VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution Affiliated to Periyar University (Approved by AICTE and Re-accredited with "A" Grade by NAAC) Recognized Under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

DEPARTMENT OF BIOTECHNOLOGY Bachelor of Science

B. Sc SYLLABUS

[For the Candidates admitted on 2020-2023 onwards under Autonomous, CBCS & OBE pattern] (I to VI SEMESTERS)

SPONSORED BY ANGAMMAL EDUCATIONAL TUST ELAYAMPALAYAM – 637 205, TIRUCHENGODE Tk., Namakkal Dt., Tamil Nadu VEERACHIPALAYAM – 637 303, SANKARI Tk., Salem Dt., Tamil Nadu Tel.: 04288 234670 (4 lines), Fax: 04288 234894 Website: www.vivekanandha.ac.in e.mail: info@vicas.org

B.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small- medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic
DCO A	Sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
	To gain vertical mobility in career that will make students more competent to face
PSO: 3	national/international qualifying exams with practical knowledge acquaintance and in modern
	biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social,
150:4	ethical, legal and cultural aspects of the society
	To understand the over-all theme/concepts of each specialization in biotechnology and
PSO: 5	analysing the frequency of its applicability in industry, research and for the goodness of
	Society

SYLLABUS FRAMEWORK

Subjects	Inst. Hour/Week	Credits	Subjects	Inst. Hour/Week	Credits	
Se	emester I		Ser	nester II		
Language I	6	3	Language II	6	3	
English I	6	3	English II	6	3	
Core I	5	5	Core II	4	5	
Allied I	4	3	Allied II	4	4	
Core practical I	4	3	Core practical II	3	3	
Allied practical I	3	3	Allied practical II	3	2	
VAC - YOGA	2	2	VAC – EVS	4	2	
Total	30	22	Total	30	22	
Sei	nester III	1	Semester IV			
Language III	6	3	Language IV	6	3	
English III	6	3	English IV	6	3	
Core III	5	5	Core IV	5	5	
Allied III	4	3	Allied IV	4	3	
Core practical IV	4	3	Core practical IV	4	3	
Allied practical	3	3	Allied practical IV	3	3	
IV						
SBEC I	2	2	SBEC II	2	2	
Total	30	22	Total	30	22	
Se	mester V		Sen	nester VI		
Core V	5	5	Core VII	5	5	
Core VI	5	5	Core VIII	5	5	
Core practical V	5	3	Core practical V	5	5	
Core practical VI	5	3	Elective II	5	4	
Elective I	4	3	NMEC II	2	2	
NMEC I	2	2	SBEC IV	2	2	
SBEC III	2	2	Library/Sports	1	-	
Library/Sports	1	-	Mini project	5	5	
Extension activity	1	1	Extension activity	-	1	
Total	30	24	Total	30	29	
Grand total					140	

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2020-2023 onwards)

YEAR I

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER I					
18U1LT01	Ι	Language I	Tamil I	6	3	25	75	100
18U1LM01			Malayalam I					
18U1LH01			Hindi I					
18U1LF01			French I					
20U1LE01	II	Language II	Foundation English	6	3	25	75	100
			Ι					
20U1BTC01	III	Core I	Cell Biology &	5	5	25	75	100
			Genetics					
20U1BTCP01	III	Core I	Lab in Cell	4	3	40	60	100
		Practical	Biology &					
			Genetics					
18U1BCA01	III	Allied I	Biochemistry I	4	3	25	75	100
18U1BCAP01	III	Allied	Lab in	3	3	40	60	100
		Practical I	Biochemistry I					
17U1VE01	IV	Value	Yoga	2	2	25	75	100
		Education I						
		Total		30	22	205	495	700
			SEMESTER II					
18U2LT02	Ι	Language II	Tamil II	6	3	25	75	100
18U2LM02			Malayalam II					
18U2LH02			Hindi II					
18U2LF02			French II					
18U1LE02	II	Language II	Foundation English	6	3	25	75	100
			II					
20U2BTC02	III	Core II	Microbiology	4	4	25	75	100
20U2BTCP02	III	Core	Lab in	3	3	40	60	100
		Practical II	Microbiology					
18U2BCA02	III	Allied II	Biochemistry II	4	4	25	75	100
18U2BCAP02	III	Allied	Lab in	3	3	40	60	100
		Practical II	Biochemistry II					
17U2VE02	IV	Value	Environmental	4	2	25	75	100
		Education II	Studies					
		Total		30	22	205	495	700
	Grand	Total of First	Year	60	48	410	990	1400

YEAR II

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total
			SEMESTER 1	Ш				
18U3LT03 18U3LM03 18U3LH03 18U3LF03	Ι	Language III	Tamil III Malayalam III Hindi III French III	6	3	25	75	100
18U3LE03	II	Language III	Foundation English III	6	3	25	75	100
20U3BTC03	III	Core III	Molecular Biology	5	5	25	75	100
20U3BTCP03	III	Core Practical III	Lab in Molecular Biology	4	3	40	60	100
19U3BOA01	III	Allied III	Plant Science I	4	3	25	75	100
19U3BOAP01	III	Allied Practical III	Lab in Plant Science I	3	3	40	60	100
	IV	SBEC I	Optional	2	2	25	75	100
		Total		30	22	205	495	700
			SEMESTER	IV				
18U4LT04 18U4LM04 18U4LH04 18U4LF04	Ι	Language IV	Tamil IV Malayalam IV Hindi IV French IV	6	3	25	75	100
18U4LE04	II	Language IV	Foundation English IV	6	3	25	75	100
20U4BTC04	III	Core IV	Genetic Engineering	5	5	25	75	100
20U4BTCP04	III	Core Practical IV	Lab in Genetic Engineering	4	3	40	60	100
19U4BOA02	III	Allied IV	Plant Science II	4	3	25	75	100
19U4BOAP02	III	Allied practical II	Lab in Plant Science II	3	3	40	60	100
	IV	SBEC II	Optional	2	2	25	75	100
		Total		30	22	205	495	700
G	rand T	Cotal of Second	Year	60	44	410	990	1400

			YEAR III					
Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V	7				
20U5BTC05	III	Core V	Immunology	5	5	25	75	100
20U5BTC06	III	Core VI	Plant Biotechnology	5	5	25	75	100
20U5BTCP05	III	Core practical V	Lab in Immunology	5	3	40	60	100
20U5BTCP06	III	Core practical VI	Lab in Plant Biotechnology	5	3	40	60	100
	III	Elective I	Optional	4	3	25	75	100
	IV	SBEC III	Optional	2	2	25	75	100
		NMEC I	Optional	2	2	25	75	100
19U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health Management	1	-	-	-	-
	1	Total		30	23	245	555	800
			SEMESTER V	Ι		•	•	
20U6BTC07	III	Core VII	Bioprocess technology	5	5	25	75	100
20U6BTC08	III	Core VIII	Animal Biotechnology	5	5	25	75	100
20U6BTCP07	III	Core practical VII	Lab in Bioprocess technology and Animal biotechnoogy	5	5	40	60	100
	III	Elective II	Optional	5	4	25	75	100
	IV	SBEC IV	Optional	2	2	25	75	100
	IV	NMEC II	Optional	2	2	25	75	100
20U6BTMP01	IV	Research Activity	Mini project	5	5	40	60	100
		Extension activ	ity	-	1	-	-	-
		Library/Sports	Reference/Health Management	1	-	-	-	-
		Total		30	29	205	495	700
	Tota	l of Third Year			140	1270	3030	4300

	LIST OF ELECTIVE PAPERS	
GRADE	SUBJECT	SUBJECT CODE
	Pharmaceutical Biotechnology	20U5BTE01
Elective I	Enzymology and Enzyme Technology	20U5BTE02
	Tissue Engineering	20U5BTE03
	Genomics and Proteomics	20U6BTE04
Elective II	Biophysics and Bioinstrumentation	20U6BTE05
	Environmental Biotechnology	20U6BTE06
	LIST OF SKILLED BASED ELECTIVE F	PAPERS
	Lab in food processing and technology	18U3BTS01
SBEC I	Developmental Biology	18U3BTS02
	Food biotechnology	18U3BTS03
	Lab in poultry science	17U4BTS04
SBEC II	Marine Biotechnology	18U4BTS05
	Forensic science and technology	18U4BTS06
	Lab in Bioinformatics	17U5BTS07
SBEC III	Biosafety, Bioethics and IPR	18U5BTS08
	Cancer Biology	18U5BTS09
	Lab in Entrepreneurship in Biotechnology	18U6BTS10
SBEC IV	Nano Biotechnology	18U6BTS11
	Biofarming	18U6BTS12
	LIST OF NON-MAJOR ELECTIVE PA	PERS
NMEC I	Biosafety, Bioethics and IPR	17U5BTN01
	Bioinformatics	17U5BTN02
NMEC II	Concepts of Biotechnology	17U3BTN03
	Biotechnology for Society	17U3BTN04

	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN					
KL	CPD	DESCRIPTION				
K1	Remember	Retrieving, recognizing and recalling knowledge from long-term memory				
K2	Understand	Constructing meaning from oral, written and graphic messages through interpreting				
K3	Apply	Carrying out or using a procedure through executing or Implementing				
K4	Analyse	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing and attributing				
K5	Evaluate	Making judgments based on criteria and standards through checking and critiquing				
K6	Create	Putting elements to form a coherent or functional hole, reorganizing elements into a new pattern or structure through generating, planning or producing				
Note: 1	KL: Knowledg	e Level; CPD: Cognitive Process Dimension				

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR MODEL AND SEMESTER EXAMINATION

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 20 X 1	K1 & K2	20	Multiple choice questions	
B: 1 out of 2 (5 X 5) Either or choice	K2, K3, K5 & K6	25	Short notes	75
C: 3 out of 5 X 10	K3, K4, K6	30	Essay type descriptive	

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR CIA I & II EXAMINATIONS

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 10 X 1	K1 & K2	10	Multiple choice questions	
B: 1 out of 2 (1 X 5)	K2, K3, K5 & K6	5	Short notes	25
C: 1 out of 2 (1 X 10)	K3, K4, K6	10	Essay type descriptive	

SEMESTER I

CELL BIOLOGY & GENETICS

Paper	: CORE I	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U1BTC01	External	: 75

PREAMBLE

To make the students to understand the basics concepts living cellular organization and cellular function and to impart knowledge of classical genetics

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquire the conceptual knowledge of fundamentals of Cellular architecture	K1
CO2	Understand the functions of cellular organelles of cell, nucleus and familiarize with cellular physiology	K1 & K2
CO3	Have a comprehensive knowledge on cellular energetics and basics of genetics	K2 & K4
CO4	Gain expertise in gene interaction mechanisms and ploidy levels	K3 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	L	М	М	М	L
CO2	М	S	S	S	М
CO3	S	S	S	S	S
CO4	S	S	М	S	S

UNIT	CONTENT	HOURS			
Ι	History of cell biology and cellular architecture: Cell theory.	15			
	Classification of cell types (prokaryotic & eukaryotic).Organization of				
	plant and animal cell. Cell wall and cell membrane. Cytoskeletal structures				
	- (Micro tubules, Micro filaments and intermediary filaments).				
	Cytoskeleton movements (Sliding & Contraction). Nutrient transport				
	(Active, passive & facilitated diffusion).				

Π	Subcellular organelles and Chromosomal organization: Structure and functions of Endoplasmic reticulum, Golgi apparatus, Chloroplast, Ribosomes, Mitochondria, Vacuoles, Lysosomes, Glyoxysomes, Peroxysomes, Nucleus. Chromosome: Morphology, Structure.	15	
III	Cell cycle, Cell communication and cell death; Cell cycle - Mitosis and Meiosis, Signal transduction: definition, signals, ligands and receptors. Endocrine, paracrine and autocrinesignaling G Protein coupled receptors- structure, mechanism of signal transmission, regulatory GTPases, heterotrimeric G proteins and effector molecules of G Proteins. Cell death - types. Necrosis - causes and mechanism. Apoptosis: morphology, causes and mechanism Differences between apoptosis and necrosis.		
IV	Cellular energetics & History of genetics: Concepts of Phenotype, genotype, heterozygous, homozygous, allele-dominant & recessive, wild type mutant), character, gene, gene locus, hybrids. Chromosome, Centrosome, telomere, Chemical composition of chromatin, structural organization of heterochromatin. ATP formation. Mendelian Principles, Segregation, Independent Assortment, Dominance relations, Multiple alleles, Incomplete dominance, Over dominance.	15	
V			

SUGGESTED READINGS:

- 1. Alberts et al., 1994. Molecular Cell Biology of Cell Bruce, Galand publications NY.
- 2. Jack D. Bruke Cell Biology The William Company
- Lodish et al., (2008). Molecular Cell Biology, 6th ed. Wilson J and Hunt T (2002). Molecular Biology of the Cell: A Problems approach, 4th ed.
- 4. EJ Gardner, MJ. Simmons and DP Snustad, 2006. Principles of Genetics 8th edition, John Wiley & Sons Publications.
- 5. Karp G. 2008. Cell and Molecular Biology, 5th edition. John Wiley and Sons Inc. Hardcover. ISBN: 978-0-470-04217-5.
- 6. PS. Verma and VS Agarwal. 1986. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company, New Delhi.
- 7. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 8. Abouelmagd and Ageeley. Basic Genetics. 2 nd ed. Univ Publ. 2013.
- 9. Twyman. Advanced Molecular Biology. BIOS Sci Publ. 2000.
- 10. Karp. Cell & Molecular Biology 8 thed 2016. Wiley.
- 11. Elrod S. Schaum"s Outline of Genetics. 5 th ed. McGraw Hill. 2010.
- 12. Fletcher et al. Instant Notes in Genetics. 4th ed. Garland Science. 2012.
- 13. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.

MODEL QUESTION PAPER (CELL BIOLOGY AND GENETICS)

NAME OF THE COURSE: CELL BIOLOGY AND GENETICS	COURSE CODE: 20U1BTC01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The cell was first discovered by					
a. Schwann	Schwann b. Robert Hooke c. Debary		d. Tatum		
2. Cell theory was proposed by					
a. Schleiden and Schwan			c. Leeuwen H		Tatum
3. Microfila	ments are composed	l ma	inly of a prote	ins cal	led
a. Actin	b. Tubulin		c. Myosin		d. chitin
4. The subu	nits of prokaryotic r	ibos	ome are		
a. 60s + 40s	b. 70s + 30s		c. $60s + 3$	30s	d. 50s + 80s
5. The plant	cell wall mainly co	mpc	osed of		
a. Cellulose	b. Starch		c. Protein		d. Lipid
6. Smooth	endoplasmic reticul	um	is the site of		
a. Protein synthesis	b. Carbohydrate synthesis		c. Amino		d. Lipid synthesis
	heory not applicable	e to	synth	0315	Synthesis
a. Bacteria			c. Viruses		d. Fungi
8. Which on	e the power house of	of th	e cell?		
a. Cell wall	b. Mitochondri	a	c. Nucleu	S	d. Ribosome
9. Apoptosis	s cannot kill the folle	owi	ng cells		
a. Cell infected with virus	b. Cell with DNA damage	ł	c. Cancer cel	ls	d. Immune cell
	enzymes are release	d du	ring necrosis	from	
	b. Vacuoles				. Golgi bodies
11. Chromo	somes are duplicate	d du	ring the cell c	ycle in	. <u></u>
a. B phase	b. G phase		c. S phase	e	d. P phase
12. Spindle	fiber is formed durin	ng -			
a. Anaphase	b. Telophase		c. Prophase		d. Pro metaphase
13. Which o	of the following is th	e en	d product of r	espirat	ion process?

a.	Release of	b. Release of CC	D_2 c. Anabolism	d. Transfer of CO ₂		
	oxygen					
	14. Who is regarded as the father of genetics?					
	a. Bateson	b. Morgan	c. Mendel	d. Watson		
	15. Mendel exp	perimental material w	/as?			
<i>a</i> .	Pisum sativum	b. Lathyrus odaratus	c. Oryza sativa	d. Mirabilis jalappa		
	16. What was t organisms?	he most commonly u	used "energy current	cy" of cells for all		
	a. ATP	b. ADP c.	Inorganic phosphat	e d. DNA		
	17. What does	t-RNA bind with	?			
	a. DNA	b. mRNA	c. Northing	d. rRNA		
	18. Lethal gene	es were first discover	ed by?			
a.	Ernest	b. Lucien Cuenot	c. Clarence Cook	d. Gluecksohn- Waelsch		
	Castle					
	-	of a chromosomal se	0	?		
a.	Deletion b. I	Duplication c.	Inversion	d. Translocation		
	20. Walter Sutton and Theodore Boveri formally proposed that chromosomes					
	contain the	genes in the year of				
	a. 1903	b. 1901	c. 1920	d. 1930		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Write the classification of cell types?	(OR)		
B) Write a short note on Cytoskeleton?			
22. A) Explain structure and functions of nucleus?	(OR)		
B) Structure and morphology of chromosomes?			
23. A) Differences between apoptosis and necrosis?	(OR)		
B) Explain the types of cell signaling?			
24. A) Write a short note on ATP formation?	(OR)		
B) Redox potential of the cell membrane?			
25. A) What is gene and how to interact?	(OR)		
B) Chromosomal theory of inheritance?			

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Write the essay on cell types and cytoskeletal structures and movements

27. Explain the structure and functions of any five subcellular organelles

28. Write the essay on mitosis and meiosis and G-protein coupled receptor

29. Write an essay on mendlian principles

30. Explain the variation in chromosome structure and function

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN CELL BIOLOGY& GENETICS

Paper	: CORE PRACTICAL I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 20U1BTCP01	External	: 60

PREAMBLE

To make the students to understand the basics microscopy, cell division, histology, subcellular organelle isolation and mendelian principles

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring hands on skills on microscopy and visualization of	K1 & K2
	prokaryotic and eukaryotic cells	
CO2	Exposure towards various stages of cell division	K1 & K2
CO3	Gain knowledge on basics concepts organelle isolation and	K4
	Estimation	
CO4	Performing and validating mono and dihybrid crosses experiments	K3 & K4 &
	and result interpretation	K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	М	М	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	М	S
CO4	S	S	S	М	М

Exp. No	Title	Hours
1	The Microscope: the bright field microscope, use of oil immersion (100x),	8
	Measurements: ocular and stage micrometers, measuring depth, measuring	
	area and measuring volume.	
2	Enumeration of cells (cell counting by Neubauer chamber).	4
3	Preparation of mitotic cells stages from onion root tip squash	4
4	Preparation of meiosis cell stages from Grass hopper testis cells.	8
5	Isolation of chloroplast from spinach leaves	4
6	Observation of specialized cells (Nerve cell, sperm cell, Muscle cell and	8
	Cardiac cell).	
7	Staining of macro molecules (Carbohydrate, Lipid and Protein)	4
8	Histochemistry: preparation of permanent slides, Periodic acid Schiff	8
	(PAS) reaction	
9	Mono & Dihybrid cross	4
10	Buccal smear preparation (Bar body preparation)	4

MODEL QUESTION PAPER (LAB IN CELL BIOLOGY & GENETICS)

NAME OF THE COURSE: LAB IN CELL BIOLOGY & GENETICS	COURSE CODE: 20U1BTCP01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIME	ENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS			
1. (i) Explore any one of the stages of mitosis from the onion root tip squash (A) sample.						
Display the res	ults for observa	ation	(OR)			
(ii) Isolate the	mitochondria fr	om the given plant sample	(A). Display the results for			
observation			(OR)			
(iii) Perform to	tal blood cell c	ount (cell counting by Neu	bauer chamber) from the			
given blood sat	mple (A). Displ	lay the results for observation	ion			
MINOR EXPERIME	ENT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Perform carb	ohydrate stainii	ng from the given leaf sam	ple (B). Display the results			
for observation			(OR)			
(ii) Isolate chlo	oroplast from th	e given leaf sample (B). D	isplay the results for			
observation			(OR)			
		6	al epithelial cell sample (B)			
by appropriate	method. Displa	y the results for observation	on			
SPOTTERS			(5 X 4 = 20 MARKS)			
3. Identify the given spotters C, D, E, F & G and comment on them						
RECORD			(1 x 5 = 5 MARKS)			
VIVA-VOCE			5 MARKS			
TOTAL			60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

BIOCHEMISTRY I

Paper	: ALLIED I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U1BCA01	External	: 75

PREAMBLE

To make the students to understand the basics biological molecules existing the living cell systems. Students also acquire knowledge on their biological functions and their importance in cell growth and development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring knowledge on carbohydrate and its types in biological systems.	K1 & K2
CO2	Understanding the basic concepts on proteins and amino acids and their properties	K1 & K2
CO3	Under the role of biological catalysts (Enzymes) and lipids, their role in basic biochemical reactions	K2, K3 & K4
CO4	To gain over all information on vitamins, their physiological functions and deficiency symptoms and consequent diseases	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Carbohydrates –Carbohydrate – classification, monosaccharide"s (glucose, fructose, galactose & xylose)- physical and chemical properties, disaccharides (sucrose, lactose), polysaccharides (glycogen, starch, pectin, keratin sulphate & chondroitin sulphate).	12
п	Amino acids and proteins: Classification, Structure, Essential and Non- essential amino acids. Definition, Classification, Functions and Properties of protein. Proteins structure -primary, secondary, tertiary and quaternary structures.	12
III	Enzymes: Definition, holo enzyme, apo enzyme, active site, Enzyme units,	12

	classification, Lock and Key model and Induced fit hypothesis. Enzyme kinetics (MM & LB plot), factors affecting enzyme activity.					
IV	Lipids: Classification, structure, function and properties of simple, compound, Derived, Essential fatty acids and Non-essential fatty acids, cholesterol.	12				
V	Vitamins: Classification, occurrence, deficiency symptoms and biochemical functions of vitamins (Fat soluble and water soluble vitamins).	12				

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G.Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY I)

NAME OF THE COURSE: BIOCHEMISTRY I	COURSE CODE: 18U1BCA01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	-A(1 X 20 = 20)	MARKS)	ANSWER ALL	THE Q	UESTIONS	
1. The general form	ula of monosaccha	ride is				
a. CnH ₂ nOn	b. Cn ₂ H ₂ C)n	c. CnH ₂ O ₂ n		d. CnH ₂ nO ₂ n	
2. The aldose sugar	is					
a. Glycerose b. Ribulose c. Erythrulose d. Dihydoxyacetone						
3. Polysaccharides a	ure					
a. Polymers	b. Acids		c. Proteins		d. Oils	
4. The most importa	int epimer of gluco	se is				
a. Galactose	b. Fructose		c. Arabinose		d. Xylose	
5. A heteropolysacc	hraide among the f	following	is			
a. Inulin	b. Cellul	ose	c. Heparin		d. Dextrin	
6. An example of a s			c. Linoleic acid			
a. Palmitic acid	b. Oleic ac	b. Oleic acid			d. Erucic acid	
7. Molecular formul	a of cholesterol is					
a. C27H45OH	b. C29H470	HC	c. C29H47OH		d. C23H41OH	
8. Sphingomyelins a	are			I		
a. Phospholipids	b. Nitrolipic	b. Nitrolipids		pids	d. Alcohol	
9. The end product of	of saponification is	,				
a. Glycerol	b. Acid	с	. Soap	(d. Both (A) and (C)	
10. All proteins cont	tains					
a. Same 20 amino acids	b. Different amino acids		Amino acids arring in nature		d. Only a few amino acids	
11. Sulphur containi	ing amino acid is -			1		
a. Methionine		b. Leucine			d. Asparagine	
12. An essential ami	ino acid in man is -		1			
a. Aspartate b. Tyrosine c. Methionine d. Serine						
13. Which of the fol	lowing is a dipepti	ide?	I			
a. Anserine	b. Glutathion	e c	. Glucagon	d.	β –Lipoprotein	
	I	10		1		

1	14. Vitamins are	;							
a	a. Accessory food factors		b. Generally synthesized in the		c. Produced in endocrine glands			d. Proteins in nature	
1	15. One manifes	station of vitamin	A deficie	ncy is		0			
а	a. Painful joint	s b. Nigl	nt blindnes	s	c. Loss of hair		air		d. Thickening of long bones
1	16. Vitamin K is	s found in							
a	a. Green leafy	plants	b. M	eat		c. Fish			d. Milk
1	17. In human bo	dy highest conce	ntration of	fascorb	ic ac	id is found	in -		
а	a. Liver	b. Adrenal	cortex	с.	c. Adrenal medulla		a	d. Spleen	
1	18. A nucleoside	e consists of							
a	a. Nitrogenous base b. Purine or pyrimidine base sugar		e base +	c. Purine or pyrimidine base + phosphorous			d Purine + pyrimidine base + sugar + pl osphorous		
19. RNA does not contain									-
a. U	Uracil	b. Adenine		с.	c. Thymine				d. Ribose
2	20. The major ca	atabolic product	of pyrimid	ines in l	huma	an is			
a	a. Alanine	b. Urea		c. U	Jric a	cid	(d G	anine

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Explain Polysaccharides	(OR)	
B) Write the structure and importance of maltose.		
22. A) Classify the fatty acids with examples.	(OR)	
B) Write the structure of cholesterol.		
23. A) Explain the reactions of amino acid with ninhydrin	(OR)	
B) Describe the primary structure of protein		
24. A) Write about energy rich bond	(OR)	
B) Explain oxidative phosphorylation		
25. A) Write about Vitamin E	(OR)	
B) Explain the structure & sources of Vitamin C		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Classify the carbohydrate with examples

27. Classify the lipids with examples

28. Write the structural organisation of protein

29. Explain the double helical structure of DNA

30. Write the structure, physiological function & deficiency symptoms of Vitamin A

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN BIOCHEMISTRY I

Paper	: ALLIED PRACTICAL I	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 18U1BCAP01	External	: 60

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring knowledge on qualitative analysis of carbohydrates.	K3, K4 & K5
CO2	Acquiring knowledge on qualitative analysis of aminoacids.	K3, K4 & K5
CO3	Under the role of thin layer chromatography in the separation of amino acids	K3, K4 & K5
CO4	Under the role of thin layer chromatography in the separation of Lipids	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	М	S	М	S	М
CO4	М	S	М	S	М

Ex. No	CONTENT	HOURS
1	PREPARATION OF SOLUTION Normal, Molar, Percentage solution and calculation	
2	Analysis of sugars a) Monosaccharides - Glucose, Fructose.	6
3	Analysis of sugars a) Monosaccharides - Galactose, Pentose.	6
4	Analysis of sugars b) Disaccharides - Sucrose, Maltose and Lactose.	6
5	Analysis of sugars c) Polysaccharide – Starch	3

Ī	6	Analysis of amino acids a) Histidine b) Tyrosine	6
	7	Analysis of amino acids c) Tryptophan d) Methionine	6
	8	Analysis of amino acids e) Cysteine f) Arginine	3
Γ	9	Separation of amino acids by paper chromatography	3
	10	Separation of lipids by thin layer chromatography	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY I)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY I	COURSE CODE: 18U1BCAP01	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT

1. (i) Systematically analyze the give carbohydrate sample (A) and display the results for observation (OR)

(ii) Separate the given lipid sample (A) by thin layer chromatography.

