997		d. 1998	
	ant insect damaging pul			e referred as	
a. Bruchids b.	Weevils	c. Be	etles	d. None of	the above
-	e important tools in integrand maintaining enviror			-	_
a. 2014	b. 2015		c. 2016	d. 20	
	lowing pesticide is resp	onsible fo		u. 20	<i>J11</i>
	Susceptibility to fungal infection		. Egg shell thinnin		ine in juvenile
13. Which of the foll	lowing is NOT the adva	ntage of	organic farming?	1 1	

	Maintains environment by reducing pollution	b. Helps in keeping	- 1	Ensures optimum atilization of natural	d.	Enhances crop roduction by tillage
1	evel	agriculture at a	1	resources for short term	u u	tilization and forage
		sustainable level	l	penefit	CI	ropping system
	14. Which of the follo	wing state first receive	ed the	organic certification in I	ndia	?
	a. Madhya Pradesh	b. Rajasthan		c. Maharashtra		d. Uttar Pradesh
	15. NPOF stands for -					
a.	National project on	b. National Project	t on	c. National Project on	d.	National project on
	organic farmers	organic farming	,	organic fertilizers		organic forages
	16. Indian agricultural	policy was framed an	d draf	ted by		
	a. ICAR	b. IARI		c. CSIR	d. 1	ICAS
	17. The genetically en	gineered seeds were in	ntrodu	ced in		
	a. 1994	b. 1995		c. 1996		d. 1997
	18. "Round-up ready	crops" is a common na	ame of			
a.	Pesticide crops b.	Herbicide crops	c. Sa	aline resistant crops	d. I	Drought resistant crops
	19. The use of toxic and pervasive pesticides and petroleum based fertilizers is not allowed in the production of					
a.	Organic farm product	b. Biopesticides		c. Bioinsecticides	d. I	Bt - Cotton
	20. Organic food prod	uction act (OFPA) wa	s amei	nded in		
	a. 1990	b. 1991		c. 1992		d. 1993

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALI	L THE QUESTIONS
21. A) Write shot notes on the different types of cropping systems	(OR)
B) List out the packages and practice methods followed for ma	ajor crops
22. A) Briefly write about green revolution	(OR)
B) Explain the benefits of natural farming	
23. A) Explain about store gain pest management	(OR)
B) Explain the role of biopesticides in IPM	
24. A) Explain in brief about Organic farming	(OR)
B) Explain the marketing of organic products	
25. A) List out the organic agriculture policies	(OR)
B) Explain the use of organic policies in the development of for	orage products

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write an essay on different types and their importance of cropping system
27. Give a detailed account on natural farming
28. Write an essay in Integrated Pest Management (IPM)
29. Give a detailed account on organic farming, their production and marketing
30. Write elaborately on the role genetically modified organisms in framing the organic farming policies

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

$\underline{NMEC-I}$

BIOSAFTEY, BIOETHICS & IPR

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U5BTN01	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of GM crops, biopiracy and biowarfare.	8

SUGGESTED READINGS:

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY , BIOETHICS AND IPR	COURSE 21U5BTN01	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

A (1 X 20 = 20 MARKS)) ANSWER ALL THE	QUESTIONS		
ch activities may not inv	olve			
b. Animal cell	s c. Plant cells	d. All		
unlikely to cause any di	sease in humans or anim	nals		
b. Risk group II	c. Risk group III	d. Risk group IV		
gic fever is example for				
b. Risk group III	c. Risk group IV	d. Risk group I		
ment is achieved by		1		
b. Two types	c. Three types	d. Four types		
following is not relevant	to sterilization techniqu	e?		
b. Incinerator	c. Microscope	d. Autoclave		
l on Biosafety to the Co	nvention on Biological I	Diversity came with		
b. 12 September	c. 11 September	d. 12 September		
2003	2004	2004		
7. Each Institutional Biosafety Committee has a nominee for				
b. DBT	c. UGC	d. ICAR		
I meeting held in 2018?				
b. 8	c. 9	d. 6		
not include the following	g representative	•		
CMR	c. UGC	d. CSIR		
d under				
a. MoEF & b. UGC c. DBT		d. DST		
nerwise called as				
b. Model	c. Business name	d. Trademark		
information of commer	cial value concerning pr	oduction		
b. Trade Secret	ecret c. Patent d. Industrial Design			
, ,	the			
b. Renaissance	c. Renaissance d. Renaissance			
		era. In 1474		
	b. Animal cell unlikely to cause any di b. Risk group II gic fever is example for b. Risk group III ment is achieved by b. Two types following is not relevant b. Incinerator l on Biosafety to the Co b. 12 September 2003 Biosafety Committee had b. DBT meeting held in 2018? b. 8 hot include the following CMR d under b. UGC herwise called as b. Model information of commer b. Trade Secret ed in North Italy during b. Renaissance era. In 1472	unlikely to cause any disease in humans or anim b. Risk group II		