MINOR EXPERIMENT

Total: 25 MARKS

Total 25 MARKS

2. (i) Separate the given amino acid sample (B) by paper chromatography and display the results for observation (OR)

(ii) Systematically analyze the give amino acid sample (B) and display the results for observation.

RECORD TOTAL

(1 x 10 = 10 MARKS)

60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SEMESTER II

MICROBIOLOGY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 20U2BTC02	External	: 75

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURS	E OUTCOMES			
C	On successful completion of the course, students will be able to,			
COs	Outcome	CPD		
CO1	To understand historical prospective on the evolution of microbiology and gaining the concepts microscopic techniques	K1 &K2		
CO2	To acquire knowledge on the basic concepts on prokaryotic cellular structure	K1 &K2		
CO3	To acquaintance of basic nutritional requirements of microorganism and their growth pattern and media requirements	K2, K3 & K4		
CO4	To know about the anti-microbial therapy and their mode of action on controlling the growth of microorganisms	K2, K3, K4 & K5		

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	М
CO2	S	S	М	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	DEFINITION AND SCOPE OF MICROBIOLOGY: History and	15
	recent Developments: Contributions of Leevenhoek, Louis Pasteur,	
	Robert Koch, Elie Metchnikoff, Edward Jenner, Alexnder fleming,	
	Spontaneous generation, Biogenesis of Microbiology. Nobel prize	
	winners in the field of Medicine.	
II	MICROSCOPY: Simple and Compounds microcopes. Dark field	15
	contrast, Fluorescence microscopes. Electron microscopes (TEM &	
	SEM). Stain and staining techniques - Simple, differential and	
	special staining (Endospore and Capsular).	

III	CELLULAR STRUCTURES OF PROKARYOTES: Ultra	15
	structure and functions of bacterial cell wall, Plasma membrane,	
	Flagella, Pili and capsule. Ultra structure of fungi, Viruses and	
	cyanobacteria.	
IV	STERILIZATION AND CULTURE TECHNIQUES: Physical	15
	and chemical methods. Growth of bacteria - multiplication -	
	nutritional requirements. Factors affecting growth. Growth	
	curve, Determination of growth. Media and its types, Culture	
	techniques (pure culture, anaerobic culture). Cultivation of	
	anaerobes, Chemoautotrophs, chemoheterotrophs and	
	photosynthetic microbes. Culture collection, preservation,	
	lyophilization and freeze drying	
V	ANTIMICROBIAL CHEMOTHERAPY: Definition and	15
	types of antibiotics. Mode of action of broad and narrow	
	spectrum antibiotics. Anti-microbial resistance. Mechanisms of	
	resistance. Test for	
	evaluating anti-microbial effect. Microbial metabolism- Microbial metabolism. Photosynthesis in microbes. Role of	
	chlorophylls, carotenoids and phycobilins, Calvin cycle.	

SUGGESTED READINGS:

- 1. Microbiology concepts and application by Paul A. Ketchum, Wiley Publications 2010.
- 2. Fundaments of Microbiology- Frobisher, Sauders & Toppan publications 1975.
- 3. Microbiology Ronald M. Atlas 1993.
- 4. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 5. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 6. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 7. Fundamentals of Bacteriology Salley 1996.
- 8. Microbiology Pelczar, Chan, Krieg, Tata McGraw Hill Publications 2005.
- 9. Frontiers in Microbial technology P.S. Bisen, CBS Publishers 1994.
- Biotechnology: International Trends of perspectives A.T.Bull, G. Holl, M.D.Lilly, Oxford & TBH publishers 1987.
- 11. General Microbiology-C.B.Powar, H.F. Daginawala, Himalayan Publishing House 2011.

MODEL QUESTION PAPER (MICROBIOLOGY)

NAME OF THE COURSE: MICROBIOLOGY	COURSE CODE: 20U2BTC02	DURATION: 3 Hrs
MAX MARKS: 75		

1. The third ki				KS) ANSWER AL		
a. bacteria		b. algae		c. fungi		d. all the above
2. Who discovered the		bacteria that ca	use chole	era?		
a. Pierre Berthelot		b. Robert Koch		c. Louis Pasteur	d	. Rudolf Virchow
3. Which we	re the in	nvestigators live	d at the s	same time?	1	
a. Darwin and Woe	ese	b. Koch and Pa	steur	c.Van Leeuenhoel Ricketts	k and	d. Berg and Hooke
4. Which of the	e follow	ing is not found	in the k	ingdom Monera?		
a. Organelles	b. O	rganized cell str	ructure	c. Ability to repr	roduce	d. Ability to use energy
5. Resolving p	ower of	a microscope is	s a functi	on of		<u> </u>
a. Wavelength of li used	ght	b. Numerical ap of lens syste		c. Refractive inde	ex d.	Wavelength of light used and numerical aperture of lens system
6. In fluorescer except the			of the fo			ion of removing all light
a. Exciter filter	ſ	b. Barrier f	filter	c. Dichroic r	nirror	d. Mercury arc lamp
7. In Phase con	ntrast m	icroscopy, the r	ate at wh	ich light enters thr	ough obj	ects is
a. Constant		rsely proportion ir refractive indi		c. Directly propo to their refrac indices		d. Exponentially related to their refractive indices
8. Which amor	ng the fo	ollowing helps u	ıs in getti	ing a three-dimens	sional pic	ture of the specimen?
a. Transmission Electron Micro	scope	b. Scanning Ele Microscope ving is an examp	;	c. Compound Microscope	d.]	Phase Contrast Microscope
a. Hydra		b. Euglena	-	c. Chlamydon	nonas	d. mycoplasma
-	ng featu					acteria is
-	ure	b. Absence of a nuclear men temperature	nbrane	c. Presence of a c wall containing characteristic	cell ng a	d. Cytoplasmic ribosomes that are 70S
a. Habitats which a extreme environments v regard to acidit	у	-		membrane		
extreme environments v regard to acidit	y s niger i	is used in the pro-	oduction			tric acid and gluconic acid

12. Fungi are sensitive	e to which of the follow	wing antibiotics				
a. Penicillin	a. Penicillin b. Tetracyclin c. Chloramphenicol d. Griseofulvin					
13. SDA that supports the growth of fungi is composed of						
a.Glucose and ammonia	a.Glucose and ammonia b. Maltose and peptone c. Sucrose and peptone d. Peptone					
14. The portion of the	growth curve where a	rapid growth of bacteria is ob	served is known as			
a. Lag phase	b. Log phase	c. Stationary phase	d. Decline phase			
15. The generation tin	he for <i>E.coli</i> is	-				
a. 20 min	b. 35 min	c. 39 min	d. 13 min			
16. What is the color	of colonies of <i>Staphylo</i>	pcoccus aureus upon its growt	h in nutrient agar ?			
a. Pink	b. Red	c. Violet	d. Yellow			
17. Which bacteria ha	ve an unusual capsule	among the following?				
a. H. influenzae b. K. pneumonia c. S. pneumoniae		d. B. anthracis				
18. What is the chemi	cal nature of endotoxir	ns?				
a. Protein b.	Polysaccharide	c. Lipo polysaccharide	d. lipid			
19. Nystatin is effectiv	ve in curing?					
	a. Deep mycoses b. Dermatophytosis c. Systemic mycoses d. Candidiasis					
20. Which drug is use	d for treatment of leish	nmaniasis?				
a.Chloroquine phosphate	a.Chloroquine phosphate b. Metronidazole c. Sodium stibogluconate d. Suramin					

21. A) Explain the contributions of Louis Pasteur	(OR)
B) Explain about Biogenesis and Abiogenesis with examples	
22. A) Describe the working mechanism of phase contrast microscope	(OR)
B) Explain about SEM	
23. A) Write a short note on ultra-structure of bacterial cell	(OR)
B) Explain the structure of Fungi	
24. A) Explain the process of reproduction in bacteria	(OR)
B) Brief various media involved in growth of microbes	
25. A) Elaborate the antimicrobial resistance	(OR)
B) Explain the types of antibiotics	
SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUES	STIONS
26. Give detailed account on History of microbiology	
27. Give detailed account on TEM and specimen preparation	
28. Differentiate the Gram positive and negative organisms with examples	8
29. Write a detailed account on various sterilization techniques	
30. Explain different types of antibiotics and antimicrobial resistance	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN MICROBIOLOGY

Paper	: Core practical II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 20U2BTCP02	External	: 60

PREAMBLE

To make students on understanding basic microbiological techniques, aseptic practices in laboratory. The candidate also shall know how to maintain and culture the microorganisms in laboratory and their biochemical identification mechanisms.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand and implement the principles of aseptic practices in Laboratory	K1, K2 & K3
CO2	To gain knowledge on the media preparation and culturing the Microorganism	K2, K3 & K4
CO3	To identify the microorganisms by staining techniques and biochemical tests	K3, K4 & K5
CO4	To check the growth pattern of microorganisms towards various classes antibiotics	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	М	S	М
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS				
1	1 General Laboratory rules to be followed in microbiological					
	Laboratory					
2	Sterilization techniques (Dry heat, Moist heat, Filtration - membrane	4				
	and HEPA filters)					
3	Preparation of nutrient media (Solid, semi - solid and liquid)	5				
4	Isolation of pure culture (Streaking methods – simple, continuous,	2				
	quadrant and "T" streaking)					

5	Simple and negative staining	3
6	Differential staining (Gram"s staining, Capsule staining, Spore	10
7	Fungal staining (LCB)	5
8	Determination of bacterial motility (Hanging drop method)	5
9	Biochemical characterization of microorganisms (IMViC), TSI test, Carbohydrate fermentation test, Urease test, Catalase test	12
10	Antibiotic sensitivity test (Kirby-Bauer method)	10

MODEL QUESTION PAPER (LAB IN MICROBIOLOGY)

NAME OF THE COURSE: LAB IN MICOROBIOLOGY	COURSE CODE: 20U2BTCP02	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIME	ENT			
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Gram's staining for the given sample (A). Display the results for observation. (OR)				
(ii) Perform LCB sta	(ii) Perform LCB staining for the given fungal (A) and display the results for observation. (OR)			
(iii) Identify the mo Observation	tility of the given bacter	ial strain (A) and display	y the results for	
MINOR EXPERIME	NT	Γ	1	
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
	sitivity pattern of the giv	ven bacterial culture (B)	against the given	
antibiotics		(0)	R)	
(ii) Perform quadran observation	(ii) Perform quadrant streaking from the bacterial sample (B) and display the results for observation (OR)			
	(iii) Perform catalase test for the given bacterial culture (B) for hydrogen peroxide production and display the results for observation			
SPOTTERS		(5 2	X 4 = 20 MARKS)	
3. Identify the given spotters A, D, H, F & G and comment on them				
RECORD		(1 :	$\mathbf{x} \ 5 = 5 \ \mathbf{MARKS})$	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

BIOCHEMISTRY II

Paper	: ALLIED II	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U2BCA02	External	: 75

PREAMBLE

To make students on understanding basic biochemical reaction mechanisms of various biomolecules. The students also acquire knowledge on their regulation and also about the concepts of various endocrine systems and their deficiency consequences in human being.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of thermodynamics and energy production in living systems	K1 & K2
CO2	To understand the basic concepts of carbohydrate metabolism and their energy yield	K1, K2 & K4
CO3	To understand the basic concepts of protein & lipid metabolism and their energy yield	K1, K2 & K4
CO4	To understand the basic concepts of human endocrine system	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	М	S	М
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT		
I	Bio energetics – Laws of thermo dynamics, Concepts of free energy and standard free energy, Exergonic and Endergonic reactions. Electron transport chain. Inhibitors of ETC. Oxidative phosphorylation, High energy compounds.		
II	Carbohydrate metabolism: Glycolysis, Citric acid cycle with Energetics, glycogenesis, Glycogenolysis, HMP shunt.		
III	Protein metabolism: Transamination, oxidative and non-oxidative deamination, decarboxylation- urea cycle. Interrelationship of carbohydrates, proteins and fat metabolism.		
IV	Lipid metabolism: Basic principles of lipid metabolism. Oxidation of	12	

	saturated (α , β and ω) and unsaturated fatty acids. Oxidation of odd chain		
	fatty acids, Cholesterol biosynthesis and its importance.		
V	Endocrinology – Definition, Classification of Hormones, secondary		
	messenger(cAMP) Biological function and disorders of Pancreatic	12	
	Hormones (Insulin and Glucagon), Thyroid hormone (thyroxin).		

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G.Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY II)

NAME OF THE COURSE: BIOCHEMISTRY II	COURSE CODE: 18U2BCA02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. In exergonic reaction heat is					
a. Consumed	b. Liberated c. No change in heat d. Enthalphy in more transfer than 1				
2. Hydrogen is transf	erred through a series of	enzyme s	ystems to form -		
a. Oxygen	b. Water	c. Carbo	hydrate	d. ATP	
3. One molecule of	ATP is equal to	molecules	of NADP		
a. 1	b. 2	c.3		d. 4	
4. Oxidative phospho	rylation occurs in				
a. Chloroplast	b. Mitochondria	с.	Endoplasmic re	ticulum	d. Tonoplast
5. In which of the fol	lowing phase in glycoly	sis does th	e ATP is consun	ned?	
a. Payoff phase	b. Interphase	c. Prepa	ratory phase	d. Ga	p phase
6. The term glycogen	olysis defines				
a. Break down of	b. Breakdown of	c. S	ynthesis of	d. S	ynthesis of
glucose	glycogen		glucose		glycogen
7. HMP stands for					
a. Hexo kinase	b. Hexose mono nitrate	c. He	xose mono	d. Hez	kose mono
shunt shunt phosphate shunt butyrate shu		tyrate shunt			
8. Which of the follow	wing enzyme mainly inv	volved in th	ne process of gly	cogenesis	2
a. Glucagon lyase	b. Glycogen lyase	c. Glyco	gen synthase	d. Gluca	gon synthase
9. Transamination of	amino acids is chiefly c	atalyzed by	у		
a. Deaminase	b. Transaminase	c. Transl	ketolase o	d. Trans de	carboxylase
10. Which of the follo	owing aminoacid involv	ed in Urea	cycle?		
a. Serine	b. Typtophan	c. Aspar	ragine	d. Citrul	line
11. SGOT is an enzy	me that catalyzes	reaction	l		
a. Deamination	b. Trans deamination	с. Т	ransamination	d.]	Decarboxylation
12. Non-oxidative de	amination reactions is a	ccomplishe	ed by	•	
a. The conversion of	b. Conversion		c. Removal		d. None of the
		above			
to ammonia CO_2 as nitrogen					
13. Lipid metabolism entails the					
a. Synthesis of	b. Oxidation of fatty		ction of fatty		onversion of fatty
fatty acids	acids	acid	8		acids in to glycerol
		36			

	14. Fatty acid synthase is a multi-enzyme complex composed of sub units				
	a. 1	b. 2		c. 3	d. 4
	15. Phenanthrene nucl	eus is found in		·	
	a. Stigmesterol	b. Ergosterol		c. Cholesterol	d. Levosterol
	16. The precursor for t	he cholesterol biosynt	hesis	is	
	a. Acyl Co-A	b. Acetyl Co-A	С	Aceto acetyl Co-A	d. Keto acyl Co-A
	17. Ductless glands se	cretes			
	a. Serum	b. Hormone		c. Plasma	d. CSF
	18. Hyper insulinism l	eads to		I	
	a. Decreased level of glycogen	b. Increased leve of glucose	21	c. Increased level of glucagon	d. Increased rate of muscle phosphorylation
	19. Which of the follo	wing is an example for	r seco	ondary messenger?	
a.	cGMP b. c	CTMP	c. cl	JMP	d. cAMP
	20. Thyroid hormone	is highly concentrated	on		
	a. Baso lateral	b. Baso lateral		c. Baso lateral	d. Baso lateral
	plasma membrane	plasma membra	ane	plasma	plasma
	of active	of active		membrane of	membrane of
	histiocytes	hepatocytes		active thyocytes	active
					thrombocytes

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write short notes on standard free energy	(OR)	
B) Write about the inhibitors of ETC		
22. A) Explain the energetics of glycolysis	(OR)	
B) Write shortly on the process of glycogenesis		
23. A) Write short notes on transamination reactions	(OR)	
B) Write short notes on oxidative deamination reactions		
24. A) Explain the energetics of beta oxidation of fatty acids	(OR)	
B) Explain the oxidation of odd chain fatty acids		
25. A) Explain the clinical manifestations of hypo parathyroidism	(OR)	
B) Explain the complications faced by a victim having hyperglycemia		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on electron transport chain

27. Give a detailed account on TCA cycle

28. Elaborately discuss on Urea cycle with neat chemical reactions

29. Write an essay on cholesterol biosynthesis with neat chemical reactions

30. Explain the biological function thyroid hormone. Add a note on hypo and hyper thyroidism

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ALLIED – LAB IN BIOCHEMISTRY II

Paper	: ALLIED PACTICAL II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U2BCAP02	External	: 75

PREAMBLE

To make students on understanding basic biochemical calculations and preparing reagents and solutions. The students also gain knowledge on estimating quantitatively the biomolecules substances.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
C01	Become familiar in preparing different strengths of solutions for the basic requirement of executing biochemical experiments	K1, K2, K4 & K5
CO2	To know about the quantitative determination on the strength of various specific biomolecules	K1, K2, K4 & K5
CO3	Gaining knowledge on using basic instruments such as colorimeter and UV spectrophotometer for measuring the colour intensity developed in the reaction mixture	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	S	S	S	S	М

Ex. No	CONTENT	HOURS
1	Estimation of glucose by ortho toluidine method	3
2	Estimation of glycine by formal titration method	3
3	Estimation of ascorbic acid by 2,4 dichloro phenol indo phenol method	3
4	Estimation of urea by diacetyl monoxime method	3
5	Estimation of DNA by diphenylamine method	3
6	Estimation of RNA by orcinol method	3
7	Estimation of protein by lowry"s method	3
8	Estimation of cholesterol by zak"s method	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY II)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY II	COURSE CODE: 18U2BCAP02	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Estimate the amount of glycine present in the given sample (A) (OR)
(ii) Estimate the amount of ascorbic acid present in the given sam	ple (A)
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
(ii) Estimate the amount of RNA present in the given sample (B)	
RECORD (1 x 1	0 = 10 MARKS)
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SEMESTER III

MOLECULAR BIOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U3BTC03	External	: 75

PREAMBLE

To make students on understanding basic structure of genetic materials (DNA & RNA) and molecular concepts of a gene expression and its regulatory mechanisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of DNA/RNA structure and experimental evidences as genetic material	K1, K2
CO2	To under the mechanisms of replication of DNA and it regulation	K1, K2, K4
CO3	To know about the transcription process and its modifications into functional mRNA and translation into proteins	K1, K2, K4
CO4	To under the concepts of gene regulation and know about the mechanisms of transposition	K2, K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	М
CO2	S	S	М	М	S
CO3	S	S	М	М	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS		
	Genetic material: Evidences showing DNA and RNA as genetic material;	12		
Ι	DNA- Chemical composition & molecular structure, Watson and Crick"s			
	model - its biological significance; Forms of DNA (A, B, C, D & Z).Central			
	dogma of molecular biology.			
	DNA replication: Origin & Models of - Meselson and Stahl"s experiment -			
	types of replication - Mechanism of DNA replication in prokaryotes and			
Π	eukaryotes - Enzymology of replication. DNA repair- causes of DNA			
	damage & biochemical mechanism of DNA repair. Homologous			
	recombination- Holliday model			
	Transcription: RNA types and functions; RNA polymerase; Transcription	16		
III	in prokaryotes and eukaryotes; Post transcriptional modification -			

	Transcription and processing of RNA in prokaryotes;Post transcriptional modifications, splicing, spliceosomes. Editing, Nuclear export of mRNA Transcription and processing of RNA in prokaryotes.	
IV	Translation & Protein synthesis: Genetic code: Properties of genetic code; codon- anticodon interaction- Wobble hypothesis and elucidation of genetic code; Translation in prokaryotes and eukaryotes; Post translational modification of proteins & molecular chaperonins .	16
V	Regulation of gene expression : Gene expression in transcriptional level (lac and trp operon); gene expression in bacteriophages. Transposons – types and mechanism of transposition. Gene silencing . Recombination – Homologous and Non – homologous recombination. Molecular techniques; DNA finger printing, DNA Microarray, Gene Mapping, Protein Micro array.	15

SUGGESTED READINGS:

- 1. David Freifelder . 1990. Molecular Biology, 2nd Edition. Narosa Publishing house
- George M. Malacinski. 2008. Essentials of Molecular Biology, 4th Edition. Narosa Publishing house
- 3. Veer Bala Rastogi. 2010. Fundamentals of Molecular Biology. Ane Books India
- 4. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losile. 2008. Molecular Biology of the gene, 5th Edition. Pearson Education.
- 5. Lodhish, Berk, Matsun dairg, Kaiser, Krieger, Scott, Zipursky and Darnell. 2004. Molecular Cell Biology, 5th Edition. W. H. Freeman and Company
- 6. Robert F. Weaver. 1999. Molecular Biology. WCB Mc Graw Hill
- 7. E. D. P. De Robertis & E. M. F De Robertis, Jr. 2001. Cell and Molecular Biology, 8th Edition. Lipin cott William and Wilkins
- 8. Lehninger. 2005. Principles of Biochemistry. Nelson Cox, CBS Publishers
- 9. Alexander Mc Lenna, Andy Bates, Puil Turner & Mike White. 2015. Molecular Biology, 4th Edition. GS Garlan Sciences, Taylor and Francis Group
- 10. George M. Malacinski & David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 11. Richard R. Sinden. 1994. DNA Structure and function. Academic press
- 12. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 13. Pragya Khana. 2008. Cell and Molecular Biology. IK International Publishing House
- 14. William D. Stanfield, Jaine S. Colome and Raul J. Cano. 2008. Shaum"s Outline- Molecular Cell Biology. Tata Mc Graw Hill
- 15. H.S. Bhamrah & Kavita Juneja. 2002. Molecular Cell Biology. Anmol Publications
- 16. G. P. Jeyanthi. 2009. Molecular Biology. MJP Publishers
- 17. N. Vidhyarasthi & D. M. Chelan. 2007. Molecular Biology. IK International Publishing House
- P.S. Verma & V. K. Agarwal. 1998. Concepts of Molecular Biology. S. Chand and Company Ltd
- 19. Phil Turner, Alexander Mc Lennan, Andy Bates & Mike White. 2001. Molecular Biology, 3rd Edition. Bios Instant Notes
- 20. H. D. Kumar.2000. Molecular Biology, 2nd Edition. Vikas Publishing House
- 21. AVSS Sambamurhty. 2008. Molecular Biology. Narosa Publishing House

43

MODEL QUESTION PAPER (MOLECULAR BIOLOGY)

NAME OF THE COUF	RSE: MOLECULAR B	SIOLOG	GY COURSE 20U3BTC		DURATION: 3 Hrs
MAX MARKS: 75					
SECTI	$\overline{ON - A (1 \times 20)} = 20 \text{ N}$	IARKS)	ANSWER ALI	THE (DUESTIONS
	,	*			
	ogen bonds between ad	lenine an			1
a. 1	b. 2		c. 3		d. 4
2. Difference betw	veen RNA and DNA lies	s on			
a. Sugar	b. Phosphate group	c.]	Nitrogenous bas	e	d. None of the above
3. The distance b	etween two adjacent nit	rogenou	s base pair is	A	H_{\circ}
a. 2.4	b. 3.4	c.4.	.4		d. 5.4
4. DNA in chromo	osome is tightly packed	with			
a. Histones	b. Glycoprotein	S	c. Lipoproteins		d. Glycoproteins
5. Which of the fo	llowing mode of replica	tion is o	bserved in a livi	ng cell'	?
a. Conservative	b. Dispersive	c. S	Semi-Conservati	ve	d. None of the above
6. Which of the fo	llowing protein relaxes	the fricti	ional pressure fo	und on	the replication fork?
a. Helicase	b. Gyrase		c. Topoisome	rase	d. SSB
7. Which of the fo	llowing maintains the si	ingle stra	anded nature of	DNA?	I
a. Helicase	b. Gyrase		c. Topoisome	rase	d. SSB
8. Photo reactivati	on of DNA is catalyzed	by			
a. Gyrase	b. Topoisomerase		UVr B		d. Photolyase
9. The regulatory e	elements in a DNA is co	ontrolled	l by		
a. Cis elements	b. Trans elements		. Structural elem	ents	d. Control elements
	NA is removed by				
a. Editing	b. Splicing		apping	d. Po	oly adenylation
<u> </u>	ween holo and core enz				5 5
a. Alpha subunit	b. Beta subunit	-	c. Epsilon sub	unit	d. Zigma subunit
12. Formation of l	ariat is commonly found	d during			
a. Transcription b. Post transcriptional c. Translation d. Post translational modifications					
13. Each codon is	characterized by				
a. Singlet nucleotide	b. Doublet nucleotide	c. '	Triplet nucleotic	le	d. None of the above

	14. The starting codon AUG codes for which of the following amino acid?					
	a. Cysteine	b. Methionin	e	c. Serine	d. Threonine	
	15. Glycosylation of	proteins describes th	e addi	tion ofto the grow	ing poly peptide chain	
	a. Glucose	b. Gelatin	с.	Chalmoogric acid	d. Vitamin A	
	16. Which of the foll	owing machinery inv	olved	in post translational modifi	cations of proteins?	
	a. Molecular	b. Molecular		c. Molecular channels	d. Molecular	
	motors	chaperons			locomotors	
	17. The function of the	rans acetylase is to		-		
a.	Transfer of	b.Transfer of CH ₃ C-	OH	c. Transfer of $CH_2C=O$	d. Transfer of	
	CH ₃ C=O group	group		group	CH ₃ COOH group	
	18. Ty element is for	und in				
	a. Bacteria	b. Fungi		c. Protozoa	d. Yeast	
	19. Retroposons is commonly found in					
	a. Retroviridae	b. Rhinovirid		c. Adenoviridae	d. Poxviridae	
	20. Catabolic repress	ion refers to	-			
	a. Regulon	b. Operon		c. Citron	d. Recon	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Explain the experiments that proves DNA as genetic material	(OR)		
B) Explain the structure of tRNA and mRNA with neat sketch			
22. A) Explain the Meselson"s & Stahl experiment	(OR)		
B) Write shot notes on prokaryotic DNA polymerase			
23. A) Explain RNA splicing	(OR)		
B) Explain the process of transcription termination			
24. A) Explain Wooble hypothesis	(OR)		
B) Explain the properties of genetic code			
25. A) Explain the mechanism of transposition	(OR)		
B) Explain the structure of lactose operon			

SECTION – C $(3 \times 10 = 30 \text{ MARKS})$ ANSWER ALL THE QUESTIONS

- 26. Explain the chemical and physical structure of DNA
- 27. Give a detailed account on DNA replication in prokaryotes
- 28. Give a detailed account on Eukaryotic transcription
- 29. Explain the process of translation in prokaryotes
- 30. Explain the lac operon. Add a note on its regulation

LAB IN MOLECULAR BIOLOGY

Paper	: Core practical III	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 20U3BTCP03	External	: 60

PREAMBLE

To make students on understanding basic procedure in isolation separating purifying proteins. The students gain knowledge in DNA quantification and gene transfer methods

COURS	COURSE OUTCOMES				
(On successful completion of the course, students will be able to,				
COs	Outcome	CPD			
CO1	To know about the isolation, purification and quantification of	K1, K2, K3, K4 &			
	Protein	K5			
CO2	To know about the separation and quantification of DNA	K1, K2, K3, K4 &			
		K5			
CO3	To know about the various types of gene transfer techniques	K1, K2, K3, K4 &			
		K5 K1, K2, K3,			
		K4 & K5			
CO4	To identify and isolate the mutated bacterial by special	K2, K4 & K5			
	Techniques				

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	М
CO3	S	S	S	S	М
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of protein	4
2	Estimation of protein by Lowry"s method	4
3	Purification of protein by dialysis	4
4	Separation of proteins by native – PAGE	4
5	Separation of DNA by agarose gel electrophoresis	4
6	Quantification of DNA by UV-visible spectrophotometer	4
7	Induction of mutation in bacterial cells UV light	4
8	Bacterial DNA transformation by CaCl method	4
9	Bacterial conjugation	4
10	Isolation of auxotrophic mutants by replica plating technique	4

MODEL QUESTION PAPER (LAB IN MOLECULAR BIOLOGY)

NAME OF THE COURSE: LAB IN MOLECULAR BIOLOGY	COURSE CODE: 20U3BTCP03	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPE	RIMENT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Isolate prote	ein from the given sam	ple (A). Display the resu	ts for observation. (OR)
(ii) Separate t	he protein from the giv	ven sample (A) by SDS-H	PAGE. Display the results for
observation.			(OR)
		ple (A) in to given host co	ell by appropriate method.
17	esults for observation		
MINOR EXPE	RIMENT		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Purify the given protein sample (B) by dialysis. Display the results for observation (OR)			
(ii) Separate t	he given DNA sample	(B) electrophoresis and o	lisplay the results for observation
	(OR)		
· · /	U		or hydrogen peroxide production
1 7	ne results for observation	on	
	SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$		
3. Identify the gi	ven spotters A, D, H,	F & G and comment on the	nem
RECORD	RECORD $(1 \times 5 = 5 \text{ MARKS})$		
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE I

Paper	: ALLIED III	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

(On successful completion of the course, students will be able to,		
COs	Outcome	CPD	
CO1	To gain knowledge on basics of fungi and algae	K1 & K2	
CO2	To gain knowledge on basics of bryophytes	K1 & K2	
CO3	To gain knowledge on basics of lichens	K1 & K2	
CO4	To gain knowledge on basic concepts of plant physiology	K1, K2 & K4	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	S
CO3	S	М	S	S	S
CO4	М	S	S	М	М

UNIT	CONTENT	HOURS
Ι	ALGAE: General characteristics of algae. Study on thallus structure,	
	reproduction and life cycle of Gellidium, Gracillaria and Polysiphonia.	12
	Economic importance of algae in industries.	
II	FUNGI: General characteristics of fungi. Study on thallus structure,	
	reproduction and life cycle of Agaricus, Penicillium and Saccharomyces	12
	cerevisieae. Economic importance of fungi.	
III	LICHENS: General characteristics of fungi. Study on thallus structure,	
	reproduction of foliose, Crustose, Fruticose and Squamulose groups of	12
	lichens	
IV	BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS: General characteristics. Study on the structure, reproduction and life cycle of bryophytes (<i>Marchantia</i>), Pteridophytes (<i>Lycopodium</i>), Gymnosperms (Cycus) and their economic importance.	12
V	PLANT PHYSIOLOGY: Absorption of water (Active and passive). Photosynthesis (Light and Dark reactions). Cyclic and non-cyclic photophosphorylation. Transpiration and its types (Stomatal transpiration).	12

SUGGESTED READINGS:

- Vashishta BR, AK. Sinha. (2010). Botany for Degree student Fungi. S. Chand & Co. New Delhi.
- 2. Pandey SN, Mishra SP and Trivedi PS. (2009). A text book of
- 3. Botany, Vol II, Vikas Publishing House Pvt. Ltd., Delhi.
- 4. Rao, KN, Krishnamoorthy KV and Rao GS. (1979). Ancillary Botany S. Viswanathan Pvt., Madras.
- 5. Text Book of Algae. (2018). KS. Bilgrami and LC Saha, 1st edition, CBS Publishers.
- 6. Algae. (2011). OP. Sharma, Tata Mc Graw Hill Education.
- 7. Advances in Mycology. (2012). Sohan Sharma, random Publications Publishers and Distributors, New Delhi.
- 8. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited.
- 9. BP Pandey. (1986). Text Book of Botany, Vol I & II Chand. S & Co. New Delhi.
- 10. Fuller. HJ and Tippo O. (1949). College Botany, Henry Holt & Company.
- 11. Ganguly AK. (1975). General Botany Vol I. (1971) and Vol II. The new Book stall, Calcutta.

LAB IN PLANT SCIENCE I

Paper	: ALLIED PRACTICAL III	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOAP01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi, algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

C	On successful completion of the course, students will be able to,	
COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant	K4, K5 & K6
	Kingdoms	
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	М	S	М
CO2	S	S	S	S	М
CO3	S	S	М	S	S
CO4	S	S	S	S	S

1. Sectioning of given specimens	(3 x 8 = 24 marks)
a. Algae (or) Fungi	8 marks
b. Bryophyte (or) Pteridophyte	8 marks
c. Gymnosperms	8 marks
2. Identification of spotters (Permanent slides)	(4 x 3 = 12 marks)
d. Algae (or) Fungi	4 marks
e. Bryophyte (or) Pteridophyte	4 marks
f. Gymnosperms (or) Lichens	4 marks
3. Identification of spotters (Morphology)	(3 x 3 = 9 marks)
g. Algae	3 marks
h. Fungi	3 marks
i. Bryophyte/Pteridophyte/Gymnosperm	3 marks
4. Identification of the given setup (Physiology)	(3 x 1 = 3 marks)
j. Ganong"s photometer (or) Wilmutt"s bubbler	
5. Identification of spotter (Economic importance)	(1 x 2 = 2 marks)
k. Gellidium (or) Penicillium (or) Yeast	
6. Record	10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I LAB IN FOOD PROCESSING AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS01	External	: 60

PREAMBLE

To make students on understanding basic concepts of food quality management and deals with various food processing concepts and technologies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge of food preservation	K4, K5 & K6
CO2	To gain knowledge of self-life of different foods	K4, K5 & K6
CO3	To gain knowledge on the economic importance of Dairy and	K4, K5 & K6
	Dairy products	
CO4	To gain experimental knowledge on Food processing	K4, K5 & K6

MAPPI	NG WITH PROGRAM	MME OUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	М	S	М
CO2	S	S	S	S	М
CO3	S	S	М	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	To study different types of blanching of fruits and vegetables	4
2	Preservation of food by canning	4
3	To perform cut out analysis of caned product	4
4	Preservation of food by high concentration of sugar i.e. jam	4
5	Preservation of food by high concentration of salt/acid i.e. pickle	4
6	Preservation of food by addition of chemicals i.e. tomato ketchup	4
7	Preservation of milk by pasteurization and sterilization	4
8	Determination of total fat, protein in milk and milk products	4
9	Estimation of synthetic Food colours from canned food. Natural Food	4
	coloring agents	
10	Detection of adulterants in edible oil and ghee	4

MODEL QUESTION PAPER (LAB IN FOOD POCESSING AND TECHNOLOGY)

NAME OF THE COURSE: LAB IN FOOD PROCESSING AND TECHNOLOGY	COURSE CODE: 18U3BTS01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIME	INT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Perform cutout an	nalysis of the given cann	ed food sample (A). Dis	play the results for
observation.			(OR)
(ii) Preserve the giv	en food sample (A) by s	ugar/salt/acid	(OR)
(iii) Estimate the an	nount of total fat from th	e given milk sample (A)	
MINOR EXPERIME	NT		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Perform food pre	eservation by chemical a	dditives for the given for	od sample (B) (OR)
(ii) Perform pasteur	ization of milk from the	given milk sample (B)	(OR)
(iii) Estimate the an sample (B)	nount of synthetic Food	colour in the given swee	t/confectionary/beverage
SPOTTERS		(5 2	X 4 = 20 MARKS)
3. Identify the given sp	otters A, D, H, F & G a	nd comment on them	
RECORD		(1 x	$\mathbf{x} \ 5 = 5 \ \mathbf{MARKS})$
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I DEVELOPMENTAL BIOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U3BTS02	External	: 75

PREAMBLE

To make students on understanding basic concepts of mammalian developmental systems and also to deals with the developmental system plants

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of animal system development	K1, K2 & K3
CO2	To understand the concepts of vertebrate system development	K1, K2 & K3
CO3	To understand the concepts of plantsystem development	K1, K2 & K3
CO4	To understand the concepts of invertebrate system development	K1, K2 & K3

MAPPI	NG WITH PROGRAM	AME OUTCON	MES		
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	М
CO2	S	S	S	М	М
CO3	S	S	S	М	М
CO4	S	S	S	М	М

UNIT	CONTENT	HOURS
I	Basic concepts of development in animal system-I Stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, lineages of three germ layers. Embryo development	8
п	Basic concepts of development in animal system-II Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development, model organisms in Developmental biology.	8
ш	Early Development in invertebrate / vertebrate models Drosophila, <i>C.elegans</i> , Xenopus, Mouse/ human, Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), and body plan patterning. Hormones involved in reproduction.	8

IV	Late Development in invertebrate /vertebrate models Organogenesis- development of central nervous system in vertebrates, vulval formation in <i>C.elegans</i> . Distribution of cytoplasmic substances in the egg–Metamorphosis (Insects and amphibians) – Hormone control of metamorphosis.	8
v	Basic concepts of development in Plant system Organization of the plant cell, plant meristems and cell fate; root and shoot development; secondary growth; vascular development; Outline of experimental embryology. Sexual reproduction; flower development; mechanisms of gametogenesis and fertilization.	8

MODEL QUESTION PAPER (DEVELOPMENTAL BIOLOGY)

NAME OF THE COURSE: DEVELOPMENTAL BIOLOGY	COURSE CODE: 18U3BTS02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	N – A	A (1 X 20 =	= 20 MAI	RKS) AN	SWER ALL	THE (QUESTIONS
1. How many cle	avaş	ges are cor	npleted in	16 cell st	ages of frog	"s egg	?
a. 3		b. 8		c. 4		d. 12	
2. The expulsion	of c	completely	develope	d foetus fi	om the uter	us is kr	iown as
a. Ovulation		b. pla	centation	с	. gestation		d. parturition
3. For fertilizatio	n of	frog"s egg	g				
a. Sperms of same species are essent	ial	b. Sperms need p	do not benetration		Sperms of any animal can fer		d. Only presence of male is sufficient
4. Grey crescent	is pi	resent in					
a. Zygote of frog		b. Brain	of rabbit	c. E	ye of frog	(d. Retina of cockroach
5. Which of the f	ollo	wing does	not show	metamor	phosis?	I	
a. Frog		b. Hou	isefly	c	. Hydra		d. Mosquito
6. The first phase	e in t	the sexual	reproduct	ion of org	anisms is		
a. Spermatogenes	sis	b. Oo	genesis	c. Sp	ermiogenesi	S	d. Gametogenesis
7. The formation	, dev	velopment	and matu	ration of t	he female ga	amete i	s called
a. Ovulation		b. Oo	genesis	c. Vitellogenesis			d. Folliculogenesis
8. During fertiliz of	atio	n the spern	natozoa po	enetrate th	brough the eg	gg men	nbranes with the help
a. Flagellum b	o. Ac	crosome	c. Sperr acros		leased from th	ne d. N	Mitochondira located at the middle piece
9. During normal	l dev	velopment	the activa	tion of th	e egg is achie	eved by	у
a. Vitellogenesis		b. Oog	genesis	c. Spe	ermatogenesi	is	d. Fertilization
10. When the egg	gs ar	e released	from the	ovary of f	rogs they are	e at the	;
a. primary oocyte stag	ge	b. secon	dary oocyt	e stage	c. ootid stag	je	d. matured ova stage
11. The formatio	n of	the neural	tube is kr	nown as			
a. Neurulation		b. Tubu	lation	c. Cr	aniation	d.	None of the above
12. During metar	norp	phosis, the	disappear	ance of la	rval organs	is calle	ed
a. Histogenesis		b. Pae	edogenesis	s c	. Histolysis		d. Paedomorphosis
13. Cleidoic eggs	s are	e found in -		I		I	
a. Birds		b. mar	nmals	с	. insects		d. molluscs
14. Metamorpho	sis is	s a charact	eristic fea	ture of			

a.	Direct ontogenic development	b. Indirect ontogenic development	c. Chordates d.	Embryogenesis in mammals		
	15. The sexual embr	yo of the male and fema	le frogs is called	-		
a.	Copulation	b. Amphimixis	c. Syngamy	d. Amplexus		
	16. Human egg is					
	a. Centrolecithal	b. Microlecithal	c. Mesolecithal	d. Telolecithal		
	17. Which of the fol	lowing develops from ec	ctoderm?			
a.	Spinal cord and brain	b. Liver and heart	c. Eye and skin	d. Notochord and vertebral column		
		ne structurally and funct as of differentiation calle	ionally a spermatozoan, e	each spermatid has to		
a.	Spermiation	b. Spermiogenesis	c. Spermatogenesis	d. Androgenesis		
19. In the human female, the primary oocytes remain small without any growth for						
a.	4-5 years	b. 6-8 years	c. 8 - 10 years	d. 12 -14 years		
	20. The sperm produced called	ices substances of enzyn	natic nature of sperm lysi	n. In mammals, it is		
a.	Hyaluronidase	b. Hyaluronic acid	c. Androgamone	d. Cryanogamone		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	STIONS
21. A) What is differentiation? How it differs from redifferentiation?	(OR)
B) What is meant by embryonic period of development?	
22. A) State the functions of cytoplasmic determinants.	(OR)
B) Define inductive signals with an example.	
23. A) Define cleavage and mention its importance.	(OR)
B) What is gastrulation? State its significance.	
24. A) How the nervous system develops in human?	(OR)
B) What make up the central nervous system of vertebrates?	
25. A) Define plant meristem. State its types.	(OR)
B) Draw the structure of a flower and label its parts.	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. What are the stages of a developing embryo? Give illustrations.

27. Why Drosophila melanogaster is used as model organisms? Comment on it.

28. Justify the statement - *Caenorhabditis elegans* as an emerging model for studying the basic biology.

29. Describe germ layers and organs produced by them in detail.

30. Draw the structure of plant cell and elaborate its cell inclusions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I FOOD BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS03	External	: 60

PREAMBLE

To make students on understanding basic concepts of food preservation methods by applying technological basics. The paper also deals with the food spoilage, food adulteration and development of value added products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of basic food preservation methods	K1 & K2
CO2	To understand the role of water in food spoilage and preservation	K1 & K2
CO3	To explore the physical factors involving in food processing	K1 & K2
CO4	To make familiar with food sanitation and its importance	K2, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	М	М	М

UNIT	CONTENT	HOURS
Ι	Food Preservation by application of Heat: Principles of Heat Transfer, Blanching, Pasteurization, Heat Sterilization.	8
II	Food Preservation through Water Removal: Forms of Water in Foods, Sorption of Water in Foods, Water Activity, Drying Technology, Evaporation Technology.	8
Ш	Food Preservation through Physical and Chemical methods :Chilling, Freezing, Radiation, Ionizing, Microwave , Salt, Smoke, Sugar, Other Chemical Additives.	8
IV	Sensory evaluation of food quality, quality factors for consumer safety. FSSAI, HACCP, FDA. Food Packaging, Food Plant Sanitation, Environmental Aspects of Food Processing.	8
V	GeneticallyModifiedFood–Bovinesomatotropin,alphalactalbumin & lactoferrin in milk,Edible vaccine (Cholera vaccine –potatoes&HepatitisBvaccine –maize)	8

MODEL QUESTION PAPER (FOOD BIOTECHNOLOGY)

NAME OF THE COURSE: FOOD BIOTECHNOLOGY	COURSE CODE: 18U3BTS03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTIO	N - A (1 X 20 = 20 MARKS)	S) ANSWER ALL THE	QUESTIONS
1. Pasteurization is t	he process of heating milk		
a. Above 121°C	b. Above boiling point	c. Below boiling point	d. Above 150 °C
2. Cold sterilisation	refers to the preservation of	food by	
a. Refrigeration	geration b. Radiation c. Dehydration d. Ly		
3. Who is regarded a	s the father of canning?		
a. Nicolas appert	b. Louis Pasteur	c. John hall	d. Bryan dokin
4. The reason for for	od spoilage is		
a. Growth of microo	rganism b. Autolysis	c. Rancidity	b. All the above
5. Before drying, veg	getables should be		
a. Autocleave	b.Salted	b. Blanched	c. Sulfured
6. A food additives t	hat prevent colour and flavo	our loss	
a. Enzymes	b. Yeast	c. Fruit buffer	d. Ascorbic acid
7. Preventing the gro	owth of pathogens in food		
a. Danger zone b.	Contamination c. Food	preservation d. Cro	oss contamination
8. Jam and jellies an	d preserves can be preserved	l by adding sugar at conc	entration of
a. 65%	b. 75%	c. 40%	d. 30%
9. A fungus that cau	ses fermentation		
a. Bacteria	b. Mold	c. Yeast	d. Virus
10. A type of food p containers	reservation technique that in	volves sealing food in ste	erilized air light
a. Irradiating	b. Canning	c. Freezing	d. Drying
11. Iodized salt cont	ains iodine in the form of		I
a. NaCl	b. KIO3	c. Kl	d. Na
12. The first synthet	ic sweetening agent used as_	?	I
a. Cyclamates	b. Aspartame	c. Sucralose	d. Sacchavrin
13. Agar-agar is use	d as		

a.	Antibiotic	b. Stabilizer and thickness	c. Nu	trient supplement	d. Colouring agent
	14. Frozen storag	ge is generally operated at tempera	ature of		
	a0°C	b18°C		c50°C	d. 60°C
	15. What is the b	est method in storing nuts?			1
a.	Vacuum packing	b. Smoking	c.	Drying	d. Freezing
	16	Standard help ensure food qualit	y?		1
	a. National	Packing	b.	Legal	c. All of these
	17. The freezing point for pure water is				
	a. 10	b. 28	c.	15	d. 32
	18. Corn syrup is	a mixture of			1
	a. dextrose and maltose	b. Dextrose and Galactose	c.	Galactose and Maltose	d. Glucose and Galactose
	19	is essential for forming haemo	globin i	n the blood	1
a.	Calcium	b. Iron	c.	Phosphorn	d. Magnesium
	20. Fat is comple	tely digested in the			
	a. Stomach	b. Mouth	c.	Small intestine	d. Mouth

$\mathbf{b} = \mathbf{b} = \mathbf{b} + \mathbf{b} = \mathbf{b} + $		
21. A) Write short notes on pasteurization		
B) Write a short notes on principles of food preservation		
22. A) Explain drying	(OR)	
B) Define contamination? What is the role of water in contamination?		
23. A) Notes short notes on freezing?	(OR)	
B) Explain the role of radiation in food preservation		
24. A) Write short notes on chemical additives?	(OR)	
B) Describe the role of salt and sugar in food preservation?		
25. A) What is food processing? Explain?	(OR)	
B) Food laws and regulations?		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write the essay on food preservation principles and application?

27. Explain the evaporation methodology?

28. Write an essay on the physical, chemical methods of food preservation?

29. Write an essay on the environmental aspects of food processing?

30. Roles and scientific uses of water in food processing industries?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SEMESTER IV

GENETIC ENGINEERING

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U4BTC04	External	: 75

PREAMBLE

To make students on understanding basic principles of gene manipulation and its application in the development of novel pharmaceutical and drug products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about DNA manipulating enzymes and its role in rDNA Technology	K1 & K2
CO2	To gain knowledge on different types plasmid vectors and their Usage	K1 & K2
CO3	To acquire knowledge on basic gene cloning strategies	K2, K3 & K4
CO4	To evaluate the usage and applications of gene cloning for the development value added products	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	SCOPE AND MILESTONES OF GENETIC ENGINEERING: Biomolecular tools and their applications in genetic engineering: Restriction endonucleases and its types, DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I. Ligation(cohesive & blunt end ligation) – linkers & adaptor.	15
Π	GENE CLONING VECTORS: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors and artificial chromosomes (YAC and BAC). DNA sequencing (Maxam-Gilbert and Dideoxy) methods. DNA amplification: PCR (Principles & types - RT PCR, Real time PCR and Nested PCR). cDNA synthesis and cloning: mRNA enrichment, reverse transcription.	15

III	CLONING STRATEGIES: Cloning of interacting genes - Yeast two hybrid systems Nucleic acid micro arrays and Site directed mutagenesis. Methods to study gene regulation: DNA transfection, Primer extension, S1 mapping, RNase protection assay.	15
IV	INTRODUCTION TO CLONING: Detection & Screening of clones. Expression strategies for heterologous genes. Vector engineering and codon optimization. <i>In-vitro</i> transcription, expression of cloned genes in prokaryotes (bacteria – Glucose promoter) and eukaryotes (Yeast – Alcohol promoter).	15
V	APPLICATIONS OF rDNA TECHNOLOGY. Transgenic plants with reference to virus and pest resistances, herbicide tolerance and stress tolerance (cold, heat and salt); cytoplasmic male sterility; delay of fruit ripening. Transgenic animals – Pharmaceutical products - insulin. Farm animal production. Recombinant DNA Technology in the production of vaccine. T-DNA tagging and transposon tagging, Transgenic and gene knock out technologies	15

SUGGESTED READINGS:

- 1. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 2. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 4. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.
- 5. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 6. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA. Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 7. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 8. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 9. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 10. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 11. Molecular Biotechnology Glick and Pasternak.
- 12. Principles of gene manipulations Old & Primrose.