a. Innovator	b. Brand ow	ner	c. Teacher		d. Coj	pyright holder
15. Intellectual property not refers to creations of the mind						
a. Hard	b. Inventions	c.	c. Literary and artistic works		orks	d. Names
16. Which one is o	16. Which one is comes under type of intellectual property (IP)?					
a. Copyright	b. Patent		c. Trademark		d. All the above	
17. Mathematical algorithms are						
a. Patenta	b. Non patental	ole	c. Both d. l		None of the above	
18. Software is a						
a. Patenta	b. Non patental	ole	c. Both d. None of the abo		the above	
19. Patentable biotechnological inventions is						
a. Prote b.	DNA sequences	sequences c. Both of the (a) and (b) d. N		d. None	None of the above	
20. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning						
a. 4	b. 3		c. 2			d. 1

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUEST:	IONS
21. A) Explain different levels of biosafety.	(OR)
B) explain different types of sterilization methods.	
22. A) What is institutional committe and their roles?	(OR)
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	(OR)
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	(OR)
B) explain patentable and non-patentable biotechnological inventions?	
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)
B) Explain perspectives and methodology of bioethics?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Explain different types of bio-safety measures in laboratory?	
27. Explain Cartagena protocol on biosafety.	
28. What is IPR and explain their different types?	
29. Patent - Definition, History and Law	
30. Explain framework for making ethical decisions.	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

NMEC – I

BIOINFORMATICS

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U5BTN02	External	: 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence Alignment	K2, K3 & K4
CO4	To understand the concepts of gene prediction methods through <i>insilico</i> approaches	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
	Bioinformatics – Biological Databases - Nucleic acid sequence databases	
I	- GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases -	
	UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays-	
11	Microarray data analysis, Proteomic data Analysis.	8
	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence	
III	Alignment- Local alignment and Global alignments- Dynamic	8
111	programming algorithm for sequence alignment, Scoring matrices, gap	0
	penalties.	
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8

Ī		Analysis- tree construction methods- Maximum likelihood and maximum	
		parsimony- distance methods- Database similarity search- Basic Local	
		Alignment search tool (BLAST).	
		Gene prediction methods – ORF finder, Restriction site analysis. Protein	
	V	secondary structure prediction -Comparative Modeling -Drug Designing-	8
		- Molecular Docking	

SUGGESTED READINGS:

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2 Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- 7. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS	COURSE CODE: 21U5BTN02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS				
1. A single piece of information in a database is called				
a. File	b. Field	c. Record	d. Data set	
2. Which of the follo	owing is a nucleotide sec	quence database?		
a. EMBL	b. SWISPOT	c. PROSITE	d. TREMBL	
3. BLAST Programi	me is used for			
a. DNA	b. Protein sequence	c. DNA	d. Sequence	
Sequence		barcoding	analysis	
4. The BLAST pro	gram was developed on			
a. 1992	b. 1995	c. 1990	1991	
5. Phylogenetic anal	ysis is a			
a. Dendrogram	a. Dendrogram b. Genbank c. Data retrieval d. Data Searching tool			
6. Which of the follo	owing is a part of the sta	tistical test of sequences	s?	
a. An optimal alignment between two chosen sequences is obtained at the end	b. Unrelated sequences of the same length are then generated through a randomization process	c. Unrelated sequences of the different length are then generated through a randomization process	d. Related sequences of the same length are then generated through a randomization process	
7. Clustal W is a				
a. Multiple sequence alignment tool	b. Protein secondary structure predict		val c. ORF finder	
8. The procedure to	align many sequences si	multaneously is called -		
a. Multiple sequence alignment	b. Pairwise alignment	c. Global alignment	d. Local alignment	
9. Which one is specially made for protein data base?				
a. DDBJ	b. EMBL	c. PIR	d. Genbank	
10. Genbank mainta	ined by	•		
a. DDBJ	b. EMBL	c. Swissport	d. NCBI	
11. Submission of se	equences to genbank thro	ough		

a. Bankit	b. Sequin	b. A & b	c. None of the	above
_	The final step involves pairwise alignment by extending from the words in both directions while counting the using the same substitution matrix			
a. Dock score	b. Alignment sco	re c. Both a & b	d. None of the	e above
13. Which of the fo	llowing is not a variant of	of BLAST?		
a. BLAST N	b. BLAST P	c. BLAST X	d. TBLAS	ΤХ
	the study of the evolution the study of the evolution the study of these	onary history of living o organisms	rganisms using treeli	ke
a. Distance matrix	b. Maximum li	kelihood c. Ped	_	kimum simony
		vo different proteins, to p	reserve the same	
functionality, th	eir closehave t	o be preserved as well.		
a. Solubility and Polarity	b. Proximity and interaction	c. Bond length and Bond energy	d. "N" and, terminal	
16. Which of the following	llowing is not true regar	ding the STRING?		
a. Search Tool for the Retrieval of Interacting Genes/Proteins	b. Functional association include only the direct protein-protein interactions		kage, predicts gen protein fund	ne and ctional
similarity betwe sequences must	en the two sequences hat have derived from a con	milarity, it is extremely_ as been acquired random mmon evolutionary origi	ly, meaning that the t	
a. Unlikely	b. Possible	c. Likely	d. Relevant	
		rding sequence homolog		
a. Two sequences can homologous relationship even if have do not have common origin	b. It is an important concept in sequence analysis	When two sequences are descended from a common evolutionary origin, they are said to have a homologous relationship	d. When two sequence descended from a concevolutionary origin, said to share homological contents.	ommon they are
19. Which of the giv	ven statements is incorre	ect about Microarray (or	microchip) analysis?	1
a. It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides	b. The oligonucleotide sequences cannot be synthesized directly on the slide	c. The oligonucleotides are collectively hybridized to a labeled cDNA library prepared by reverse-transcribing mRNA from cells	d. The amount of labe to each oligonucled reflects the amount in the cell	el binding otide spot
	vidence for a relationshi quence similarity. These	ip between two genes are include	also given that are r	not
a. Genes are closely linked on the same chromosomes	b. Genes are transcribed from the same DNA strand	c. Gene fusions are observed between otherwise separate	d. Phylogenetic prof the genes are not t commonly presen organisms	that

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTION	NS
21. A) Write an short Biological Database	(OR)
B) Explain the NCBI data base	
22. A) Give an account on BLOCKS, PRINTS	(OR)
B) Explain the application of Pfam	
23. A) Write short note on sequence alignment	(OR)
B) Briefly define Scoring matrices	
24. A) Write short notes on Phylogenetic Analysis	(OR)
B) Write about database similarity search	
25. A) Explain ORF finder	(OR)
B) Explain the steps involved in Restriction site analysis	

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26	6. Give a detailed account on Biological databases
27	7. Explain elaborately about the types of Biological data bases
28	8. Give a detailed account on BLAST
29	9. List out the difference between Local alignment and Global alignments
30	0. Give a detailed account on Molecular Docking

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

NMEC – II

CONCEPTS OF BIOTECHNOLOGY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U3BTN03	External	: 75

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning Strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	
I	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying Enzymes	8
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8

V	Selection of recombinants, Markers – PCR, RFLP, RAPD and blotting	Q	
V	techniques	8	

SUGGESTED READINGS:

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

MODEL QUESTION PAPER (CONCEPTS OF BIOTECHNOLOGY)