MODEL QUESTION PAPER (GENETIC ENGINEERING)

NAME OF THE COURSE: GENETIC ENGINERING	COURSE CODE: 20U4BTC04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (20 X 1 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. <i>Taq</i> polymerase is isolated from						
a. E.coli	b.	p. Thermus c. Thermus d. Bacillus stereothermophili aquaticus marinus		cillus stereothermophilus		
2. Which of t	the follo	owing sequence is r	ecognized	by Hind III?		
a. AA GCTT	1	b. A AGCTT		c. GTCGA (2	d. GT CGAC
3. RNase H	cleaves	shybrid				
a. DNA-RNA	A	b. DNA-DNA	\	c. RNA-RNA	A	d. RNA-Protein
4. Which of t	the follo	owing enzyme is us	ed to creat	e the sticky ends	on DNA?	
a. Acid phosphat	ase	Polynucleotidyl ki		Terminal deoxy nucleotidyl tran	ferase	Alkaline phosphatase
5. Which of t	the follo	owing vectors conta	ains Ori "C	" sites from two	different s	pecies?
a. Cosmids		b. M13 vectors		c. Shuttle vector		d. Phagemids
6. The inser	tional v	vector $\lambda gt10$ can abl	le to carry	up to of	f foreign D	NA
a. 4 kb		b. 5 kb		c. 7 kb		d. 8 kb
7. The size of	f YRp7					
a. 5.8 kb		b. 6.8 kb		c. 5.7 kb		d. 6.7 kb
8. Which of t	the follo	owing contains cova	alently clo	sed single strand	ed circular	DNA molecules?
a. Phagemids	5	b. M13 vector	s	c. Shuttle ve	ctors	d. Cosmids
9. Which of t	the follo	owing DNA is used	as templa	te in chain termin	nation meth	nod DNA sequencing?
a. Plasmid D	NA	b. Genomic DN	JA	c. Viral DNA	4	d. λ DNA
10. Denatura	tion of I	DNA during PCR i	s usually c	arried out at	°C	·
a. 94		84		b. 64		c. 74
-	11. The processed RNA is partially degraded by exonucleases to produce functional trancriptome. This method is called as					
a. cDNA libr construct	•	b. mRNA en	richment	c. DNA sequer	ncing	d. DNA amplification
12. In yeast t	wo hyb	rid analysis, the tar	get gene is	-		-
transcript	transcription factors and the vector construct is ligated in to avector					
a. YAC	a. YAC b. BAC c. SEN d. Lambda					
13. The gluce	13. The glucoamylase (GOX) promoter found in <i>Aspergillus nidulans</i> is induced byand					
repressed	repressed by					
			6	6		

	a. Starch, Glucose	b. Starch, Fructose	c. Starch, Galactose	d. Starch, Xylose	
	14. The chemical method of DNA sequencing can be used to rapidly sequence DNA that are				
	kb				
	a. < 0.5	b. > 0.5	c. < 1.0	d. > 1.0	
	15. The DNA – phos	phate containing mixture	s incubated with the recipient	cells for	
a.	24 hrs	b. 48 hrs	2. 72 hrs	d. 98 hrs	
	16. Short pulses are g	generated in electroporatio	n in higher voltage at the rate	e of	
	a. 1100 V	b. 1200 V	c. 1300 V	d. 1400 V	
	17. Which of the foll protein engineeri	• •	ipulated for enhancing its enz	ymatic activity through	
	a. Amylase	b. Subtilisin	c. Anti-trypsin	d. Chymotrypsin	
		•	nonitoring for the purification of polymers like DNA, RNA,		
	a. Enrichment	b. Manipulating	c. Incorporation	d. Sequence specific	
	assay	assay	assay	targeting assay	
	19. Which of the following method comes under gene tagging technology?				
a.	Selection based gene	b. rDNA tagging	c. Marker assisted	d. Epitope tagging	
	tagging		tagging		
	20. The given chromosome can be engineered by the principle of				
	a. Addition	b. Point mutation	c. Inversion	d. None of the above	

L THE QUESTIONS
(OR)
ses
(OR)
(OR)
trations
(OR)
n suitable example
(OR)

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give detailed account on restriction endonucleases

27. Give detailed account on M13 vectors

28. Give detailed account on cloning differentially expressed genes

29. Give detailed account on expression of heterologous genes

30. Give detailed account on processing, purification, refolding and characterization of recombinant proteins

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN GENETIC ENGINEERING

Paper	: Core Practical IV	Total Hours	: 75
Hours/Week	: 4	Exam Hours	:06
Credit	: 3	Internal	: 25
Paper Code	: 20U4BTCP04	External	: 75

PREAMBLE

To make students on understanding basic principles on the usage of genomic and plasmid DNA in the development of microbial recombinant clones by selection strategies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To isolate genomic and plasmid DNA, and to digest them restriction Enzyme	K2, K3 & K4
CO2	Shall acquire practical knowledge on ligating vector and target DNA	K2, K3, & k4
CO3	Shall know about the amplification strategies of cloned vector	K3, K4 & K5
CO4	To demonstrate the selection of recombinant clones by using selectable markers	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Genomic DNA from <i>E.coli</i>	10
2	Isolation of Plasmid DNA mini prep and maxi prep from <i>E.coli</i>	10
3	Construction of restriction map of a plasmid by Hind III and BamHI	10
4	Ligation of DNA and plasmid by T4 DNA ligase	5
5	Purification of DNA fragment from gel by electro-elution	5
6	Amplification of ligated plasmid by PCR	10
7	Transformation of recombinant DNA in Host <i>E.coli</i> by CaCl method	10
8	Selection of recombinant clones by (IPTG-X-gal: Blue white selection)	15

MODEL QUESTION PAPER (LAB IN GENETIC ENGINEEING)

NAME OF THE COURSE: LAB IN GENETIC ENGINEERING	COURSE CODE: 20U4BTCP04	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
4. (i) Isolate genom	4. (i) Isolate genomic DNA from the given bacterial sample (A). Display the results for			
observation			(OR)	
(ii) Isolate plas	mid DNA from the give	n bacterial sample (A). I	Display the results for	
observation			(OR)	
		e given DNA sample (A)	using the given	
enzyme/s. Display the	results for observation			
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
Č,	e	sample (B) using DNA l	igase. Display the	
results for obse	results for observation (OR)			
	(ii) Perform DNA transformation in the given host cell sample (B) using calcium			
chloride (OR)			(OR)	
(iii) Purify the given DNA sample (B) by electro elution. Display the results for				
Observation				
SPOTTERS		· · · · · · · · · · · · · · · · · · ·	X 4 = 20 MARKS)	
6. Identify the given spotters C, D, E, F & G and comment on them				
RECORD		(1 :	$\mathbf{x} \ 5 = 5 \ \mathbf{MARKS})$	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE II

Paper	: ALLIED IV	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospectives.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic concepts of phyllotaxy	K1 & K2
CO2	To make clear cut understanding of Bentham"s and Hooker"s Classification	K1 & K2
CO3	To understand the concepts of plant anatomy and ecology	K4 & K5
CO4	To understand the concepts of plant embryology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	S	S	М
CO2	М	S	S	S	S
CO3	S	М	S	М	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS		
Ι	EXTERNAL MORPHOLOGY: Phyllotaxy. Types of leaf – simple and			
	compound. Inflorescence – Rocemose, Cymose and special types (Head &	12		
	Cyathium). Terminology with reference to flower description.			
II	TAXONOMY: Bentham & Hooker"s system of classification. Study of			
	major plant families and their economic importance (Annonaceae,	12		
	Rubiaceae, Cucurbitaceae, Asteraceae and Poaceae).			
III	ANATOMY: Simple & Permanent tissues: Parenchyma, Collenchyma &			
	Sclerenchyma. Complex permanent tissues: Xylem & Phloem. Primary	12		
	structure of dicot root and stem; monocot root and stem.			
IV	PLANT ECOLOGY: Climatic factors, morphological and anatomical	12		
	adaptations in hydrophytes and xerophytes.	12		

EMBRYOLOGY: Structure of anther and male gametophyte. Types of	
ovule and female gametophyte (Polygonum). Fertilization process. Structure	
and development of dicot embryo (Capsell - Bursa pastoris).	

12

SUGGESTED READINGS:

V

- 1. Bhijwani SS and Bhatnagar SP. (2009). The embryology of angiosperms. Vikas Publishing House Private Limited, New Delhi.
- 2. Davis PH and Heywood VM. (1965). Principles of Angiosperm Taxonomy. Oliver and Boyd, Edinburgh.
- 3. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited, New Delhi.
- 4. Pandey BP. (2001). Plant Anatomy. S.Chand and Company Private limited, New Delhi.

LAB IN PLANT SCIENCE II

Paper	: ALLIED PRACTICAL IV	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U4BOAP02	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospective.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the practical concepts of general plant families	K1 & K2
CO2	To understand the microscopic observations of anatomy	K1 & K2
CO3	To acquire practical exposure in sectioning of plant tissues	K1, K2 & K4
CO4	To acquire basic experimental approach on mounting and preparation of permanent slides	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	М
CO2	S	S	S	М	S
CO3	М	S	S	S	М
CO4	S	S	М	S	S

S: Strong; M: Medium; L: Low

1.	Identification of plant families (Any two out of five)	(2 x 5 = 10 marks)
	a. Annonaceae, Rubiaceae and Cucurbitaceaei	5 marks
	b. Asteraceae and Poaceae	5 marks
2.	Identification of spotters (Economic importance)	(5 x 3 = 15 marks)
	c. Annonaceae	3 marks
	d. Rubiaceae	3 marks
	e. Cucurbitaceae	3 marks
	f. Asteraceae	3 marks
	g. Poaceae	3 marks
3.	Sectioning of given plant part (Morphology)	(2 x 5 = 10 marks)
	h. i) Monocot stem or monocot root	

ii) Dicot stem or Dicot root

- i. i) Hydrophyte
 ii) Zerophyte
 4. Dissect and mount anyone stage of the given plant embryo (j) (1 x 6 = 6 marks)
 5. Identification of spotters (Permanent slides) (3 x 3 = 9 marks)
 k. Anatomy (Simple and complex tissue) 3 marks
 l. Embryology (Transverse section of anthers and types of ovules) 3 marks
 m. Ecology (Zerophyte *Nerium* and Hydrophyte *Hydrilla*) 3 marks
 6. Record 10 marks

<u>SBEC – II</u>

LAB IN POULTRY SCIENCE

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U4BTS04	External	: 75

PREAMBLE

To make students on gaining practical exposure on poultry science and technology and its economic management and quality analysis of poultry products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Evaluate quality control parameters of poultry for disease Diagnosis	K4, K5 & K6
CO2	To evaluate the microbial contamination of poultry products for quality enhancement	K4, K5 & K6
CO3	To evaluate poultry micro flora	K4, K5 & K6
CO4	To validate the preservation of poultry products and evaluation of its nutritive quality	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	М	S	S
CO3	М	S	S	S	S
CO4	М	S	S	S	S

Ex.no	CONTENT	HOURS
1.	Post-mortem examination of chickens and laboratory diagnosis of diseases	4
2.	Sero monitoring of viral infections in poultry	4
3.	Surveillance of common diseases prevailing in commercial poultry farms	5
4.	Screening of Salmonella of zoonotic importance in poultry and related Products	4
5.	Monitoring the health management in commercial poultry farms	5
6.	Isolation and prevalence of Microbes in poultry products	5
7.	Egg preservation by various methods	4
8.	Egg quality analysis	4
9.	Protein and Lipid estimation from egg samples	5

MODEL QUESTION PAPER (LAB IN POULTRY SCIENCE)

NAME OF THE COURSE: LAB IN POULTRY SCIENCE	COURSE CODE: 17U4BTS04	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS		
1. (i) Perform the e	numeration of microbes	from the given poultry s	ample (A) (OR)		
(ii) Perform pre	servation of the given eg	gg sample (A) by salt me	ethod (OR)		
(iii) Estimate th	e protein level in the giv	en poultry sample (A) b	y Lowry's method		
MINOR EXPERIME	NT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Perform lipid	d estimation from the giv	ven poultry sample (B)	(OR)		
(ii) Perform pre	servation of given egg s	ample (B) by freezing	(OR)		
(iii) Find out th	e thickness of given egg	shell sample (B) by Gau	ige meter		
SPOTTERS		(5 X	X 4 = 20 MARKS)		
3. Identify the give	n spotters C, D, E, F & O	G and comment on them			
RECORD $(1 \times 5 = 5 \text{ MARKS})$					
VIVA-VOCE			5 MARKS		
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – II</u> MARINE BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS05	External	: 75

PREAMBLE

To make students on understanding the significance and importance of marine micro biota and its rational applicability in the development of industrially important products. The students also gain knowledge on the environmentally hazardous management marine ecosystem.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basics of marine ecosystem and its pollution issues	K1 & K2
CO2	To understand basic biodegradation and bioremediation marine ecosystem pollutants	K2 & K4
CO3	To understand the principles of bio fouling	K2 & K4
CO4	To acquire knowledge of wastewater treatment in marine ecosystem	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES						
COs	PO1	PO2	PO3	PO4	PO5	
C01	М	S	М	М	М	
CO2	М	S	S	S	S	
CO3	S	S	S	S	S	
CO4	S	S	S	S	S	

UNIT	CONTENT	HOURS
I	Marine organisms and environment interaction: Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction; Green - house gases (CO2 and Methane)	8
II	Pollution: Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans) and accumulators: Application of Protein biomarkers; Biosensors and biochips.	8
III	Biomaterial interaction: Biodegradation and Bioremediation; Biodegradation of natural and synthetic waste materials; Bioremediation;	8

	Separation, purification and bio removal of pollutants.	
IV	Fouling and corrosion: Biofouling; Biofilm formation; Marine fouling and boring organisms - their biology, adaptation; Factors influencing the settlement of macrofoulers; Antifouling and Anti boring treatments; Corrosion Process and control of marine structures.	
V	Introduction to marine pharmacology: Terms and definitions; Medicinal compounds from marine flora and fauna - marine toxins, antiviral and antimicrobial agents.	8

SUGGESTED READINGS:

- 1. Recent Advances in Marine Biotechnology Volume 3 Milton fingerman et al., 1999.
- Cynobacterial and Algal Metabolisms and Environment Biotechnology Tasneem Fatma, 1999.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000.
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Environmental Biotechnology Gareth M.Evams et al., 2003
- 6. Biotechnology, Recombinant DNA Technology, Environmental Biotechnology S.Mahesh et al., 2003

MODEL QUESTION PAPER (MARINE BIOTECHNOLOGY)

NAME OF THE COURSE: MARINE BIOTECHNOLOGY	COURSE CODE: 18U4BTS05	DURATION: 3 Hrs
MAX MARKS: 75		

	SECTION -	-A(1 X 20 = 20 MAH)	RKS)	ANSWER AL	L THE Q	UESTIONS
	1. Which of the fol	lowing is/are example	(s) of	conventional s	ource of e	energy?
	a. Fossil fuels	b. Solar energy		c. Tidal energ	gy	d. all of the above
	2. Global warming	is caused due to				
	a. Decrease in CO_2 conc.	b. Decrease in C conc.		c. Decreas SO ₂ c		d. increase in NO ₂ conc.
	3. Which is the mo	st primitive group of a	lgae?)		
	a. Blue green algae	b. Red algae		c. Brown	n algae	d. Green algae
	4. Ability to fix atn	nospheric nitrogen is f	ound	in		I
	a. Leaves of some crop plants	b. Chlorella		c. Some n Red al	lgae	d. Some Blue green algae
	5. Which of the fol	lowing bacterium is ca	alled a	as the superbug	that coul	d clean up oil spills?
	a. Bacillus subtilis	b. Pseudomon putida	as	c. Pseudo denitr	monas ificans	d. Bacillus denitrificans
	6. Which of the fol	lowing is a major caus	e of p	pollution?	-	
	a. Plants	b. Bacterial spore		c. Fungi	d. H	ydrocarbon gas
	7. Minamata diseas	e is caused by pollution	on of	water by		
	a. Mercury	b. Lead		c. Tin	d.	Methyl iso cyanide
	8. To reduce the wa be the best choi	ater pollution which of ce?	f the f	following gener	cically mo	dified organism will
	a. Plant	b. Animal	c.	Bacteria	(d. None of the above
	9. Purification strat	egies in municipal wa	ter su	pplies involves	;	
	a. Sedimentation	b. Filtration		c. Disinfe	ction	d. All the above
	10. Sedimentation	of large particulate ma	tter is	s enhanced by -		L
a.	Aluminium	b. Potassium		c. Potassium		d. Chlorine
	11. Septic tank is					
a.	An aerobic condition with growth treatment system	b. An aerobic condition with suspended growth biological treatment system		An anaerobic co with growth bio treatment systen	ological	d. An anaerobic condition with suspended growth treatment system

12. The process of converting environmental pollutants into harmless products by naturally occurring microbes is called						
a. Ex situ bioremediation	b. Intrinsic bioremediation	c. Extrinsic bioremediation	d. None of these			
13. Dry corrosion is	13. Dry corrosion is also called as					
a. Chemical corrosion	b. Electrochemical corrosion	c. Wet corrosion	d. Oxidation corrosion			
14. Which of the fol	lowing comes under the w	vet corrosion?				
a. Concentration cell corrosion	b. Oxidation corrosion	c. Liquid metal corrosion	d. Corrosion by other gases			
15. Initial attachmen	nt of microorganisms ofter	n involves				
a. Flagella and is reversible	b. Flagella and is irreversible	c. Exopolymers and is reversible	d. Exopolymers and is irreversible			
16. What is the valu	e of fouling factor for sea	water?				
a. 0.0001-0.0002 m ² K/W	b. 0.0002-0.0003 m ² K/W	c. 0.0003-0.0004 m ² K/W	d. 0.0004-0.0005 m ² K/W			
	ch the biological processe is called	es are used to purify wate	r in a wastewater			
a. secondary sewage treatmen	b. primary sewag t treatment	c. wastewater reduction	d. biochemical reduction			
18. Aggregates of m	icrobes as tiny masses in	activated sludge process	is called			
a. Activated sludge	e b. Masses	c. Colloidal masses	d. Floccules			
19. High BOD indic	19. High BOD indicates					
a. Less polluted water	-		d. None of the above			
20. BOD/COD ratio	will always be					
a. = 1	b. >1	c. <1	d. None of the above			

SECTION -C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Discuss "Sea is a Biological Environment".

27. Discuss the sources of pollution and treatment methods in marine environment.

28. Give a detailed account on Biodegradation and Bioremediation

29. Describe the Corrosion process and control measures

30. Give detailed account on various techniques involved in waste water treatment using Microbes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – II</u>

FORENSIC SCIENCE AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS06	External	: 75

PREAMBLE

To make students on understanding the importance of forensic principles and technology and its practical applicability in identifying the candidate who convicted the crime scenery. The students also gain added skills in terms tracing the victim death by means of adapting the measurable molecular approaches.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gain knowledge on forensic science laboratories across India	K1, K2 & K3
CO2	Acquires knowledge on fingerprint identification system	K3, K4, & K5
CO3	Know whereabouts on the FAI and the concepts of fatality Forensics	K3, K4, & K5
CO4	Understand the concepts of DNA finger printing technology	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Introduction, definition, Scope and branches of forensic science. Central F.S.L. and State F.S.L. Biological Evidence: Nature, collection, identification, evaluation of hair and fibres.	6
II	Definition and Classification of fingerprints (Henry system). Taking fingerprints from living and dead persons. Automatic fingerprint identification system (AFIS).	7
III	Forensic Art Illustration: Introduction, Finding and identifying human face image. Post mortem drawing, methods of superimposition.	5
IV	Fatality Forensics: Introduction, cause, manner and characteristics of death, Road traffic fatality (RTF) investigation. General classification of RTFs.	5
V	DNA Fingerprinting (DFP) technology: An overview, Applications of DFP in forensic investigations, paternity disputes. DNA Profiling practice in India with reference to criminal cases.	7

SUGGESTED READINGS:

- 1. Richard Saferstein, 2001, Criminalistic: An Introduction to Forensic Science. 7th edition Prentice-Hall, New Jersey.
- 2. Chowdhri, S., Forensic Biology B.P.R. &D, Govt. of India.
- 3. Cammins, H. and Middle C., 1961. Fingerprints Palms and Soles. Dover Publications.
- 4. Furley, M.A. and Hamington, J.J. Forensic DNA Technology.
- 5. Kirby, DNA Fingerprinting Technology.
- 6. Epplen, J.T. and Eabjulm, T., 1999. DNA Profiling and DNA Fingerprinting Bukhaagar Verlag, Switzerland.
- 7. Taylor, 2000. Forensic Art and Illustration, CRC Press.

MODEL QUESTION PAPER (FORENSIC SCIENCE AND TECHNOLOGY)

NAME OF THE COURSE: FORENSIC SCIENCE AND TECHNOLOGY	COURSE CODE: 18U4BTS06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The dark portion	of the fingerprint is	called	[
a. Core	b. Valley		c. Delta		d. Ridge
2. The most commo	2. The most common type of fingerprint pattern is				
a. Whorl	b. Accidental		c. Loop		d. Arch
3. Fingerprints disso	olved in this only gr	ow ba	ck with scars on the	n mak	ing them more unique
a. Base	b. Water		c. Acid		d. Neutral
4. Most common fin same side they e		has ric	lges that enter from t	the rigl	ht and exit from the
a. Arch	b. Whorl		c. Wheel		d. Loop
5. The region in sk	in found in between	the e	pidermis and dermis	is the	layer
a. Top	b. Subcutane		c. Cuticle		d. Basal
6. The study of fing	erprint is called				
a. Dactylography	b. Printology	c.	Anthropometry	d.	. None of the above
• • •	aper can be sprayed purple print appear		this chemical that rea	acts wi	ith amino acids in
a. Ninhydrin	b. Iodine		c. Cyanocrylate		d. Silver nitrate
8. What is the basis	for the determination	on of t	he primary classifica	tion of	f fingerprints?
a. The presence or absence of arch patterns	b. The presence of absence of whorl pattern	r f	c. The presence or absence of loop patterns		d. The presence or absence of minutiae
9. For most fingerpr	int examiners, the c	hemic	al of choice for visu	alizing	g latent prints is
a. Ninhydrin	b. Iodine		c. Chlorate		d. Silver nitrate
10. The oldest chem	ical method used to	visua	lize latent prints is -		-
a. Laser illumination	b. Iodine fumi	ng	c. Cyanocrylate este fuming	r	d. Silver nitrate reagent
11. Identical twins h	ave identical				
a. Genetic makeup	b. Eyes		c. Fingerprints		d. None of the above
12. Fingerprints formation is					
a. An on-going lifetime process	b. Complete by th age		c. Occurring at birth r fingerprint is to	C	ccurring during fetal development
	permanentry enang	,c you			

a. Damage dermal papillae	b. Wash with acid	c. Sand the ridges	d. Burn the skin		
14. The most common ridge pattern is					
a. Arch	b. Whorl	c. Wheel	d. Loop		
15. Fingerprints are					
a. Valuable evidence	b. Individual evidence	c. Class evidence	d. Always good		
16. DNA finger print	ing was developed by				
a. Francis Crick	b. Khorana	c. Alec Jeffrey	d. James Watson		
17. The technique to	distinguish the individua	als based on their DNA p	rint patterns is		
a. DNA fingerprinting	b. DNA profiling	g c. Molecular fingerprinting	d. All the above		
18. The DNA finger	print pattern of a child is				
a. Exactly similar to		c. 100% similar to	d. 50% bands		
that of both of th	e similar to	the mother"s	similar to father		
parents	the	DNA print	and rest similar		
	father''s		to mother		
	DNA print				
19. Each individual l	nas a unique DNA finger	print as individuals differ	: in		
a. Number of	b. Location of	c. Size of	d. All the above		
minisatellites	minisatellites on	minisatellites on			
on	chromosome	chromosome			
chromosome					
20. DNA profiling technique to demonstrate the similarity between different plant species with reference to some specific protein coding DNA sequences is called					
a. Phyto blot	b. Garden blot	c. Plant profiling	d. All the above		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUE	ESTIONS
21. A) Write short notes Organizational set up of Forensic Science Lab	oratories (OR)
B) Write short notes on Scope and branches of forensic science	
22. A) Write about Classification of fingerprints	(OR)
B) How will you take fingerprints from living and dead persons?	
23. A) How will you find and identify human face image?	(OR)
B) How will you perform post mortem drawing?	
24. A) Write about Road traffic fatality (RTF) investigation	(OR)
B) Explain the basic injury mechanisms	
25. A) Explain the applications of DNA fingerprinting technology	(OR)
B) Write short notes on statutory considerations	
 B) How will you take fingerprints from living and dead persons? 23. A) How will you find and identify human face image? B) How will you perform post mortem drawing? 24. A) Write about Road traffic fatality (RTF) investigation B) Explain the basic injury mechanisms 25. A) Explain the applications of DNA fingerprinting technology 	(OR) (OR)

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on Organizational set up of Forensic Science Laboratories

27. Write an essay on digital comparison of finger prints

28. Write elaborately on Forensic artist in court

29. Give a detailed fatality forensic science

30. Write an essay on quality assurance measures of DNA fingerprinting

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SEMESTER V

IMMUNOLOGY

Paper	: Core V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U5BTC05	External	: 75

PREAMBLE

To make students on exposing themselves to know in underlying concepts of biology of the immune system and how immunity being developed in human beings. In addition the students also know whereabouts on the mechanisms on the host pathogen interaction, principle defence mechanisms against infectious diseases and basic immune diagnostic techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire knowledge on history on immunology development, and cells and their role in developing overall host immune system	K1 & K2
CO2	Knowing about the functions and properties of immunoglobulin and its expression in genetic level	K1 & K2
CO3	Acquire knowledge on antigen recognition and its processing principles by host immune system	K1, K2 & K4
CO4	Acquire basic concepts of immune regulatory molecules and their role in defence and concepts of autoimmunity	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	HISTORY AND SCOPE OF IMMUNOLOGY: Types of Immunity. Cells of Immune system. Organs of Immune response and their functions. Haematopoiesis. Antigen- properties, classes, epitopes, haptens and adjuvants. Factors influencing antigenicity.	