	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	21U3BTN03	
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The following is not a branch of Biotechnology						
a. Genetic engineering	b. Tissue culture	c. Physiology	d. N	Aicrobiology		
2. Cell theory was	proposed by					
a. Schleiden and Schwann	b. Robert Hooke	c. Leeuwen Hooke	d. E	Beetle and Tatum		
3. DNA recombina	nt technology is also cal	led as				
a. Gene manipulatio	n b. Totipotency	c. Splicing	d	. Gene cloning		
4. The PCR techn	ique was developed by_					
a. Karry mullis	b. Kohler	c. Milstein	d.A	ltman		
5. Gene cloning me	eans					
a. Production of mutated genes	b. Production of wild genes	c. Production of dominant genes		Production of large population of desired DNA fragment		
6. A small circular I	NA present in bacterial	cells are called as				
a. Enzyme	b. Ribosomes	c. Plasmids	d. Y	Vector		
	samples are taken from					
a. Same individual	b. Different individual	c. Different species	d. N	None of the above		
8. The function of R	estriction enzyme is to -					
a. Cut the DNA	b. Join the DNA	c. Amplify the DNA	d. N	None of the above		
9. Who discovered t	he restriction enzymes?					
a. Natham & Arber and smith	b. Watson & Crick	c. Boyer & Col	nen	d. Paul & Berg		
10. Which organism	has the highest number	of vectors?	•			
a. Yeast	b. Mammalian cells	c. E.coli		d. Fungi		
11. Boliver and Rodriguez constructed which vectors						
a. P ^{uc8}	a. P ^{uc8} b. Y ^{ip/} c. P ^{BR322} d. M ¹³					
12. How many set of	f antibiotics resistance de	oes the plasmids PBR32	22 carry?			
a. 1	b. 2	c.3	c. N	Vothing		
13. Cosmids vectors	are used for					

	a. Cloning a sm fragments		loning a large agments	c. Cloni proka	ng ryotes	d. Cloning eukaryotes
	14. Single strand	ed vectors are us	eful			
	a. For sequenci of cloned DN	-	oligo nucleotide eted mutagenes		r probe paration	d. All the above
	15. Chemicals us	sed for gene trans	sfer method			
	a. Polyethylene	b. D	extran c.	Calcium chlor	ride	d. All the above
	16. Polymerase u	ised for PCR is e	xtracted from?			
	a. E.coli	b. Bacillus sp	c. Theri	nos aquaticus	d. Sacchar	romyces cerevisiae
	17. At which ten	perature does th	e DNA is denat	ured during PC	R?	
	a. 60°C	b. 54°C		c.74°C	d.9	94°C
	18. Molecular m	arkers include			-	
	RAPD	b	.AFLP	c.AFLP	d. All o	of these
	19. Western blot	ting is the technic	ques for the det	ection of		
a.	Specific RNA in a sample	b. Specific I a sample		Specific protein n a sample	d. Spe sample	ecific glycolipids in a
	20. What is probe?					
a.	Chemically synthesized DNA	b. Purified		ngmented DNA plex	synt	er purified or hesized single single oded DNA

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay strategies of gene cloning
27. Explain the types and functions restriction enzymes
28. Write the essay P ^{BR322} and uses of this vector
29. Write a essay on gene transfer methods
30. Explain PCR principle methodology and applications

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

NMEC - II

BIOTECHNOLOGY FOR SOCIETY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 21U3BTN04	External	: 75

PREAMBLE

To make students on understanding the applied part of biotechnology to non-major and non-life science back ground students

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of silk worm, earth worm cultivation and its applications	K3, K5 & K6
CO2	To understand the concepts of bio fertilizers, bio plastics and Bioweapons	K3, K5 & K6
CO3	To understand the basic concepts of biodegradation of xenobiotic Compounds	K3, K5 & K6
CO4	To understand the concepts of generating genetically modified/transgenic organisms	K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
I	Seri culture, Aquaculture, Apiculture, Vermi culture and Mushroom Technology	8
II	Biofertilizers, Biopesticides, Bio repellents, Pest control and management, Biomass (SCP), Bioplastics, Bioweapons.	8
III	Bio dyes, Bio fuels – Biodiesel & Biogas, Bio indicators, Biodegradation – Role of genetically modifies organisms	8
IV	Production of penicillin, Recombinant Vaccines (HBV), Recombinant Insulin, Plantibodies, Vaccines in animal cells, Gene therapy.	8
V	Transgenic animals and their applications. Mice, Sheep and Fish. Transgenic plants and their applications – BT cotton, Flavr-Savr tomato and golden rice	8

SUGGESTED READINGS:

- 1. Animal Biotechnology, Ranga MM (2000). Agrobios
- 2. Introduction to Plant Biotechnology. Chawla (2003).2nd edition. Oxford and IBH publications.
- 3. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 4. Industrial Microbiology Patel AH (2005). Mac Millan Publishers.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- Environmental Biotechnology, Chatterji AK, 3rd edition, PHI Learning Pvt Ltd, Newdelhi.

MODEL QUESTION PAPER (BIOTECHNOLOGY FOR SOCIETY)

NAME OF THE COURSE: BIOTECHNOLOGY	COURSE CODE:	DURATION: 3 Hrs
FOR SOCIETY	21U3BTN04	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. Sericulture is a rearing of							
a. Silk worm	b. Lac ins	ect	c. :	Honey bee		d. Fi	sh
2. Aquaculture is	2. Aquaculture is a rearing of						
a. Silk worm	b. Lac ins	ect	c. :	Honey bee		d. Fi	sh
3. Which of the fo	ollowing is used a	s food to	feed Bo	ombyx mori?			
a. Hibiscus leaves				c. Palm leav		d. 1	Nome of the above
4. The seeds used	for mushroom cu	ltivation	is calle	d as			
a. Callus		Bed		c. Spaw	'n		d. Altman
5. Which of the fo	llowing can be u	sed as bio	weapoi	ns?			
a. <i>Bacillus</i>	b. Escher			Streptococcu	S	d.	. Clostridium
6. Which of the fo	llowing is used a	s SCP to					
a. Azolla	b. Spirull			Mushroom		d. Ye	east
7. Which of th fol	lowing is an exar	nple for b	oioplasti	c?			
a. PBH	b. PVC		c.	PCC		d. PC	CV
8. Bacillus thuring	giensis is used as						
a. Biofertilizer	a. Biofertilizer b. Biopesticide c. Bioplastic d. Biorepellent			orepellent			
9. The chemical fu	unctional group th	nat gives	color to	the substance	e is ca	lled as	
a. Iodophore	b. Basophore		c. Chromophore d. None of the above				
10. Which organis	sm produces biod	iesel?			l		
a. Chrococcus	a. Chrococcus b. Botrycoccus c. Scenedesmus d. Both b & c			d. Both b & c			
11. Biogas is prod	luced by certain b	acteria by	y the pr	ocess of			
a. Acetogenesis	b. Chloro	Chlorogensis c. Methanogenesis d. Nitrification					
12. Petroleum hyd	lrocarbons are gro	eatly degr					
a. Serratia	b. Bacilli			Proteus		d. Ps	seudomonas
13. Recombinant	vaccines are prod	uced by -		•	•		
a. Cutting	b. Gra			c. Harvest	ing	(d. Cloning
14. Hepatitis is co	mmonly caused b	y					
a. Bacteria	b. Fungi			c. Viru	s		d. Protozoa
15. Penicillin is produced by							
a. Bacteria	b. F	ungi		c. Virus			d. Protozoa
16. Insulin is pand	16. Insulin is pancreatic hormone composed of peptide chains						
	p. 2	c. 3			d. 4		
17. Which of the f technology?	following produc	is produ	ced froi	n animals sy	stems t	hrough	transgenic

	a. Fibrin b. Antithrombin		c. Insulin	d. Interferon	
	18. Recombinant pr	roteins (RPs) are extensi	vely produced by using	one of the following cell line	
a. MCF		b. CHO	c. HeLa	d. MG-63	
19. BT cotton is generated for the purpose of					
a.	a. Controlling cotton production b. Controlling Honey be population		c. Controlling butter propagation	erfly d. Controlling cotton pests	
20. Transgenic tomato was produced by recombinant DNA technology for the purpose of			ogy for the purpose of		
	a. Increasing CHO content	b. Increasing vitamin content	c. Increasing lipid content	d. Increasing protein content	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write shot notes on the rearing of silkworm	(OR)
B) Write a short note on the applications of vermin compost	
22. A) Explain the uses of SCP.	(OR)
B) List out the hazardous consequences of bioweapons	
23. A) List out the composition of biogas	(OR)
B) Write short notes on pest control management	
24. A) Write short notes on plantibodies	(OR)
B) Write short notes on gene therapy	
25. A) How will you produce golden rice?	(OR)
B) Briefly write about uses of Flavr-Savr Tomato	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on mushroom cultivation technology
27. Give a detailed account on biopesticide production
28. Give a detailed account on bio diesel production
29. Give a detailed account on penicillin production
30. Give a detailed account on the production of transgenic mice