п	IMMUNOGLOBULINS AND ITS EXPRESSION: Immunoglobulin- Structure, types, properties and functions. Immunoglobulin gene re-arrangements. Generation antibody diversity. Somatic hyper mutation. Ig gene expression and its regulation.	15
III	ANTIGEN PROCESSING AND PRESENTATION: MHC – types and importance- distribution and function. Antigen processing and presentation to T- lymphocytes. Major classes of MHC genes and its regulation.Antigen – Antibody reactions – Agglutination, precipitation,RIA, ELISA, FACS and Immunopanning. Hybridoma Technology	17
IV	CYTOKINES, IMMUNE CELL ACTIVATION AND ALLERGIC REACTIONS: Definition of cytokines, classification and types of cytokine, Biological functions of cytokines. Cytokine receptors. T-cell and B-cell activation and differentiation. Hypersensitivity reactions and its types. Plasma cells and memory cells	15
V	AUTOIMMUNITY: Definition, types of autoimmune disorders. Mechanism of autoimmunity. Immunodeficiency disorder. Vaccines and its types. Immune response to bacterial, protozoal, parasitic diseases. Immuno deficiency diseases (HIV). Transplantation immunology – types of grafts. Mechanism of graft rejection. Immunosuppressive therapy.	15

SUGGESTED READINGS:

- 1. Ivan Riot Blackwell, 1988. Essentials of Immunology (6th Edition): Scientific Publications, Oxford,
- 2. Paul W.E (Eds) Ravan prss 1988. Fundamentals of Immunology:, New York,
- 3. Harlow and David Lane, 1988. Antibodies A laboratory Manual: cold spring harbor laboratory.
- 4. Janis Kuby Immunology, 1997. WH Freeman & Company, New York.
- 5. Tizard,1995.Immunology IV Ed Saunders college publishers, New York.
- 6. Robert M.Coleman., 1992. Fundamental Immunology. 2 nd edition., Wim. C.Brown Publishers.
- 7. Eli Benjamini et al., 1991. Immunology A short course –Wiley Publishers, NY.

MODEL QUESTION PAPER (IMMUNOLOGY)

NAME OF THE COURSE: IMMUNOLOGY	COURSE CODE: 20U5BTC05	DURATION: 3 Hrs
MAX MARKS: 75		

1. The ability of a	-	•	the pathogens is called?	
a. Infection	• • •	persensitivity	c. Immunity	d. Allergy
2. Which of the fo			uclear leukocyte?	
a. Eosinophil	b.	Mast cell	c. Macrophage	d. Basophil
3. Name the first of	cell which recru	ited at the place of	f infection.	
a. Nk cell	b.	Basophil	c. Neutrophil	d. Macrophage
4. Which of the fo	ollowing cell is a	a multipotent cell?		
a. T-cell	b.	B-cell	c. HSC	d. Monocytes
5. Which of the fo	ollowing antiboo	ly gives a primary	immune reaction?	
a. IgG	b.	IgM	c. IgA	d. IgE
6. What is the orig	gin of B-cell?			
a. Pancreas	b.	Liver	c. Thymus	d. Bone marrow
7. Who discovere	ed the structure	of immunoglobuli	n by treating it with beta-	-mercaptoethanol?
a. Nisonoff	b.	Edelman	c. Porter	d. Whittekar
8. Name the heavy	y chain of IgG.			
a. M	b.		c. α	d. γ
	-		of a good antigen?	
Large in size b.	. Foreignness	c. Highly compl	lex d. Reproduce on	ly by binary fission
10. Name the mol	ecule which con	nstitutively express	sed on the dendritic cell?	
a. Class I MHC	b.	Class II MHC	c. APC	d. Antigen
11. Which of the f	following polyp	eptide is importan	t for the expression of M	HC I on the cell membra
a. Interferon	b.	β_2 -microglobin	c. Lymphokine	d. Interleukin
12. Name the part	of processed an	ntigen that binds to	the MHC molecule and	recognized by T-cells?
a. Immunoglobuli	n b	o. Paratope	c. Epitope	d. Chaperone
13. Name the cyto	kines which rel	eased in response	to virus infection?	
a. Monokines	b.	Interferons	c. Lymphokines	d. Interleukins
44.55 .1			for the pain of the inflan	

a. Bradykinins	b. Prostaglandin	c. Histamines	d. Kinins			
15. Name the class of imm	15. Name the class of immunoglobulin which takes part in hypersensitivity reaction?					
a. IgG	b. IgM	c. IgA	d. IgE			
16. Out of these, which tra	anscription factor does not	take part in B-cell activ	vation?			
a. Abl	b. NF- kB	c. Jun	d. Fos			
17. Which among the follo	17. Which among the following is not an autoimmune disease?					
a. Myasthenia gravis b.	a. Myasthenia gravis b. Systemic lupus erythematosus c.Grave"s disease d. Sickle cell disease					
18. Vaccination was inver	ited by?					
a. Jenner	b. Pasteur	c. Koch	d. Salk			
19. Heat killed vaccines are						
a. Dead cells of bacteriab. Dead cells of virusc. Dead cells of fungid. A & B						
20. The major molecule responsible for graft rejection is						
a. B-cells	b. T-cells	c. MHC	d. antibodies			

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Explain the organs involved in immune system	(OR)	
B) Write a short note on factors influencing antigenicity		
22. A) Give a short note on antibody production	(OR)	
B) Explain the IgA and IgM		
23. A) Explain the process of MHC regulation	(OR)	
B) Describe Apoptosis		
24. A) Explain Type II hypersensitivity	(OR)	
B) Brief about the classification of Cytokines		
25. A) Explain Autoimmunity	(OR)	
B) Describe AIDS and HIV types.		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give an detailed account on cells involved in Immune system

27. Explain Immunoglobulin"s types, structure and functions

28. Give a detailed account on Antigen processing and presentation

29. Describe the types of hypersensitivity

30. Give detailed account on various types of vaccines and explain with suitable example

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT BIOTECHNOLOGY

Paper	: Core VI	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U5BTC06	External	: 75

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and basic tissue culture techniques and their principles	K1 & K2
CO2	Gaining knowledge on plant secondary metabolites and their role in defence mechanisms	K1 & K2
CO3	To acquire knowledge on the generation novel plant varieties by genetic manipulation strategies	K3, K4 & K5
CO4	Exposing towards the application of secondary metabolites in drug development and value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, types of media, media preparation, plant growth regulators. Applications of crop improvement in agriculture,horticulture and forestry.	12
II	PLANT TISSUE CULTURE TECHNIQUES : Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
ш	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors Genetic engineering & crop improvement, herbicide resistance, insect resistance, virus resistance, plants as bioreactors. Production of antibodies.	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization - drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Organic food- Production,types and Identification of organic foods.	15

SUGGESTED READINGS:

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited, 1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

MODEL QUESTION PAPER (PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: PLANT	COURSE CODE:
BIOTECHNOLOGY	20U5BTC06
MAX MARKS: 75	

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS									
1. Who is the father of tissue culture?									
a. Bonner b.1	Haberlan	dt	c L	aibach		b.	b. Gautheret		
2.The growth of plant tis	ssues in a	rtificial n	nedia is calle	d					
a. Gene expression		b. Transg	genesis	c. Pla	ant tissue cul	lture		d. Cell hybridization	
3.Ais an ex	xcised pie	ece of lear	f or stem tiss	ue used	in micropro	pagatio	n.		
a.Microshoot	ł	.Medium	l		c.Explant			d.Scion	
4.Cellular totipotency is	the prop	erty of							
a. Plant	b. Ani	mal		c. Bac	teria			d. All of these	
5. In plant tissue culture	, what is	the term (ORGANOG	ENESIS	means?				
			. Formation of root & c. Genesis of organ d.		d. None of the above				
6. In a cell, protoplast co	onsists th	e followir	ng EXCEPT						
a. Cell wall		b. Cell membrane		c. Nucleus		d.	Cytoplasm		
7.In a callus culture									
a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxin promote root formation		b. Increasing level of auxin to a callus induces shoot formation and increasing level of cytokinin promote root formation		c. Auxins and cytokinins are not required			Only auxin is required for root and shoot formation		
8. The phenomenon of the callus is known as	ne reversi	on of mat	ture cells to t	he meris	stematic state	e leadin	g to	the formation of	
a. Redifferentiation	 b.	Dediffe	rentiation	c.	either (a) or	(b)		d. none of these	
9. T-DNA transfer and p	processing	g into pla	nt genome re				the	following genes?	
a. <i>vir</i> A,B									
10. Which of the following are used as selection marker for the cells transformed with <i>Agrobacterium</i> ?									
a. Neomycin b. Str phosphotransferase		treptomycin phosphotransferase		rase c. Hygromycin phosphotransferase			d. Any of the above		
11. Which technique is used to introduce genes into dicots?									

a. Electroporation	b. Particle acceleration	c. Microinjection	d. Ti plasmid infection			
12. Genome is	12. Genome is					
a. Genes on nuclear DNA	b. Nuclear DNA + mitochono DNA	rial c. Nuclear DNA + chloroplast DNA	d. Nuclear DNA + Mitochondrial DNA + Chloroplast DNA			
13. The process of express	sion of foreign genes in a p	lant is called				
a. Gene expression	b. Transgenesis c.	Genetic transformation	d. Cell hybridization			
14. Which of the following	g is considered as a visual i	narker?				
a. Antibiotic marker	b. Resistance marker	c. Selectable marker	d. Screenable marker			
15. Name the first transge	nic virus resistant plant?					
a. Rice	b. Cotton	c. Tobacco	d. Tomato			
16. Which of the followir	g is supplemented with vita	min A in order to impro	ve its nutritional quality?			
a. Cotton	b. Potato	c. Toma	ato d. rice			
17. Which of the following	g is NOT the class of secon	dary metabolite?				
a. Amino acid	b. Terpenes	c. Phen	olics d. alkaloids			
18. Name the class of sec group with an aromatic ri	ondary metabolites which ing?	s characterized by the p	resence of the hydroxyl			
a. Glycosides	b. Phenolics	c. Alkaloids	d. Terpenes			
19. Azolla is used as biof	19. Azolla is used as biofertilizer as it has					
a. Rhizobium	b. Cyanobacteria	c. Mycorrhiza	d. Large quantity of humus			
20. Which sterility is exploited in hybrid seed production?						
a.Male genetic sterility	b. Cytoplasmic genetic sterility is found	male c. Cytoplasm sterility	nic d. Genetic			

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) List out the types of media.	(OR)			
B) Mention about auxin.				
22. A) Write note on callus induction.	(OR)			
B) Explain embryo culture.				
23. A) Briefly discuss particle bombardment.	(OR)			
B) Biosynthesis pathway of cytokine-explain.				
24. A) What is called selectable marker? Explain with two examples.	(OR)			
B) Write note on virus resistance.				
25. A) Explain about saline tolerance.	(OR)			
B) Briefly explain Cytoplasmic male sterility.				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.

27. Explain protoplast isolation, culturing and fusion.

28. Draw and explain agrobacterium mediated gene transfer.

29. Write note on genetic engineering in plants.

30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN IMMUNOLOGY

Paper	: Core Practical V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 20U5BTCP05	External	: 60

PREAMBLE

To make students on practical exposure towards immunological techniques in-terms of handling of laboratory animals, qualitative and quantitative estimation of antigen - antibody specificity.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gaining knowledge on handling of laboratory animals	K1 & K2
CO2	Knowing about the methods of immunization of bleeding and separation serum and plasma from blood	K2, K3 & K4
CO3	Analysis of qualitative and quantitative estimation of antigen and antibody interaction	K4, K5 & K6
CO4	To know about the basic principles of blotting techniques in terms of practical approach	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Handling of laboratory animals	5
2	Methods of bleeding and routes of immunization	10
3	Preparation of Serum and plasma	5
4	ABO Blood grouping (Rh typing) (Agglutination)	5
5	WIDAL test (Agglutination)	5
6	ASO test (Agglutination)	5
7	Pregnancy test (Agglutination inhibition)	5
8	Radial immune diffusion test (Precipitation test)	5
9	Rocket Immuno electrophoresis test (Precipitation)	5

10	Ouchterlony double immunoc	liffusion technique	(ODD)	5
	(Precipitation)			5
11	Counter current immunoelectrophore	sis (CIE) (Precipitation)		5
12	DOT ELISA test			5
13	Western Blotting- Demonstration			10

MODEL QUESTION PAPER (LAB IN IMMUNOLOGY)

NAME OF THE COURSE: LAB IN IMMUNOLOGY	COURSE CODE: 20U5BTCP05	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT			
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
	group for the given san		
	group for the given sun	ipie (ii) and display the	(OR)
(ii) Perform Radial	immune electrophoresis	for the given serum and	anti-serum sample (A) (OR)
(iii) Perform WIDA	L test for the given plan	t sample (A)	
MINOR EXPERIMEN	T		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Prepare Serum/	Plasma from the given b	blood sample (B). Displa	y the results for
observation			
	ELISA for the given se	erum sample (B)). Displ	ay the results for
observation			(OR)
	O test from the given blo	od sample (B)). Display	y the results for
Observation			
SPOTTERS		(5 X	4 = 20 MARKS)
3. Identify the given	spotters C, D, E, F & G	and comment on them	
RECORD		(1 x :	5 = 5 MARKS)
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN PLANT BIOTECHNOLOGY

Paper	: Core Practical VI	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 20U5BTCP06	External	: 60

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Plant genomic DNA	5
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5
3	Preparation of MS media	10
4	Establishment of seed germination from carrot seeds	5
5	Establishment of shoot tip culture using MS media	10

6	Establishment and maintenance of callus culture	10
7	Micro propagation of callus culture (Shoot & Root systems)	10
8	Isolation of protoplast (Enzymatic method)	5
9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column Chromatography	10
10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT BIOTECHNOLOGY	COURSE CODE: 20U5BTCP06	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Isolate plant genomic DNA from the given plant sample (A)					
(ii) Perform shoot ti	p culture from the give	n explant sample (A)	(OR)		
(iii) Perform callus	induction from the give	en explant (A)			
MINOR EXPERIMEN	Т				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Isolate protopl	last from the given plan	t mesophyll tissue sampl	e (B) (OR)		
(ii) Prepare synth	(ii) Prepare synthetic seeds from the given plant seed sample (B) (OR)				
(iii) Separate chlo	prophyll pigments from	the plant leaf extract sar	nple (B) by appropriate		
Method					
SPOTTERS		(5 X	4 = 20 MARKS)		
3. Identify the given	spotters C, D, E, F & G	and comment on them			
RECORD $(1 \times 5 = 5 \text{ MARKS})$					
VIVA-VOCE	VIVA-VOCE 5 MARKS				
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE - I

PHARMACEUTICAL BIOTECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 20U5BTE01	External	: 75

PREAMBLE

This paper encodes information on pharmacology, drug designing, sources and applications of drug discovery. Students also understand the basic and applications of pharmacology and sources of drug. Also enables them to understand the concepts of rDNA technology in drug designing.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the principles of pharmacology and its development History	K1 & K2
CO2	To understand principles of action of drugs and mechanism of action to wards various diseases	K2, K3 & K4
CO3	To understand the concepts of developing therapeutic agents through genetic engineering principles	K4, K5 & K6
CO4	To explore the applications of pharmaceutical chemistry and its Development	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	М	S	S	М	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to pharmacology : History & development in pharmacology. Principles of pharmacology. – Pharmacology in the 20 th century – Drugs – Sources, dosage forms and routes of administration	15
II	Drug names & Classification systems: General Principles of Drug action	15

	Pharmacokinetics, Pharmacodynamics, measurement of drug action.	
	Diagnosis and Chemotherapy : Prenatal diagnosis: Invasive Techniques-	
III	Amniocentesis, Fetoscopy, Non Invasive Techniques – Ultra Sonography.	15
	Diagnosis using protein & enzymes markers, DNA/RNA based diagnostics.	
	Therapeutic drugs – Protein synthesis inhibitors, Antibacterial, antifungal,	
	anti protozoal, antiviral, anti helmithic, anticancer, anti-inflammatory drugs.	
	Introduction to r-DNA technology: production of biological: Human	
IV	Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor	15
	VIII. Synthetic therapy: Synthetic DNA, therapeutic ribozymes, synthetic	
	drugs	
X 7	Production and applications: Probiotics, anticancer and anti-inflammatory	
V	agents. Biochips, biofilms and biosurfactants. Tissue Engineering,	
	Recombinant vaccines and Cell adhesion based therapy	

SUGGESTED READINGS

- 1. A Text Book of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.
- 2. Pharmacology H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingston.
- 3. Basic Pharmacology Foxter Cox. Butterworth's 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure
- 5. Pharmaceutical Biotechnology S.S. Purohit, Kaknani, Saleja
- 6. Pharmacology Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Williams Edition.
- 7. Integrated pharmacology Page, Curtis, Sulter, Walker, Halfman. Mosby Publishing Co.

104

MODEL QUESTION PAPER (PHARMACEUTICAL BIOTECHNOLOGY)

NAME OF THE COURSE: PHARMACEUTICAL BIOTECHNOLOGY	COURSE CODE: 20U5BTE01	DURATION: 3 Hrs
MAX MARKS: 75		

SECT	TION –	A (1 X 20 = 20 MAR	KS)	ANSWER ALL TH	e qui	ESTIONS
1. Clinical pha	armacol	ogy was established b	у	?		
a. Schwann	b. R	obert Hooke	c.	William Withering d. William W		d. William Wroth
2. The most wid	dely use	ed drug classification	syste	ems are?		
a. ATC		b. ADP		c. AKT		d. ATP
3. The drugs the	at are ta	ken though nasal rout	e is	called		
a. Subcutaneous		b. Ear drops		c. Inhaler		d. Intraosseous
4. Parenteral a	dminist	ration can be perform	ed b	y?		
a. Injection		b. Oral		c. Tablet		d. Powder
5. The action of	f drugs	on the human body is	calle	ed as?		
a. Pharmacodynam	ics	b. Pharmacokinetics		c. Drug action		d. Transporter protein
6. What the bo	ody doe	s with the drug is calle	ed as	s <u>?</u> ?		
a. Drug action b. Pharmacodynamics c. Pharmacokinetics d. Transporter protein					ansporter protein	
7. Initial consec	quence	of drug-receptor com	binat	tion is called	-	
a. Pharmacodynamics b. Drug action c. Drug Effect d. Pharmacokinetics				macokinetics		
8. Biochemical	and ph	ysiological changes th	at o	ccur as a consequenc	e of d	rug action called
a. Drug action		b. Drug Effect		c. Pharmacodynamics d.		d. Pharmacokinetics
9. A group of n	naterials	s that fight against pat	hoge	enic bacteria?		1
a. Antibacterial age	ents	b. Antiviral agents		c. Antifungal agent	S	d. Anticancer agents
10. Anti-inflam	matory	drugs make up about	half	of?		
a. Analgesics		b. Prostaglandins		c. Paracetamol		d. Aspirin
11. Abnormal c	ell grov	wth called as	"	?		
a. Cancer		b. Viral		c. Cell growth d. Tis		d. Tissues
12. Fungal cell	wall sy	nthesis inhibition as		?		1
a. Nystatin		b. Caspofungin		c. Azoles		d. Naftifine
13. Insulin horr	none pr	oduced by?		•		•
a. Pancreas	a. Pancreas b. Liver c. Mitochondria d. Kidney					

	14. Erythropoietin is a	hormone produced primar	ily by?	
	a. Liver	b. Kidney	c. Pancreas	d. Mitochondria
	15. Factor VIII is an es	ssential blood-clotting prot	ein, also known as?	
a.	Anti-hemophilic factor		c. Glycoprotein	d. Embolism
	16. Erythropoietin also	known as		
	a. Hematopoietin	b. Glycoprotein cytokine	c. Erythropoiesis	d. Hypoxia
	17. Probiotics are often	n called as?		
	a. Helpful" Bacteria	b. Helpless" Bacteria	a c. Helpful Virus	d. Helpless Virus
	18. <u>is</u>	the property of a substanc	e or treatment that reduces	inflammation?
	a. Anti-cancer	b. Anti-inflammatory	c. Inflammatory	d. Cancer
	19. <u>are a</u> different surfaces?	collective of one or more t	ypes of microorganisms th	at can grow on many
a.	Biofilms b.	Anti-inflammatory	c. Biochips	d. Anti-cancer
	20. Bio surfactants are	also called as		
	a. Microbial surfactants	b. Bacterial surfactants	c. Viral surfactant	s d. Biochips

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUE	ESTIONS
21. A) Explain the history and development of pharmacology.	(OR)
B) Explain the various routes of administration of drug.	
22. A) Explain about pharmaco kinetics	(OR)
B) Write brief notes on the measurement of drug action	
23. A) Write shortly about Anticancer drugs	(OR)
B) Write short notes on antibacterial drugs	
24. A) Write short notes on Erythropoietins	(OR)
B) Write short notes on Interleukins?	
25. A) What is probiotics? Explain in brief	(OR)
B) Write short notes on Biochips	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on pharmacology?
27. Explain in detail on the general principle of drug action?
28. Write an essay on therapeutic drugs?
29. Write an essay on r-DNA technology?

30. Explain in detail about the production and application of drugs?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 20U5BTE02	External	: 75

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit measurement and extraction	K1 & K2
CO2	To explore to the usage of enzymes at molecular level such as active site, isoenzymes and their biochemical fundamentals	K3 & K4
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial Enzymes	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	М	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S

UNIT	CONTENT	HOUR
		S
I	Enzymes : Introduction, Definition, History, Classification and Nomenclature of enzymes. Intracellular localization of enzymes, Extraction and purification of enzymes. Enzyme units. Substrate specificity.	
II	Active site: Salient features, Theories of ES complex formation – Lock and Key, Induced fit and Substrate strain theory. Structure and functions of coenzymes, Isoenzymes and their separation rates. Collision and transition state	15
	theories. Factors affecting enzyme activity 108	

ш	Enzyme kinetics : Order of reaction, Activation energy, Kinetics of enzyme catalyzed reactions – Steady state kinetics – Michaelis Menten equation, and its transformation. Bi – substrate reaction – random, ordered and ping pong mechanisms. Enzyme - Enzyme interaction. Protein ligand binding	15
IV	Enzyme inhibition : Reversible and irreversible inhibitors. Mechanism of catalysis – acid base, electrostatic, covalent, metal ion and enzyme catalysis, electrostatic proximity and orientation effects. Mechanism and action of chymotrypsin, lysozyme and carboxy peptidase. Isoenzymes– multiple forms of Isoenzymes	15
V	Immobilization of enzymes : Methods and application. Clinical and Industrial application of enzymes, Enzyme engineering – site directed mutagenesis. Methods for protein sequencing. Methods for analysis of secondary and tertiary structures of enzymes.	15

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY	COURSE CODE: 20U5BTE02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS								
1. Enzymes are bro	1. Enzymes are broadly classified intotypes							
a. 4	b. 5		c. 6		d. 7			
2. The function of isomerases is								
a. Geometrical changes		Isomeric changes	c. Steric changes	d. Supe	er numeric changes			
3. Enzyme activity of	lepen	ds on						
a. Substrate conc.		b. Substrate availability	c. Substrate binding site		d. All the above			
4. Which of the follo	owing	method is used in seg	parating specific enzym	les from	its crude sample?			
a. Dialysis	b.	Native PAGE	c. 2D PAGE		d. Isoelectric focusing			
5. Which of the follo active site of enz			ibes the conformational	l changes	s occurring at the			
a. Lock & Key model				ncept	d. None of the above			
6. Michealis – Ment	on eq	uation describes						
a. Rate of enzyme activi	•		-	ation	d. All the above			
7. Bi substrate react	ions ii	ndirectly describes the	e concept of					
a. Lock & Key concept		Induced fit hypothesis		g theory	d. None of the above			
8. Which of the follo	owing	physical factor affect	ts the enzyme activity?					
a. Enzyme conc.		b. Substrate Conc.	c. Binding site		d. pH			
9. Which of the follo	owing	is an example for iso	enzyme?					
a. ACTH		b. GH	c. LDH		d. FSH			
10. Activation energy	gy is tl	ne energy required for						
a. Activating enzyme	a. Activating enzyme b. Activating substrate c. Activating co d. Activating physical factors d. Activating physical factors							
11. The kinetics of e substrate concern	-	•	is can be analysed in te	rms of st	eady state models if the			
a. More than an order		ess than an order of						
of magnitude	magnitude lower than		of magnitude magnitude lower than					
higher than the enzyme level	t.	he enzyme level	higher than the the enzyme level enzyme level					
	ween	ADP and phosphocre	atine works under the p	principle	of			
			unite works under the p		~			
			110					

a.Random mechanism b. Double displacement mechanism c. Ping pong mechanism d. B & C							
13. Which of the following type of enzyme inhibition shows an increase in KM value with constant Vmax?							
a. Competitive b. No	on – Competitive	c. Un – Cor	npetitive	d. None c	of the above		
14. Allosteric enzymes di Menton enzymes	14. Allosteric enzymes displays a sigmoidal curve in contrast to thedisplayed by Michealis – Menton enzymes						
a. Hyperbolic curve b. Pa	arabolic curve c. Q	uadratic curve	e d. Tr	anscendental o	curve		
15. Chymotrypsin is an							
a. Cysteine protease	b. Serine protease	c. Pr	oline protease	d. Leuc	cine protease		
16. Carboxypeptidase A3	(CPA3) involved in the	he protein dig	estion by				
a. Pancreatic cells	b. Liver cells	c. Mas	st cells	d. Tumo	our cells		
17. Which of the following	ng method is commonl	y used in mai	intaining enzy	me activity			
a. Entrapment method	b. Encapsulation	n c. I	mmobilizatio	n d. All	the above		
18. Which of the followin	ng enzyme is used in le	eather industr	ies?				
a. Amylase	b. Lipase	c. Prot		d. DNAs	e		
19. Which of the following technology is followed for enriching the enzyme activity?							
a.Yeast hybrid analysis b.	Site directed mutager	esis c.Fee	d back inhibit	ion d. None	of the above		
20. Which of following e	nzyme is used as dewo	orming agent	?				
a. Tryspin	b. Papain	c. Am	ylase	d. Protea	se		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain about enzyme units	(OR)			
B) Explain about substrate specifity				
22. A) Explain about isoenzymes	(OR)			
B) Explain the factors affecting the enzyme activity				
23. A) Explain the steady state kinetics of enzymes	(OR)			
B) Write short notes on the order of the enzyme reaction				
24. A) Explain the mechanism of action of chymotrypsin	(OR)			
B) Write short notes on mechanism of enzyme catalysis				
25. A) Explain the process of site directed mutagenesis	(OR)			
B) Explain about enzyme engineering				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give detailed account on the classification of enzymes

27. Give detailed account on iso-enzymes

28. Give detailed account on MM and LB plot

29. Give detailed account on enzyme inhibition and its types

30. Give detailed account on industrial applications of enzymes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

TISSUE ENGINEERING

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 20U5BTE03	External	: 75

PREAMBLE

This paper deals with the use of combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. Tissue engineering involves the use of tissue scaffold for the formation of new viable tissue for a medical purpose.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the key topics in tissue engineering	K1, K2 & K3
CO2	To understand the stem cells and animal cells, processes, and strategies to regenerate or repair damaged tissues	K3 & K4
CO3	To develop students ability to identify, formulate and adapt engineering solutions to unmet biological needs	K4 & K5
CO4	To give students a knowledge of how the biomedical industry is regulated and the route to market of for tissue engineered products	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents. Measurement of tissue characteristics, appearance, cellular component, ECM component, and physical properties.	15
II	Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix & Cell-Cell Interactions, telomeres and Self renewal, Control of cell migration in tissue	15

	engineering.	
ш	Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.	15
IV	Stem Cells : Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers. Stem cell systems - Liver, neuronal stem cells with characteristics: embryonic, adult, haematopoietic, fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells and induced pluripotent stem cells.	15
V	Stem cell therapy, Molecular therapy, <i>in-vitro</i> organogenesis, Neurodegenerative diseases, spinal cord injury, heart disease and muscular dystrophy. Stem cells and Gene therapy: Physiological models, tissue engineered therapies, product characterization. Preservation of stem cells: freezing and drying. Patent protection and regulation of tissue engineered products and ethical issues.	15

SUGGESTED READINGS

- 1. Bernhard O.Palsson, Sangeeta N.Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 2. Raphael Gorodetsky, Richard Schäfer. "Stem cell based tissue repair", Cambridge: RSC Publishing, c2011.
- 3. John P. Fischer, Antonios G. Mikos, Joseph D. Bronzino. "Tissue Engineering", CRC Press, 2012.
- 4. Larry L. Hench, Julian R. Jones. "Biomaterials, Artificial Organs and Tissue Engineering", CRC Press, 2005.
- 5. C. S. Potten, "Stem Cells", Academic Press, 1997.

MODEL QUESTION PAPER (TISSUE ENGINEERING)

NAME OF THE COURSE: TISSUE ENGINEEING	COURSE 20U5BTE03	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The formation of blood vessel from the pre-existing blood vessel is known as						
00	b. Vascularization		c. Osteogenesis			d. Phagocytosis
2. The Major Histoco						
a. Signaling molecules	b. Growth factors	c. Cel	l surface markers	s c	d. Cell	adhesion molecules
3. Bone Morphogenic Protein (BMP) is a						
a. Cell surface marker	b. Growth f			one	(d. Neurotransmitter
4. Polyglycolic Acid	(PGA) scaffold is		-			
a. Biotolerant	b. Bioactive		c. Bioinert			d. Biodegradable
5. In tissue engineeri	ng, harvested cells ar	e froze	n away and store	ed in		
a. Liquid hydrogen	b. Liquid nitrogen		c. Liquid helium	l	(d. Autoclave
6. Cell signaling com	pounds cytokines are	e a grou	up of			
a. Proteins and peptides	b. Fats and triglyc	erides	c. Carbohydra	ates	d. Ho	ormones and steroids
7. c-AMP and c-GM	P functions as					
a. Hormone	b. Receptor		c. Second mes	senger		d. Ligand
8. The signals which	affect only cells of th	ne same	e cell type as the	emittin	ng cell	are
a. Endocrine	b. Autocrine		c. Paracrine			d. none of these
9. Carbon nanotubes	are used for tissue en	igineer	ing scaffolds as t	hey are	e	
a. Biocompatible	b. Biodegradat	ole	c. Biopolyme	ers		d. none of these
10. PLA degrades wi	thin the body to form	1				
a. Amino acid	b. Glycolic acid	с.	Lactic acid		d. Pho	osphoric acid.
11. An example of C	AM is					
a. Cadherin	b. Protease		c. Growth hormo	one	d.	Serine
12. For skin grafting	the scaffold used sho	uld be				
a. Biodegradable	b. Bioactive	с.	Biocompatible		(d. Both (a) and (c)
13. Endocrine signali	ing is performed by					
	. Hormones		. Cytokines			d. Carbohydrates
14. Programmed Cell death is also known as						
	a. Apoptois b. Lysis c. Degeneration d. Deformation					
15. The protein of cell that binds to a specific molecules is known as						
a. Ligand	b. Receptor		c. Hormon	e		d. Cytokine
16. Notch is a cell su	rface protein that fun	ctions	as a			
115						

a. Receptor	b. Hormone	mone c. Protein-A			. Cytokine.	
17. Solid Free Forming is	17. Solid Free Forming is a fabrication technique for					
a. 2D scaffold b.	3D scaffold	c. Micr	o scaffold	d. Nan	o-patterned scaffold	
18. Hydrogels can also be	used as scaffolds for	r				
a. Cell growth b. Cell	delivery c.	c. Cell growth and cell delivery d. None of these				
19. GABA is a				·		
a. Neurotransmitter	b. Neuro inhibitor	inhibitor c.Contact inhibitor d. Contact excitator				
20. The family of receptors that play an important role in cell adhesion is						
a. Somatostatin	b. Interleukins	leukins c. Integrins d. Interferons			. Interferons	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) What are the different types of tissues in the mammalian body?	(OR)
B) Classify tissue based on their structure and function	
22. A) Briefly explain the different types of stem cells	(OR)
B) Briefly explain the process of cell placement on scaffold	
23. A) Describe different kinds of matrix materials used in tissue engineering	(OR)
B) Mention the importance of growth factors in the field of tissue engineering	
24. A) With the help of sketch, explain the process of differentiation of stem cells into cell lines	(OR)
B) What are the different risk factors involved with skin grafting?	
25. A) Mention the basic clinical goals and fundamental challenges of tissue engineering	(OR)
B) What are the basic criteria of a scaffold used for tissue reconstruction?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. With the help of a flow-chart, explain the different processes involved in wound healing

27. Describe the signalling pathway for cell's response to the ligand

28. Describe the engineering materials used in scaffold fabrication. Mention the parameters for scaffold selection.

29. With the neat sketch, explain the mechanism of adhesion between leukocytes and endothelial cells

30. Demonstrate bioreactor for achieving nutrient transport in an engineered tissue construct

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – III</u>

LAB IN BIOINFORMATICS

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTS07	External	: 75

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the basic concepts of functional and computational genomics and proteomics	K2, K3, K5 & K6
CO2	To acquire knowledge on the usage of biological software on generating databases both online/offline	K2, K3, K5 & K6
CO3	To understand the existence of globally available online soft wares and databases for nucleic sequence retrieval	K2, K3, K5 & K6
CO4	To understand the usage and deposition of sequences in to globally available structural databases	K2, K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp. No	TITLE	HOURS
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3
6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3

8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
10	Program to store a DNA sequence in NCBI : Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN BIOINFORMATICS)

NAME OF THE COURSE: LAB IN BIOINFOMATICS	COURSE CODE: 17U5BTS07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS	
1. (i) Retrieve the	gene sequence from Ger	nBank (A)	(OR)	
(ii) Find out the	e given query sequence (A) by BLAST analysis	(OR)	
(iii) Find out O	RF in the given sequence	e sample (A)		
MINOR EXPERIME	NT			
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS	
2. (i) Retrieve the	protein structure of haer	noglobin (B)	(OR)	
(ii) Perform Phy	ylogenetic Analysis for	the given organism (A)	(OR)	
(iii) Find out th	(iii) Find out the RNA sequence from the given DNA sequence (B)			
SPOTTERS		(5)	X 4 = 25 MARKS)	
3. Identify the give	3. Identify the given spotters C, D, E, F & G and comment on them			
RECORD		(1 x	5 = 5 MARKS)	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – III</u>

BIOSAFTEY, BIOETHICS & IPR

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	:03
Credit	: 2	Internal	: 25
Paper Code	: 18U5BTS08	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	6
п	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	6
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non-patentable.	6
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	6

	and general requirements of patent law. Patentable subjects and protection in Biotechnology. Patent infringement- meaning, scope, litigation, case studies.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of human genome project and GM crops, biopiracy and biowarfare.	6

SUGGESTED READINGS:

1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.

2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.

3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.

4. Sasson A, Biotechnologies and Development, UNESCO Publications.

5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	18U5BTS08		
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. Bio-related resear	1. Bio-related research activities may not involve						
a. Micro organisms	b. Animal cell	s c. Plant cells	d. All				
2. A pathogen that i	s unlikely to cause any di	isease in humans or animation	als				
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV				
3. Korean hemorrho	<i>igic</i> fever is example for						
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I				
4. Physical contai	inment is achieved by						
a. One type	b. Two types	c. Three types	d. Four types				
5. Which one of the	following is not relevant	to sterilization technique	?				
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave				
6. Cartagena Protoc from	ol on Biosafety to the Co	nvention on Biological D	iversity Effective				
a. 11 September	b. 12 September	c. 11 September	d. 12 September				
2003	2003	2004	2004				
7. Each Institutional	Biosafety Committee ha	is a nominee for					
a. DST	b. DBT	c. UGC	d. ICAR				
	M meeting held in 2018?	1					
a. 7	b. 8	c. 9	d. 6				
	not include the following						
a. DBT b.	ICMR	c. UGC	d. CSIR				
10. GEAC establish	ed under						
a. MoEF & CC	b. UGC	c. DBT	d. DST				
	therwise called as						
a. Patent	b. Model	c. Business name	d. Trademark				
12is an	y information of commer	cial value concerning pro	oduction				
a. Trade name	b. Trade Secret	c. Patent d.	Industrial Design				
13. IPR initially star	ted in North Italy during	the					
a. Renaissance	b. Renaissance	c. Renaissance	d. Renaissance				
era. In 1471	era. In 1472	era. In 1473	era. In 1474				
14. Protection of IPR not allow the following							

a. Innovator	b. Brand owner	c. Teacher	•	d. Copyright holder	
15. Intellectual property not refers to creations of the mind					
a. Hard work	b. Inventions	c. Literary and a	rtistic wo	orks d. Names	
16. Which one is a	comes under type of int	ellectual property (I	P)?		
a. Copyright	b. Patent	c. Tradem	ark	d. All the above	
17. Mathematical	algorithms are				
a. Patentable	b. Non patentable	c. Both	d.	None of the above	
18. Software is a -					
a. Patentable	b. Non patentable	c. Both	d. N	one of the above	
19. Patentable bio	technological invention	is is	I		
a. Proteins b.	DNA sequences c.	Both of the (a) and	(b) d	. None of the above	
20. Early founders	of bioethics put forth	four principles whic	h form th	e framework for moral	
reasoning					
a. 4	b. 3	c. 2		d. 1	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) Explain different levels of biosafety.	
B) Explain different types of sterilization methods.	
22. A) Explain the role of institutional committee.	
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	
B) Explain patentable and non-patentable biotechnological inventions?	
25. A) Define bioethics, explain purpose and scope of bioethics?	
B) Explain perspectives and methodology of bioethics?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Explain different types of bio-safety measures in laboratory?

27. Explain Cartagena protocol on biosafety.

28. What is IPR and explain their different types?

29. Patent - Definition, History and Law

30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – III</u>

CANCER BIOLOGY

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U5BTS09	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The students also gain added knowledge on ethical, legal and social considerations on implementing/marketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts of cancer biology and types of tumour	K1 & K2
CO2	Understand the mechanisms of cancer development and chemical involved in carcinogenesis	K1 & K2
CO3	Understand molecular mechanisms and genetic principles of oncogene expression	K3, K4 & K5
CO4	Acquiring the knowledge on developing drug discovery approach in the management and detection of cancer	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Fundamentals of cancer biology: Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes. Development and causes of cancer, Types of cancer, Benign and malignant tumours.	6
II	Principles of carcinogenesis: Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis.	6
III	Principles of molecular biology of cancer: Oncogenesis: Oncogenes, identification of Oncogenes, Retroviruses and Oncogenes, detection of Oncogenes, Growth factors related to transformations.	6

IV 1	Principles of cancer metastasis: Clinical significances of invasion, heterogeneity of metastatic phenotype, three step theory of invasion, Proteinases and tumor cell invasion.	6
V	New molecules for cancer therapy: Different forms of therapy, Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of aggressiveness of Cancer, Advances in Cancer detection.	6

SUGGESTED READINGS:

- 1. King R.J.B., Cancer Biology, Addision Wesley Longmann Ltd, U.K., 1996.
- 2. Maly B.W.J., Virology a practical approach, IRL press, Oxford, 1987.
- 3. Dunmock.N.J and Primrose S.B., Introduction to modern Virology, Blackwell Scientific Publications.
- 4. Ruddon.R.W., Cancer Biology, Oxford University Press, Oxford, 1995.

MODEL QUESTION PAPER (CANCER BIOLOGY)

NAME OF THE BIOLOGY	COURSE: CANCER	COURSE COD 18U5BTS09	E: DURATION: 3 Hrs
MAX MARKS: 75			
	N - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	HE QUESTIONS
1. Cell cycle is regul	ated by		
a. Kinase	b. CDKs	c. Cyclins	d. cAMP
2. Which of the follo	wing is tumour suppresso	r gene?	
a. MAP	b. EGF	c. RB	d. p53
3. Which of the follo	wing is an example for m	alignant tumour?	
a. Skin cancer b. H	lyperchromic macrocytic	anaemia c. Lung can	cer d. Liver cancer
4. Which of the follo	wing is not a process of r	netastasis?	
a. Attachment & Detachr	nent b. Invasion	c. Angiogenesis	d. Tissue degeneration
5. Which of the follo	wing chemical causes cer	vical cancer?	
a. Asbestos	b. Benzapyrene	c. Ethidium bromide	d. Acrylamide
6. Continuous expos	ure to asbestos causes		
a. Intestinal cancer	b. Lung cancer	c. Liver cancer	d. All the above
7. Development of ca formation of		the formation active tun	nour polyps is induced by the
a. Blood vessels	b. Blood venous	c. Blood capillaries	d. None of the above
8. Metastatic mode	cancer spreading is mainl	y achieved by	system
a. Respiratory	b. Nervous	c. Circulatory	d. Excretory
9. Development of bl	lood cancer is induced by	which of the following	factor?
a. Epithelial growth factor	b. Endothelial growth factor	c. Christmas factor	d. Vascular growth factor
10. Oncogenes are ex	spressed from		
a. RB gene	b. Protogenes	c. Tumor supressor gene	es d. Proto oncogenes
11. Which of the foll	owing gene is responsible	e for cancer developmen	t by retroviruses?
a. RTase	b. DNase	c. Retro transposons	d. None of the above
12. Eye cancer is cau	sed due to the mutation in	1gene	
a. CAT	b. RB	c. Rho	d. CRISPER
13. Cancer cells of ep like phe		hed their typical qualitie	s and characteristics and adopt a

a. Parenchyma b. Cl	nolenchyma	c. Mesenchyma	d. All the above		
14. Interaction between the development of tumor		surrounding stroma is extr	emely important in the		
a. Vasculogenesis	b. Capillary synth	nesis c. A & B	d. Angiogenesis		
15. The cell adhesion con	nplex runs from the ap	pical to the basal membrane	es and composed of		
a. Tight junctions	b. Adherent junct	ions c. Gap junction	s d. All the above		
16. Which of the followir	g factor is responsibl	e for the development of liv	ver cancer?		
a. EGF	b. VGF	c. HGF	d. EnGF		
17. Treatment of cancer c	ells by targeting them	with cytokines is mode of			
a. Chemotherapy	b. Radiation therapy	c. Immunotherapy	d. Hormone therapy		
18. The early stage of col	on cancer is detected	due to the expression of	gene		
a. dMMR b.	MACC 1	c. MACC 2	d. dMMR 2		
19. Prostate cancer aggre	19. Prostate cancer aggressiveness can be conveniently detected by				
a. MALDI	b. ESR	ESR c.pCaP d. NMR			
20. Mammary gland tumo	our is detected accurate	tely by			
a. Fluorescence imaging technique	b. Electrical impedance scanning	c. Digital mammograph Computer a detection system	ny & d. Nanotechnology hided based detection		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE	IE QUESTIONS
21. A) Explain the regulation of cell cycle	(OR)
B) Write short notes on signal switches	
22. A) Write short notes on chemical carcinogenesis	(OR)
B) Write briefly on the metabolic consequences of carcinogenesis	
23. A) How will you identify oncogenes	(OR)
B) Write shortly about the growth factors involved in the transforma	tion of normal cell in to cancer
cell	
24. A) Write briefly on the clinical significances of invasion	(OR)
B) Write about three step theory of invasion	
25. A) Explain the different forms of cancer therapy	(OR)
B) Write short notes on radiation cancer therapy	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on tumour suppressor gene

27. Give a detailed account on metabolism of carcinogenesis

28. Write an essay on retroviral oncogenes

29. Explain the basic principles of cancer metastasis

30. Write elaborately on the detection and prediction of cancer

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SEMESTER VI

BIOPROCESS TECHNOLOGY

Paper	: Core VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U6BTC07	External	: 75

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in downstream processing	K1 & K2
CO2	Understand the concepts of designing fermentor both in laboratory	K1, K2 & K3
02	and pilot scale and its mode of operation	K1, K2 & K5
CO3	Gaining added information on the production of value added products from microorganisms	K4, K5 & K6
CO4	Propagate mass production of agriculturally important value added Products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	S	М	S
CO3	S	S	S	М	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	BASICS OF BIOPROCESS TECHNOLOGY: Introduction, Definition, Scope and applications of Bioprocess. Introduction to fermentation and downstream processing technology. Isolation and screening of industrially important microorganism. Strain improvement, preservation of microorganisms.	15

II	DESIGN OF FERMENTOR: Fermentation types. Design of	
	fermentor – parts and its functions. Types of Bioreactors (Air lift,	
	cyclone, column, packed tower) Mixed bioreactor systems.	14
	Monitoring and controlling Bioreactors (pH, temperature and	14
	dissolved oxygen), Instrumentation for process control - Heat and	
	mass transfer, oxygen transfer mechanism. Principles of upstream	
	processing – Media preparation, Inocula development and	
	sterilization.	
III	DOWN STREAM PROCESSING: Basic principles of Down-	
	stream processing – microbial cell disruption methods	
	(Centrifugation, filtration fermentation broths). Cell separation	15
	techniques (Ultra filtration, Liquid-Liquid extraction)	10
	Chromatographic techniques: (Column & Ion exchange), Physical	
	methods (Distillation, Fluid extraction and Electro dialysis).	
	Bioprocess measurement and control system with special reference to	
IV	computer aided process control.INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and	
11	applications – organic acids (Citric acid & acetic acid), Enzymes	
	(Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins	16
	(Annylase), Antibiotics (Feinemin & Steptomyein), Vitannis (ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).	
V		
v	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance of micro algae and its cultivation (<i>Spirullina & Chlorella</i>). Mass	
		15
	production of Biofertilizer (<i>Rhizobium & Azolla</i>). Mushroom	15
	cultivation (Milk and button mushroom). Production and applications	
	of Biopesticide (Bacillus thuringiensis).	

SUGGESTED READINGS:

- Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS TECHNOLOGY)

NAME OF THE COURSE: BIOPROCESS TECHNOLOGY	COURSE CODE: 20U6BTC07	DURATION: 3 Hrs
MAX MARKS: 75		

1. Fed batch proc	ess belong to				
a. Closed system	b. Continuo	ous	c. Intermediate fed		d. Discontinuou
	system		batch system		system
2. Soyameal, pept	tone and tryptone are	e used as	s the source of		
a. Carbon	b. Carbon & nit	rogen	c. Minera	1	d. Nitrogen
3. Batch sterilizat	ion cycle time consi	sts of			
a. Two phases	b. Three phase	S	c. Four phases		d. Five phases
4. Protected ferme	entation uses which	of the gi	ven below		
a. Sterilized media	b. Pasteurized	с.	Pasteurized media	a o	d. Unsterilized media
	media		with low pH		
5. A spray dryer v	works on the princip	le of			
a. Contact drying	b. Sublimation	n	c. Lyophilisatio	n	d. Adiabatic drying
6. Which is not a	fruit or a vegetable l	based fei	rmented product?		
a. Wine	b. Beer		c. Vinegar		d. Sauerkraut
7. Which of the fo	ollowing is an upstre	am proc	cess?		
a. Product	b. Product		c. Media		d. Cell lysis
recovery	purifica		formulat	ion	
8. Pyrogen free w	ater is related to				
a. Endotoxin	b. O-polysacc	haride	c. Peptidogly	ycan	e. Teichoic ac
9. Which one is d	own steaming proce	ss?			
a. Product recovery	b. Screening	c. M	ledia formulation	d.	Sterilization of media
10. Which is the f	following is not a ph	ysical m	ethod for the cells	rupturin	ng?
a. Milling b. Homogenization		c. Ult	Itra sonication d. Enzy		Enzymatic digestion
11. Ethanol ferme	entation is carried by	·		1	
a. Lactobacillus	b. E.coli	c. <i>S</i>	Saccharomyces cer	evisiae	d. Bacillus sp.
12. What is the pe	ercentage range of va	ariation	in recovery costs?		I
a. 50-55%	b. 0-20%		c. 5-7%		d. 15-75%

	a. Extra cellular	b. Heat labile		c. Toxic		d. Intra cellular	
	14 Bacillus thuringiensis is used as					·	
	a. Insecticide	b. Fungicide	c.	Microbicidal agent		d. Rodenticide	
	15. Yeast cells are g	good sources of					
a.	Vitamin A&B	b. Vitamin A	&D	c. Vitamin B&D)	d. All the above	
	16. The sugar concentration of molasses used in fermentation ranges between				en		
	a. 10-18%	b. 20-30%		c. 4-5%		d. 30-38%	
	17. The protein found in milk is				r		
	a. Rennin	b. Pepsin		c. Casein	d. Trypsin		
	18. Spirullina is a						
	a. Edible fungus	b. Bio fertilize	r	c. Biopesticidal	d	d. Single cell protein	
	19. What is the scientific name of mushroom?						
a.	<i>Funaria</i> sp.	b. Dryopteris sp	•	c. Agaricus campes	stris	d. Fergus sp.	
	20. Agar-Agar is ob	tained from					
	a. Diatoms	b. Gracilaria		c. Fomes		d. Laminaria	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUE	STIONS
21. A) State the scope and application of bioprocess technology	(OR)
B) Write notes on strain improvements	
22. A) Explain about airlift bioreactors	(OR)
B) Illustrate the packed tower bioreactor with its uses.	
23. A) Briefly mention the principles and uses of centrifugation	(OR)
B) Elaborate on cell separation techniques	
24. A) List out the application of amylases	(OR)
B) Explicate the production and applications of lysine	
25. A) Highlight the importance of bio fertilizers	(OR)
B) What are mushrooms? Explain its cultivation methods	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. How will you develop an improved strain through recombination technique?

27. Illustrate the criteria for design of fermenters and specify its functions.

28. Explain basic principles of down streaming process

29. Explain the large scale production of penicillin and state its uses.

30. Describe the production and application of *Bacillus thuringiensis*.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ANIMAL BIOTECHNOLOGY

Paper	: Core VIII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U6BTC08	External	: 75

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome		
CO1	Understanding the development of animal cell culture techniques and basic concepts of cell lines		
CO2	Gain knowledge on cell culture, animal cell growth dynamics		
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques	K3 & K4	
CO4	Knowing about the principles of ethical, legal and public issues on using genetically animals in producing value added products		

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15
П	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15

ш	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types, vectors in gene therapy. Production and development of animal vaccines for FMD, BTD, Rabies and anthrax.	15
V	Public aspects if Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and Rabbits.	15

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehenology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: ANIMAL BIOTECHNOLOGY	COURSE CODE: 20U6BTC08	DURATION: 3 Hrs
MAX MARKS: 75		

SECTIO	ON – A	(1 X)	20 = 20 MA	RKS)	ANS	WER ALL THI	E QU	ESTIONS
1. The growth	n of ani	mal ce	lls in vitro ii	n a su	itable	culture medium	is ca	illed?
a. LB medium		b. M	b. MS medium c. NITCH [*] 's medium		ı	d. MEM medium		
2. Who introduced HAT medium?								
a. Littlefield		l	b. Ham		c.	Amold		d. Rous and Jones
3. Name the ty organism to	-			pared	by in	oculating direct	ly fro	om the tissue of an
a. Primary cell cult	ure	b. Se	condary cell	cultu	re	c. Cell lines		d. Transformed cell culture
4. What is cell	line?							
a. Multilayer culture	b. Tı	ansfor	med cells		/lultip cells	le growth of	d.	Sub culturing of primary culture
5. Which of the	e follov	ving is	NOT the pa	rt of g	growt	h medium for ar	nimal	culture?
a. Starch	b. S	erum		c. Ca	rbon	source		d. Inorganic salts
6. Which of the	e follov	ving is	NOT the ma	ajor fi	unctic	on of the serum?		
a. Promotion of tuber and bulb formation		b. Stimulate cell growth		c. Enhance cell attachment		d. Provide transport proteins		
7. For culturing	g, plasn	na fror	n the adult c	hicke	n is p	referred to mam	malia	an plasma because
solid coagu after dilutio	a. It forms a clear and solid coagulum even after dilution		b. It is too opaque		c. It doesn't produce solid clots		d. It forms a semi solid coagulum	
8. Disaggregat	ing of c	ells ca	n be achieve	ed by				
a. Physical disruption				above				
9. The techniqu	ue of or	gan cu	lture may b	e divi	ded o	n the basis of en	nploy	ving
a. solid mediur	a. solid medium b. liquid medium c. semi-solid medium d. both (a) and (b)							
10. What are th	10. What are the main constituents of culture for animal cell growth?							
a. Glucose and	Glutar	nine	b. Growt	h fact	ors	c. Cytokines	0	l. All of the above
11. In animal cell culture, particularly mammalian cell culture, transformation means:								

a. Uptake of new genetic material	b. Phenotypic modification in culture	ns of cells	c. both (a) and (b)	d. Release of genetic information
fluid. What is pro	nvestigation, this is t bably wrong with thi	found that s culture?		ells do not look very ctic acid in the culture
 a) Ethyl alcohol is being produced in excess 	b) The cells have much oxygen	too	c) Glycolysis is being inhibite	d) The cells do not have enough oxygen
	nes can be cultured for -cultured indefinitel			apparently develop the e called
a) established cell lines	b) primary ce	ll lines	c) secondary cell lines	d) propagated cell lines
14. Higher dissolved	oxygen concentration	n in the cu	lture media are to	kic and leads to
a) DNA degradation b) lipid per oxidation		metabolism is greater	d) all of the above
15. Which of the follo	owing is the techniqu	ue used for	the embryo cultu	re?
a) Organ cultures on plasma clots	b) Organ culture agar	es on	c) Whole embryo cultures	d) All of these
16. The major proble organs is that of		e isolation	of free cells and o	cell aggregates from
a) releasing the cells from their supporting matrix	b) inhibiting the cells their supporting m		c) disintegrating the cells from their supporting matrix	
17. The technique of o	organ culture may be	divided o	n the basis of emp	oloying
a) solid medium b) l	iquid medium	c) both	(a) and (b)	d) semi-solid medium
18. An established ce				
a) 70 times at an interval of 3 days between subcultures	b) 40 times at an inte days between subc		c) 70 times at an interval of 1 day between subcultures	d) 50 times at an interval of 3 days between subcultures
19. In animal cell cult		nmalian co		
a) Uptake of new genetic material	b) Phenotypic modifications of		c) both (a)and (b)	d) Release of genetic information
20. Which of the follow a) Slide culture b) C	-		ue? est tube culture	d) Adherent primary culture

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS

21. A) Write notes about primary cell culture techniques.

(OR)

B) Explain the techniques and application in organ culture.

22. A) Write a detailed account on different types of media used in animal cell culture. (OR)

B) Explain the behaviour of cell division and cell kinetics.

23. A) Explain the principle and methodology of PCR Techniques

B) Give detailed account of the mechanism application of Microinjection

24. A) Explain the principle, methodology and application of embryo transfer technology (OR)

(OR)

- B) Write detailed about production and development of animal vaccines.
- 25. A) Explain various strategies of ethical issues in Animal Biotechnology.(OR)B) Discuss about a special features and applications of Stem cell culture.(OR)

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. Write a detailed account on Animal cell culture Steps and maintenance?
- 27. Explained in detail about the Animal cell culture Media and Balanced salt solutions?
- 28. Describe about the Gene Transfer Techniques in Detail?
- 29. Production and development of Animal vaccines with Good examples?
- 30. Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 20U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic	K1, K2 & K3
	acid and SCP production. Prepare animal cell media and its	
	sterilization techniques.	
CO2	Understand in determining the microbial growth. To filter sterilize	K1 & K2
	the sensitive media ingredients and filtration technique.	
CO3	Estimating the production of single cell protein by biochemical	K2, K4 & K5
	method. Prepare suspension culture and cultivating viruses in	
	embryonated egg.	
CO4	Analysing milk qualitatively and separating aflatoxin fungal species	K2, K4 & K5
	by chromatographic method. Observation of different types of	
	animal cell lines.	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	М	S	S
CO3	М	S	S	S	S
CO4	М	S	М	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production of alcohol from grapes	3
3	Production and estimation of citric acid from Aspergillus species	
4	Estimation of alcohol from grapes	10

5	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by Lowry's method		
6	Immobilization of amylase by entrapment method	10	
7	Determination of bacterial growth by growth curve method	10	
8	Determination of Thermal Death point (TDP) of the bacterial sample		
9	Quality analysis of milk		
	a. MBRT test and	10	
	b. Rezasurin test	10	
10	Analysis of fungal aflatoxin by TLC		
11	Enumeration of microorganisms from bread 5		
12	Production of alcohol from grapes		
13	Production and estimation of citric acid from Aspergillus species	_	
14	Estimation of alcohol from grapes	5	
15	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by		
	Lowry''s method	5	
16	Immobilization of amylase by entrapment method		
17	Determination of bacterial growth by growth curve method	10	
18	Determination of Thermal Death point (TDP) of the bacterial sample		
19	Quality analysis of milk		
	c. MBRT test and	_	
	d. Rezasurin test	5	
20	Analysis of fungal aflatoxin by TLC		

MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY	COURSE CODE: 20U6BTCP07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Estimate the a	amount of alcohol from	the given fruit sample (A	A) /Isolate genimice	
DNA from the	given animal tissue sam	ple (A) (Ol	R)	
		rom the given batch cult		
Perform single cell sus	pension culture from th	e given animal cell samp	le (A) (OR)	
		the given sample (A) by	y Lowry"s method/	
Perform viability test o	of the given animal cell	suspension (A) sample		
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 15 MARKS	
2. (i) Perform imm	2. (i) Perform immobilization of the given enzyme sample (B)/ Inoculate the given			
infectious samp	ole in the embryonated e	egg sample (B)	(OR)	
		OP) of the bacterial samp		
monolayer culture from the given chick embryo fibroblast cells (B)(OR)				
(iii) Determine the quality of the given milk sample (B) by MBRT/Resazurin test/				
-	e given monolayer cultu	re (B) by appropriate me	ethod	
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$				
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE 5 MARKS				
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

GENOMICS AND PROTEOMICS

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 20U6BTE04	External	: 75

PREAMBLE

This paper deals with the basic principles of genome and its manipulating strategies end up with the development of novel candidate gene.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic structure of genome map in prokaryotic and eukaryotic organisms	K2 & K3
CO2	To understand the mapping of different regions of DNA and its amplification protocols	K2 & K3
CO3	To acquire knowledge on different tools used in the fields of Proteomics	K2, K3 & K4
CO4	To explore with the different application of proteomics in terms of protein mapping	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Genomics -Overview of Genome anatomies. Prokaryotic Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem repeats, Transposons and transposable elements.	15
п	DNA sequencing methods : Shot gun sequencing – Contig assembly. Techniques for gene location: ORF findings, Northern Hybridization, RT- PCR, RACE, S1 nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray technology	15
III	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical	15

	Mapping, Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene therapy for inherited disorders and infectious diseases and ethics.	
IV	Tools of Proteomics : The proteome – the life cycle of protein-analytical techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide Mass finger printing.	15
v	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific features. Protein expression profiling. Identifying protein - protein interactions. Mapping of protein modifications.	15

SUGGESTED READINGS

- 1. Terence A Brown.(2002) Genomes, 2nd Edition, Bios Scientific Publishers.
- 2. Tom Strachan and Andrew P Read (1999) Human Molecular Genetics, 2nd edition, Bios Scientific Publishers.
- 3. Daniel C. Liebler (2002) Introduction to Proteomics, tools for the New biology- Humana press. Totowa, NJ.
- 4. Pennington.S, M. Dunn (2001) Proteomics: From Protein Sequence to Function 1 edition Bios Scientific Publishers.

MODEL QUESTION PAPER (GENOMICS AND PROTEOMICS)

NAME OF THE COURSE: GENOMICS AND PROTEOMICS	COURSE CODE: 20U6BTE04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTIO	ON - A	A (1 X 20 = 20 MAF)	RKS)	ANSWER ALL THE	QU	ESTIONS
1. The study of fu	ll com	plement of proteins	expre	essed by a genome is	calle	ed
a. Proteome		b. Proteomics		c. Genomics		d. Protein formation
2. The effects of p	rotein	on an entire organis	sm is	described in		
a. Phenotypic function	ı b	. Cellular function	c. 1	Molecular function	d. S	Structural genomics
3. The precise bio	chemi	cal activity of a prot	tein is	s described in		
a. Structural genomics		. Molecular function		c. Cellular function	0	d. Phenotypic function
4. The network of	intera	actions engaged in b	y pro	tein at cellular level is	s des	cribed in
e. Molecular function	f.	Phenotypic functi	on	g. Structural genomic	S	h. Cellular function
5. The goal of stru	ictural	proteomics project	is to			
a. Crystallize and determine the strue of proteins		 b. Identify and sequence of all t genes present in human body 		c. Introduce new genes to human beings		d. Remove disease causing genes from humans
6. Conserved gene	e orde	r can be termed as				
a. Ortholog		b. Synteny		c. Paralog		d. Microarray
7. Sequencing of g	genon	nic DNA is included	in			
a. Structural genomics	1	o. Molecular functio	n	c. Cellular function	d.	Phenotypic function
8. Genes of different other are	ent sp	ecies, possessing a c	lear s	sequence and function	al re	lationship to each
a. Ortholog		b. Synteny		c. Paralog		d. Microarray
9. <i>Rawolfia serper</i> techniques is u			der tl	he threat of extinction	, wh	ich of the following
a. Genetic engineering	g b	. In vitro culture	c. D	NA fingerprinting	d. F	Hybridoma technology
10. Transgenic org	ganisn	ns are generally				
a.Extinct organisms	en	nturally occurring an demic		Produced by plant breeding technique		Produced by gene transfer technology
11. Genes of same	spec	ies, similarly related	to ea	ich other are		
a. Paralog	b.	Ortholog		c. Microarray		d. Synteny
12. Dolly, the first	t anim	al produced by clon	ing is	a		I
a. Cow		b. Sheep		c. Rat		d. Dog

	13. Collection of mic	roscopic DNA spots attached	to solid surface are?		
	a. Ortholog	b. Microarray	c. Synteny	d. Paralog	
	14. Gene therapy is a	technique preferred to cure	inherited diseases by		
	a.Repairing the faulty gene b. Introducing the correct copy of the gene c. Adding new cells to the body d. PCR				
	15. Which of the follo	owing is a repressible operor	1?		
a.	Lac	b. Trp	c. Gal	d. glu	
	16. Explant can be a		1	1	
a.	Cut part of the plant used in tissue culture	b. Plant extract used in tissue culture	c. Source of growth regulators added to media	d. Solidifying agent	
	17. Which of the follo	owing is used to transfer gen	es in plants?		
a.	Ti plasmid	b. pBR 322	c. EcoR 1	d. pUC 18	
	18. Which of the follo	owing bacterium is used for	gene transfer in plants?		
a.	Agrobacterium	b. Azotobacter	c. Rhizobium	d. E.coli	
	19. Which of the follo	owing is an inducible operon	?	1	
a.	Glu	b. Lac	c. Gal	d. trp	
20. Integrated state of DNA from other organisms in host DNA is termed as					
a.	Plasmids	b. Phasmids	c. Episomes	d. cosmids	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Elaborate on the mechanism of DNA Gyrase in nucleic acid replication (OR)			
B) What are lampbrush chromosomes? State its special features.			
22. A) How DNA sequencing is achieved by shot gun method?	(OR)		
B) Write notes on Pharmacogenomics.			
23. A) Enlist the inherited disorders and its treatment by gene therapy	(OR)		
B) Derive the protocol for human pedigree analysis.			
24. A) State the features of MALDI proteome analysis.	(OR)		
B) Briefly write about peptide mass finger printing.			
25. A) State the applications of Global Biochemical Network.	(OR)		
B) Affirm about the micro array techniques for proteins.			

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Illustrate the different levels of packaging of DNA in eukaryotes.

27. State the mechanism of gene expression using RT-PCR technique.

28. Describe the implication of Human Genome Project.

29. Explain the principle, process and applications of 2-D gel electrophoresis.

30. Elucidate the principle and mechanism of mass spectroscopy in the analysis of metabolomics.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II

BIOPHYSICS AND BIOINSTRUMENTATION

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 20U6BTE05	External	: 75

PREAMBLE

This paper deals with the basic instrumental principles leading to biological research outputs. It also describes the biophysical concepts of different biomolecules.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Explores student towards the biophysical properties of nucleic acids Proteins	K1 & K2
CO2	Acquiring knowledge with the basic concepts of chromatographic Techniques	K1, K2 & K3
CO3	Acquiring knowledge with the basic concepts of spectroscopic Techniques	K3, K4 & K5
CO4	Exploring towards the use of radiation principles in the field of biomedical science	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	М	М
CO3	S	S	М	S	S
CO4	S	S	S	S	М

UNIT	CONTENT	HOURS
I	Biophysics Of Nucleic Acids: Transitional angles and their ranges. The pseudo-rotation cycle, syn – anti orientation of glycosyl bond. Geometries of Watson- Crick and Hoogsteen base pairs.	10
п	Biophysics Of Proteins: Amino acids – Conformations. Phi and Psi angles. Ramachandran plot. Peptide bond isomerisation. Disulphide bonds, electrostatic forces, van der waals interaction and hydrogen bonds.	12

Paper, thin-layer, column, GC-MS, GLC, Ion exchange chromatography, IPLC). Principles and applications of spectroscopy. (UV- Vis, NMR, aman spectroscopy, AAS and X-ray crystallography). paration techniques: Introduction to electrophoresis. Starch-gel,	13
aman spectroscopy, AAS and X-ray crystallography). paration techniques: Introduction to electrophoresis. Starch-gel,	13
paration techniques: Introduction to electrophoresis. Starch-gel,	13
	13
lyacrylamide gel (native and SDS-PAGE), agarose-gel electrophoresis, pulse	15
Id gel electrophoresis, immuno- electrophoresis, isoelectric focusing, estern blotting	
Radiation Biophysics: Basic concepts of radiography. Measurement of	
adioactivity: GM counter, Liquid and solid scintillation counter. Advantage	10

SUGGESTED READINGS

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi
- Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency. Biophyscial chemistry – principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 3. Biophysical chemistry Cantor and Schinmel. 2002
- 4. Biophysical chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 5. Biophysics Arora, First edition, Himalaya Publications, New Delhi
- 6. Palanivelu, P (2001). Analytical Biochemistry, and separation techniques, Tulsi Book Centre. Madurai.

MODEL QUESTION PAPER (BIOPHYSICS AND BIOINSTRUMENTATION)

NAME OF THE COURSE: BIOPHYSICS AND BIOINSTRUMENTATION	COURSE CODE: 20U6BTE05	DURATION: 3 Hrs
MAX MARKS: 75		

	× ×	RKS) ANSWER ALL T	
			-
$\frac{a. 9.5}{2}$ Which of the fel	b. 10.5	c. 11.5	d. 12.5 tion of one base with respect
	the same base pair?	ly is considered as a rota	tion of one base with respect
a. Shear	b. Buckle	c. Propeller	d. Stagger
3. The twisting deg	gree of B form of DNA i	Ĭ	
a. 60°	b. 90°	c. 120°	d. 360°
	of a piece of double stran	nded helical DNA are joi	ned so that it forms a circle
a. Topologically	b. Geometrically	c. Physically	d. Isometrically
5. A typical stabil	lity of a protein domain	range from to k	ccal/mol
a. 2, 5 b	. 3, 6	c. 3, 7	d. 2, 6
		,	oteins is mediated via the
	-like state in plasma		
a. NMR	b. CD	c. AAS	d. Raman
7. The most comm	on type of protein foldin	ng is described by the pri	nciple of
a. Tunnel	b. Folding funnel	c. Realistic	d. Levinthal paradox
landscape		landscape	
8. Which of the fol	lowing angle of proteins	s folding is essentially fla	at and fixed to 180°?
a. Alpha	b. Beta	c. Gamma	d. Omega
9. Retention factor	is related to		
a. PC	b. TLC	c. a & b	d. GC
1 1	1	6	so that ionic species are phic technique is employed?
	b. GC	c. AAS	d. Ion exchange
11. Elemental spec	ties of the given sample	is determined by	
a. TLC	b. GLC	c. GC-MS	d. AAS
	nionic resins are used in		1
a. PC	b. TLC	c. AAS	d. IEC
13. The substances	found in colourless solu	itions can be measured b	y
a. Colorimeter	b. UV-VIS	c. NMR	d. X-ray

14. Sweep generator	is used in				
a. NMR	b. X-ray	c. UV-'	VIS	d. Raman sp	ectroscopy
15. Nickel oxide is u	sed as monochromato	or in			
a. X-ray crystallography	b. Raman spectrosc	ору	c. U	V-VIS	d. XRD
16. Activation energy	y of a given system ca	an be co	nveniently	determined b	y
a. XRD	b. NMR		c. AAS		d. UV-VIS
17. Becquerel is a un	it of measurement of		-		
a. Fossil age	b. Radioactivity	c	. Carbon	dating	d. None of the above
18. Which of the foll	owing particle has m	edium e	nergy?	I	
a. Alpha	b. Beta		c. Gamı	ma	d. Omega
19. GM counter is us	ed for measuring		I		
a. Radiation frequency b. Ionizing radiation c. Effect of radiation d. Gamma radiation					
20. The main substan	ice used for nuclear in	maging	in cardiolo	gy is	
a. Thallium isotop	e b. Boron isotop	e	c. Uraniu	ım isotope	d. Tritiated water

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUI	ESTIONS
21. A) Write shots notes on syn – anti orientation of glycosyl bond (OI	R)
B) Write short notes on transition angles of nucleic acids	
22. A) Write shot notes on peptide bond isomerization	(OR)
B) Write notes on electrostatic forces involved in protein stability	
23. A) Explain the applications of Thin layer chromatography	(OR)
B) Explain the principle of HPLC	
24. A) Explain the instrumentation of Raman spectroscopy	(OR)
B) List out the applications of atomic absorption of spectroscopy	
25. A) Explain the working principle of solid and liquid scintillation co	ounter (OR)
B) Briefly explain the disadvantages of radio active compounds	

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on the geometrics of Watson & Crick model.
27. Give detailed account on Ramachandran plot
28. Write an essay on the working principle, instrumentation, applications, advantages and disadvantages of GC-MS
29. Give a detailed account on NMR. Add a note on its applications in the fields of medicine and defence
30. Write an essay on GM counter

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II ENVIRONMENTAL BIOTECHNOLOGY

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 20U6BTE06	External	: 75

PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome				CPD
CO1	To provide knowledge	e in environmenta	al impacts in biot	echnology	K1 & K2
CO2	To understand the con related environmental	echniques	K2 & K3		
CO3	To impart new though environmental issues	tions on	K3 & K4		
CO4	To create awareness re improvement of enviro	es for the	K3, K4 & K5		
MAPPI		,			
Cos	PO1	PO4	PO5		
CO1	М	S	S	S	М
CO2	S	S	S		
CO3	S	S	М		
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Environment - basic concepts and issues, global environmental problems - ozone depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management.	15
11	An overview of atmosphere, hydrosphere, lithosphere and anthrosphere - environmental problems. Environmental pollution - types of pollution, sources of pollution, measurement of pollution, methods of measurement of pollution, fate of pollutants in the environment, Bioconcentration, bio/geomagnification.	15

ш	Microbiology of waste water treatment, aerobic process - activated sludge, oxidation ponds, trickling filter, towers, rotating discs, rotating drums, oxidation ditch. Anaerobic process - anaerobic digestion, anaerobic filters, up- flow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar and antibiotic industries	15
IV	Xenobiotic compounds - organic (chlorinated hydrocarbons, substituted simple aromatic compounds, polyaromatic hydrocarbons, pesticides, surfactants) and inorganic (metals, radionuclides, phosphates, nitrates). Bioremediation of xenobiotics in environment - ecological consideration, decay behavior and degradative plasmids, molecular techniques in bioremediation	15
V	Role of immobilized cells/enzymes in treatment of toxic compounds. Biopesticides, bioreactors, bioleaching, biomining, biosensors, biotechniques for air pollution abatement and odour control.Environmental significance of genetically modified microbes, plants and animals.	

SUGGESTED READINGS

Reference

- 1. Waste water engineering treatment, disposal and reuse, Metcalf and Eddy Inc., Tata McGraw Hill, New Delhi.
- 2. Environmental Chemistry, AK. De, Wiley Eastern Ltd, New Delhi.
- 3. Introduction to Biodeterioration, D.Allsopp and K.J. Seal, ELBS / Edward Arnold.
- 4. Bioremidation, Baaker, KH and Herson D.S., 1994. Mc.GrawHill Inc, NewYork.
- 5. Industrial and Environmental Biotechnology Nuzhat Ahmed, Fouad M. Qureshi and Obaid Y. Khan, 2006. Horizon Press.
- 6. Environmental Molecular Biology, Paul. A, Rochelle, 2001.Horizon Press.

MODEL QUESTION PAPER (ENVIRONMENTAL BIOTECHNOLOGY)

NAME OF THE COURSE: ENVIRONMENTAL BIOTECHNOLOGY	COURSE CODE: 18U6BTE06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION -	-A(1 X 20 = 20 MARK)	S) ANSWER ALL TH	IE QUESTIONS		
1. Phytoplanktons pro	ovide food to				
a. Whales	b. Shrimp	c. Snails	d. All the above		
2. The term biodiver World	sity hotspot specifically	refers to biolog	cically rich areas around the		
a. 15		c. 35	d. 45		
3. The upper reaches	of the Himalayas forming	g part of the			
a. Indomalaya ecozor	e b. Palearctic ecozo	one c. Indo-Burma	a d. Sundaland		
4. Endangered (EN), as categorized by				
a. LC	b. IUCN	c. VU	d. CR		
	ensive in situ conservation				
a. 4.7	b. 7.7	c. 5.7	d. 6.7		
6. New policy on see	d development was formu	lated by the ministry of	of		
a. Science and techno	logy b. Agriculture	c. External affairs	d. None of the above		
	biodiversity was opened	•			
a. 5 th June 1992	b. 5 th August 1992	c. 5 th June 1995	d. 5 th August 1995		
8. The Cartagena Pro was adopted in		Convention, also know	wn as the Biosafety Protocol,		
a. January 2000	b. February 2000	c. March 2000	0 d. June 2000		
9. Arsenic contamina	tion in soil is recovered b	y			
a. Bioleaching b.	Phytoremediation c.	Bioremediation	d. Bio feasability		
10. Heavy metal toxic Systems	city increases the product	ion of thereby	y decreasing the antioxidant		
a. ROS b.	Hydrogen ions	c. Organic nutrients	d. Oxygen		
	11 is defined as the removal of metal or metalloid species, compounds and particulates from a solution by low cost biological materials				
a. Bioleaching	b. Bioremediation	c. Biosorption	d. Phytoremediation		
• •	12. Algae are of special interest in search for and the development of new biosorbents materials due to their and their ready availability in practically unlimited quantities in the seas				
a.High filtration capacity	b. High reflection capacity	c. High Adsorption capacity	d. High sorption capacity		

	<i>a</i> . CO ₂	<i>b.</i> Ammonia	c. Nitrate	<i>d</i> . All the above
	14. Laggons are also c	alled		
	<i>a</i> . Aerobic ponds b	o. Oxidation ponds c	. Facultative ponds	d. Aerated ponds
	15. The activated sl treating sewage or bacteria and	industrial wastewaters	type of wastewater using aeration and a bio	treatment process follogical floc composed of
	a. Viruses	b. Fungi	c. Helminthes	d. Protozoa
			ironmental Microbiology l ficient nutrient removal pr	operties
ı.	Comamonas denitrificans	b. Brachymonas denitrificans	c. Aeromonas hydrophila	d. All the abov
		ation costs, high moistu	d generally not successful re content in the waste, and	l high percentage of
	a. Incineration	b. Land filling	c. Source reduction	d. Composting
	18. Which of the follow	wing is NOT a compone	nt of bio compost?	
	a. Carbon	b. Nitrogen	c. Oxygen	d. Hydrogen
	19. The most common		nicomposting is	
	a. Eisenia foetida	Lumbricus terrestris		Perionyx excavati
	- 20 The most common	worms used in compost	<i>rubellus</i> ing system <u>s</u> red worms fe	ed most ranidly at
	temperatures of		ing system, red worms re	ed most ruptury at
	a. 10–25 °C	b. 15–20 °C	c. 15–25 °C	d. 10–20 °C
	GEOTION			
		$\frac{-B}{5} (5 \times 5 = 25 \text{ MARKS})$ t notes on hot spots of B	S) ANSWER ALL THE Q	(OR)
		t notes on endangered an		
		t notes on cryopreservati		(OR)
	,	t notes on Biodiversity C		
		t notes on Bioleaching o		(OR)
		t notes on Commercial b t notes on activated slud		(OR)
			-	
	-	t notes on percolating fil		
	B) Write shor 25. A) Write shor	t notes on composting sy	vstems	(OR)
	B) Write shor 25. A) Write shor	1 0	vstems	(OR)
	B) Write shor 25. A) Write shor B) Write shor	t notes on composting sy t notes on vermicompost	vstems	
	B) Write shor 25. A) Write shor B) Write shor SECTION -	t notes on composting sy t notes on vermicompost - C (3 X 10 = 30 MARK	ing	QUESTIONS

28. Give a detailed account on Bioremediation

29. Give a detailed account on Waste water Treatment

30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{SBEC-IV}$

LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS10	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Develop the practical concepts of mushroom, spirullina, sericulture	K3, K4, K5 & K6
CO2	Develop the practical concepts of apiculture, aquaculture and vermicomposting technology	K3, K4, K5 & K6
CO3	Develop the practical concepts of wine production and sauerkraut production	K3, K4, K5 & K6
CO4	Develop the practical concepts of biogas production	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	S
CO2	М	S	S	М	S
CO3	М	S	S	М	S
CO4	М	S	S	М	L

Ex.no	CONTENT	HOURS
1.	Mushroom cultivation	4
2.	Azolla cultivation	4
3.	Spirullina cultivation	4
4.	Sericulture	4
5.	Epiculture	4
6.	Aquaculture (Fish/Prawn/Pearl)	4

7.	Vermicomposting	4
8.	Biogas production	4
9.	Sauerkraut production	4
10.	Wine production	4

MODEL QUESTION PAPER (LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY	COURSE CODE: 18U6BTS10	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Azo	lla cultivation using the	given sample (A)	(OR)	
(ii) Perform Spi	<i>irullina</i> cultivation using	the given sample (A)	(OR)	
(iii) Peform ver	mi composting using the	e given earth worm samp	ole (A)	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform win	e production using the g	iven fruit sample (B)	(OR)	
(ii) Perform bio	(ii) Perform biogas production using the given raw sample material (B) (OR)			
(iii) Perform say	uerkraut production usin	g the given cabbage sam	ple (B)	
SPOTTERS		(5 Σ	X 4 = 20 MARKS)	
3. Identify the give	n spotters C, D, E, F & O	G and comment on them		
RECORD	RECORD $(1 \times 5 = 5 \text{ MARKS})$			
VIVA-VOCE	VIVA-VOCE 5 MARKS			
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – IV</u>

NANOBIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS11	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	Know the concepts of fabrication of bio molecular structures	K3 & K4
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field medicine, health care and drug discovery	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.	8
II	Nanomaterials and its properties : Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.	8
III	Fabrication and Analysis of biomolecular nanostuructures:AtomicForceMicroscopy,ScanningProbeElectronMicroscopyand	8

	Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.	
IV	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	8
V	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	8

SUGGESTED READINGS:

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

MODEL QUESTION PAPER (NANOBIOTECHNOLOGY)

NAME OF THE COURSE: NANO BIOTECHNOLOGY	COURSE CODE: 18U6BTS11	DURATION: 3 Hrs
MAX MARKS: 75		

1. Who first used the t	term nano biotechnology?		
a. Norio taniquchi	b. Richard Feynman	c. Eric Drexler	d. Sumio
2. $10 \text{ nm} = \m$			
a. 10 ⁻⁸	b. 10 ⁻⁹	c. 10 ⁻⁷	d. 10 ⁻¹⁰
3. The size of the name	no particles range from	nm	
a. 100 to 1000	b. 0.1 to 10	c. 1 to 10	d. 1 to 100
4. Nano science can b	e studied with the help of		
a. Quantum mechanics	b. Newtonian mechanism	c. Macro dynamics	d. Geophysics
5. The size of <i>E.coli</i>	bacteria is	nm	
a. 2000	b. 5000	c. 50	d. 90
6. What does "F" stan	ds for in AFM?		
a. Fine	b. Force	c. Flux	d. Front
7. The two important	properties of nano substan	ces are	
a. Pressure and	b. Sticking and	c. Sticking and	d. Temperature
friction	temperature	friction	and friction
8. 1 nanometer is $=$	cm		
a. 10 ⁻⁹	b. 10 ⁻⁸	c. 10 ⁻⁷	d. 10 ⁻⁶
9. Protein-coding get	nes can be identified by		
a. Transposons tagging	b. ORF scanning	c. Zoo -blotting	d. Northern analysis
10. Nano particles tar	get thec	ausing cells and remov	e them from blood
a. Tumor	b. Fever	c. Infection	d. Cold
11. The	to the ceramics are	e superior coating	
a. Nano particles	b. Nano power	c. Nano crystal coding	d. Nano material
12. Which one is used	in electron microscope?		
a. Electron beams	b. Magnetic fields	c. Light waves	d. Electron beams and magnetic fields

a. 400,000x	scope can give a magnific b. 100,000x	c. 15000x	d. 100x
·	biosensors use the princip		
a. Potentiometric		e. Piezo-electric	f. Calorimetric
biosensor	b. Optical biosensor	biosensors	biosensors
15. Biosensor made	e up of		
A probe and a surface	b. A sensing layer and a transducer	c. Transfer the pro molecule	obe
I		d. of	
		thes	
16 Which material	s are suitable for electrica	e esignal transducing?	
a. PDMS	b. Sillicon	c. Glass	d. Polyethylene
	unti-cancerous agent?	c. Chuss	d. Torjetnyiene
		Polyethylene glycol	d. Poly glutamic acid
	bllowing co-solvents are u		
a. Ethanol	b. Sorbitol	c. Glycerin	d. All of these
	RBCis		
		_nm c. 20000	d. 5000
. 50		c. 20000	
. 50	b. 90	c. 20000	
. 50 20. The width of a a. 1	b. 90 a typical DNA molecule i	c. 20000 isnn c. 5	n d. 10
. 50 20. The width of a a. 1 SECTION 21. A) What are the	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) challenges faced in the fi	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog	n d. 10 QUESTIONS
. 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) challenges faced in the first t note on nano material face	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ubrication	n d. 10 QUESTIONS
. 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) challenges faced in the first note on nano material factor in the first materials and its propert notes on quantum dots	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ubrication	n d. 10 QUESTIONS
. 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r 23. A) Explain atom	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) challenges faced in the first note on nano material factorial fac	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies	n d. 10 QUESTIONS
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain about 	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) c challenges faced in the fit t note on nano material fat o materials and its propert notes on quantum dots nic force microscope at scanning probe microsc	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies	n d. 10 QUESTIONS
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a short 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short r B) Explain the r 	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) challenges faced in the first t note on nano material factorial solutions in the first totes on quantum dots inc force microscope it scanning probe	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies ope rs	n d. 10 QUESTIONS
 50 20. The width of a a. 1 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the r 25. A) What is drug 	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) c challenges faced in the fit t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microsc notes on types of biosenso nolecular recognition eler ? Explain its discovery?	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies ope rs	n d. 10 QUESTIONS
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a short 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short r B) Explain the r 	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) c challenges faced in the fit t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microsc notes on types of biosenso nolecular recognition eler ? Explain its discovery?	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies ope rs	n d. 10 QUESTIONS
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a short 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the r 25. A) What is drug B) Short notes on 	b. 90 a typical DNA molecule i b. 2 -B (5 X 5 = 25 MARKS) c challenges faced in the fit t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microsc notes on types of biosenso nolecular recognition eler ? Explain its discovery?	c. 20000 isnm c. 5) ANSWER ALL THE (ield of nano biotechnolog ubrication ies ope rs nents (MRE)	n d. 10 QUESTIONS gy?
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a short 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain about 24. A) Write short r B) Explain the r 25. A) What is drug B) Short notes of 	b. 90 a typical DNA molecule i b. 2 - B (5 X 5 = 25 MARKS challenges faced in the fi t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microscope at scanning probe microscope t scanning probe microsc	c. 20000 isnm c. 5) ANSWER ALL THE (ield of nano biotechnolog ubrication ies ope rs nents (MRE)	n d. 10 QUESTIONS gy?
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the r 25. A) What is drug B) Short notes of SECTION 26. Write the essay 	b. 90 a typical DNA molecule i b. 2 - B (5 X 5 = 25 MARKS challenges faced in the fi t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microscope at scanning probe microscope t scanning its discovery? n nano medicine - C (3 X 10 = 30 MARKS	c. 20000 isnm c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies ope rs ments (MRE) 5) ANSWER ALL THE	n d. 10 QUESTIONS gy?
 50 20. The width of a a. 1 SECTION 21. A) What are the B) Write a shor 22. A) Explain nano B) Write short r 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the r 25. A) What is drug B) Short notes of SECTION 26. Write the essay 27. Explain the struct 	b. 90 a typical DNA molecule i b. 2 - B (5 X 5 = 25 MARKS challenges faced in the fit t note on nano material fa o materials and its propert notes on quantum dots nic force microscope at scanning probe microscope at scanning probe microscope t scanning scanning pro	c. 20000 isnn c. 5) ANSWER ALL THE (ield of nano biotechnolog ibrication ies ope rs ments (MRE) 5) ANSWER ALL THE ibes nanowires	n d. 10 QUESTIONS gy?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>SBEC – IV</u> BIOFARMING

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS12	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
C01	Understand the principles of conventional cropping systems and natural Farming	K1 & K2
CO2	Manipulate integrated pest management fo the development of pesticide free plant products	K2 & K3
CO3	Develop the concepts of organic farming	K4 & K5
CO4	Understand the concepts of organic agricultural policy and GMOs	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	L	L
CO2	S	S	S	М	М
CO3	S	S	S	М	М
CO4	S	S	S	М	S

UNIT	CONTENT			
I	Agro-ecological zones and geographical distribution of crop plants in Tamil Nadu. Cropping systems - different types and their importance in food production- Package and practices followed for major crops and cropping systems in Tamil Nadu.			
II	Green revolution in India - After effects - Definitions of Natural Farming, Traditional farming - Their concepts and scope - Natural Farming - Institutions- their activities and role.	8		
III	Pest - Definition - categories of pests-pest control - natural, artificial-pest management IPM. Store grain pest management. Pesticides consumption and hazards. Role of biopesticides and biofertilizers in IPM.	8		
IV	Organic farming - concept and relevance in the agriculture - problems and	8		

	remedies - Encouragement and dissemination for effective practicing of organic farming. Production and marketing of Organic products.	
V	Organic agriculture policy, Genetically Modified Organisms as organic regulation	8

SUGGESTED READINGS:

- 1. Basu, D.N. and Guha, G.S. (1996). Agroclimatic regional planning in India, ARPU, Ahmedabad
- 2. Krishna, K. R., (2010). Agroecosystems of south India, Brownwalker press, Florida
- 3. John H. Perkins, *Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War*, Oxford University Press, 1997.
- 4. Lester R. Brown, *Seeds of Change: The Green Revolution and Development in the 1970's*, 1970, Praeger Publishers, New York.
- Kogan, M 1998. Integrated Pest Management: Historical Perspectives and Contemporary Developments, Annual Review of Entomology Vol. 43: 243-270 (Volume publication date January 1998)
- 6. Dharam P. Abrol (Editor), Uma Shankar 2013. Integrated Pest Management: Principles and Practice Amazon text book store
- 7. NPCS Board of Consultants & Engineers, (2008). The complete book on organic farming and production of organic compost, Asia Pacific Business Press Inc.
- 8. Shalini Suri, APH, (2012). Organic farming Vedams books from India.

MODEL QUESTION PAPER (BIOFARMING)

NAME OF THE COURSE: BIOFARMING	COURSE CODE: 18U6BTS12	DURATION: 3 Hrs
MAX MARKS: 75		

	$ON - A (1 \times 20 = 20 \text{ M})$,			•	110
1. Agro ecological zoning can be usea. Calculating maximumyieldb. Naturaanalyse		ource		c. Land resource ap		d. Land use planning
2. Some of the nutri	ents contained in the c	lead tissu	es are n	nade availabl	e to crops du	uring
decomposition,	reducing the need of					
a. Forage leaves	b. Fertilizer	c. Cł	nemical	fertilizer	d. Soil orgar	nic matter
	cal scheme for recordi India in	ng plant o	distribut	ions (WGSR	PD) is inclu	ded within the
a. Fauna of India	b. Flora of India	c. Fa	una of T	amilnadu	d. Flora c	of Tamilnadu
4. In Tamilnadu, Co	bimbatore receives an a	average r	ainfall f	rom North ea	ast Monsoon	of
a. 444.3mm	b. 443.4 mm	с.	434.4 n	nm	d. 344.4	mm
5. Natural farming i	s an ecological farmin	g establis	shed by		I	
a. Yamamoto Komb	ai b. Masanobu Fu	ikuoka	c. Shiz	en noho	d. Yoshikaz	u Kawaguchi
6. Cop rotation and Out	d companion planting				1 fa	rming is carried
a. Traditional	b. Organic		c. N	lixed crop	d. 1	Natural
7. Green revolution	in India refers to a per					
a. Indian agriculture	e b. Indian agricu	ilture c.	Indian a	agriculture	d. Indian	agriculture wa
was converted into			was	-		ted into industria
revenue generating	g waste manager	nent	into	renewable	system	
system	system		resour	ce system		
8. HYV seeds techn	ically can be applied of	only in a	land wit	h assured		
a. Fertilizer supply	b. Soil supply	/	c. V	Vater supply	d. S	eed supply
9. Pery Adkisson a	and Ray F. Smith recei	ved the -		World Food	Prize for en	couraging IPM
a. 1995	b. 1996	c. 199	7		d. 1998	
10. The most impor	tant insect damaging p	ulses in f	field and	l storage are	referred as -	
a. Bruchids b	o. Weevils	c. I	Beetles		d. None of	the above
	e important tools in in and maintaining envir					
a. 2014	b. 2015		c. 2	016	d. 2	017
	llowing pesticide is res	sponsible	for		I	
a. Carcinogen b.	Susceptibility to fung infection	al	c. Egg	shell thinning		ine in juvenile ulation
					1 1	

a	.Maintains environment	b.Helps in		Ensures optimum	d.E	nhances crop	
	by reducing pollution	on keeping 1		utilization of natural		roduction by tillage	
	level	agriculture at a	1	resources for short term		utilization and forage	
		sustainable level		benefit		cropping system	
	14. Which of the follo	wing state first received	d the	organic certification in I			
	a. Madhya Pradesh	b. Rajasthan		c. Maharashtra		d. Uttar Pradesh	
	15. NPOF stands for -						
a	National project on	b. National Project	on	c. National Project on	d.	National project on	
	organic farmers	organic farming	5		organic forages		
	organic farmersorganic farmingorganic fertilizersorganic forages16. Indian agricultural policy was framed and drafted by						
	a. ICAR	b. IARI		c. CSIR		d. ICAS	
	17. The genetically engineered seeds were introduced in						
	a. 1994 b. 1995 c. 1996 d. 1997				d. 1997		
	18. "Round-up ready crops" is a common name of						
a	a. Pesticide crops b. Herbicide crops c. S		c. S	Saline resistant crops		d. Drought resistant crops	
	19. The use of toxic and pervasive pesticides and petroleum based fertilizers is not allowed in the production of						
a	. Organic farm products	b. Biopesticides		c. Bioinsecticides	d. I	Bt - Cotton	
	20. Organic food prod	uction act (OFPA) was	ame	nded in			
	a. 1990	b. 1991		c. 1992		d. 1993	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS					
21. A) Write shot notes on the different types of cropping systems (OR)					
B) List out the packages and practice methods followed for m	B) List out the packages and practice methods followed for major crops				
22. A) Briefly write about green revolution	(OR)				
B) Explain the benefits of natural farming					
23. A) Explain about store gain pest management	(OR)				
B) Explain the role of biopesticides in IPM					
24. A) Explain in brief about Organic farming	(OR)				
B) Explain the marketing of organic products					
25. A) List out the organic agriculture policies (OR)					
B) Explain the use of organic policies in the development of forage products					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write an essay on different types and their importance of cropping system

27. Give a detailed account on natural farming

28. Write an essay in Integrated Pest Management (IPM)

29. Give a detailed account on organic farming, their production and marketing

30. Write elaborately on the role genetically modified organisms in framing the organic farming policies

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>NMEC – I</u>

BIOSAFTEY, BIOETHICS & IPR

Paper	: NMEC I	Total Hours :	40
Hours/Week	: 2	Exam Hours :	03
Credit	: 2	Internal :	25
Paper Code	: 17U5BTN01	External :	75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
п	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy.	8
	Ethical implications of GM crops, biopiracy and biowarfare.	

SUGGESTED READINGS:

1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH

Publishing Co. New Delhi.

2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.

3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.

4. Sasson A, Biotechnologies and Development, UNESCO Publications.

5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY ,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	17U5BTN01		
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. Bio-related research activities may not involve					
a. Micro organisms b. Animal cells c. Plant cells d. All			d. All		
2. A pathogen that is unlikely to cause any disease in humans or animals					
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV		
3. Korean hemorrho	3. Korean hemorrhagic fever is example for				
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I		
4. Physical contai	inment is achieved by				
a. One type	b. Two types	c. Three types	d. Four types		
5. Which one of the	following is not relevant	to sterilization techniqu	ie?		
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave		
6. Cartagena Protoc effect from	ol on Biosafety to the Co	nvention on Biological l	Diversity came with		
a. 11 September	b. 12 September	c. 11 September	d. 12 September		
2003	2003	2004	2004		
7. Each Institutional	Biosafety Committee ha	as a nominee for	-		
a. DST	b. DBT	c. UGC	d. ICAR		
	M meeting held in 2018?				
a. 7	b. 8	c. 9	d. 6		
	not include the following				
a. DBT b.	ICMR	c. UGC	d. CSIR		
10. GEAC establish	ed under				
a. MoEF &	b. UGC	c. DBT	d. DST		
	therwise called as				
a. Patent	b. Model	c. Business name	d. Trademark		
12is any information of commercial value concerning production					
a. Trade	b. Trade Secret		d. Industrial Design		
13. IPR initially star	ted in North Italy during	the			
a. Renaissanc	b. Renaissance	c. Renaissance	d. Renaissance		
e era. In	era. In 1472	era. In 1473	era. In 1474		
14. Protection of IPR not allow the following					

a. Innovator	b. Brand owner	c. Teacher	d.	Copyright holder	
15. Intellectual property not refers to creations of the mind					
a. Hard	b. Inventions c. Literary and artistic works d. Names				
16. Which one is co	omes under type of inte	llectual property (IF	?)?		
a. Copyright	b. Patent	c. Tradema	ırk	d. All the above	
17. Mathematical a	17. Mathematical algorithms are				
a. Patenta	b. Non patentable	c. Both	d. Nor	ne of the above	
18. Software is a		1			
a. Patenta	b. Non patentable	c. Both	d. None	e of the above	
19. Patentable biote	echnological inventions	s is			
a. Prote b. I	DNA sequences c.	Both of the (a) and ((b) d. No	one of the above	
20. Early founders of bioethics put forth four principles which form the framework for moral					
reasoning					
a. 4	b. 3	c. 2		d. 1	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Explain different levels of biosafety.	(OR)	
B) explain different types of sterilization methods.		
22. A) What is institutional committe and their roles?	(OR)	
B) Explain RCGM and GEAC?		
23. A) explain object of Intellectual property law?	(OR)	
B) Explain the importance of IPR?		
24. A) Write a note on benefits of patent.	(OR)	
B) explain patentable and non-patentable biotechnological inventions?		
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)	
B) Explain perspectives and methodology of bioethics?		

26. Explain different types of bio-safety measures in laboratory?

27. Explain Cartagena protocol on biosafety.

28. What is IPR and explain their different types?

29. Patent - Definition, History and Law

30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>NMEC – I</u> <u>BIOINFORMATICS</u>

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN02	External	: 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence Alignment	K2, K3 & K4
CO4	To understand the concepts of gene prediction methods through <i>insilico</i> approaches	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS	
Ι	Bioinformatics – Biological Databases- Nucleic acid sequence databases – GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	8	
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays- Microarray data analysis, Proteomic data Analysis.		
III	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence Alignment- Local alignment and Global alignments- Dynamic programming algorithm for sequence alignment, Scoring matrices, gap penalties.	8	
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8	

	Analysis- tree construction methods- Maximum likelihood and maximum		l
	parsimony- distance methods- Database similarity search- Basic Local		
	Alignment search tool (BLAST).		
	Gene prediction methods – ORF finder, Restriction site analysis. Protein		l
V	secondary structure prediction -Comparative Modeling -Drug Designing-	8	
	- Molecular Docking		

SUGGESTED READINGS:

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2. Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS	COURSE CODE: 17U5BTN02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	I - A (1 X 20 = 20 MAR)	KS) ANSWER	ALL THE	QUESTIONS
1. A single piece of	information in a databas	e is called		
a. File	b. Field	c. Record		d. Data set
2. Which of the follo	owing is a nucleotide see	quence database	?	
a. EMBL	b. SWISPOT	c. PROSIT	Έ	d. TREMBL
3. BLAST Program	me is used for			
a. DNA Sequence	b. Protein sequence		A coding	d. Sequence analysis
4. The BLAST pro	gram was developed on			
a. 1992	b. 1995	c. 1990		1991
5. Phylogenetic anal	lysis is a		I	
a. Dendrogram	b. Genbank	c. Data retr Tool	rieval	d. Data Searching tool
6. Which of the follo	owing is a part of the sta	tistical test of se	equences?	
a. An optimal alignment between two chosen sequences is obtained at the end	b. Unrelated sequences of the same length are then generated through a randomization process	c. Unrelated seq of the differer are then gener through a randomizatior process	it length ated	Related sequences of the same length are then generated through a randomization process
7. Clustal W is a				
a. Multiple sequence alignment tool	b. Protein secondar structure predic		ta retrieval ol	c. ORF finder
	align many sequences s			
a. Multiple sequence alignment	b. Pairwise alignment	c. Globa align	l Iment	d. Local alignment
9. Which one is spec	cially made for protein d	ata base?		
a. DDBJ	b. EMBL	c. PIR		d. Genbank
10. Genbank mainta	ined by	I		1
a. DDBJ	b. EMBL	c. Sw	issport	d. NCBI
11. Submission of se	equences to genbank thr	ough		
	1	79		

	a. Bankit	b. Sequin	b. A & b	С.	None of the above
		volves pairwise alignme		he word	ls in both directions
	a. Dock score	b. Alignment scor		<u> </u>	d. None of the above
		lowing is not a variant o			
	a. BLAST N	b. BLAST P	c. BLAST	v	d. TBLAST X
		the study of the evolution esent of these		organis	ms using treelike
	a. Distance matrix	b. Maximum li	kelihood c. Peo	ligree	d. Maximum parsimony
		omains are located in tw	-	preserv	e the same
	•	eir close have to	±	<u> </u>	
	a. Solubility and Polarity	b. Proximity and interaction	c. Bond length and Bond energy		d. "N" and "C" terminals
	16. Which of the foll	lowing is not true regard	ling the STRING?	1	
	a. Search Tool for the Retrieval of Interacting Genes/Proteins	b. Functional association include only the direct protein-protein interactions	t evidence of gene lin gene fusion and phylogenetic profile	nkage, es	d. It is a web server that predicts gene and protein functional associations
	similarity betwee sequences must h a. Unlikely	nces share significant sin en the two sequences ha nave derived from a con b. Possible	s been acquired randon nmon evolutionary orig c. Likely	nly, mea gin d	that the extensive aning that the two . Relevant
		lowing is incorrect regard			1 4
a.	Two sequences can homologous relationship even if have do not have common origin	b. It is an important c. concept in sequence analysis	When two sequences are descended from a common evolutionary origin, they are said to have a homologous relationship	des eve	hen two sequences are scended from a common olutionary origin, they are id to share homology
	<u>v</u>	en statements is incorre	ct about Microarray (or		1, 1
a.	It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides	b. The oligonucleotide sequences cannot be synthesized directly on the slide	c. The oligonucleotides are collectively hybridized to a labeled cDNA library prepared by reverse-transcribing mRNA from cells	to re	he amount of label binding b each oligonucleotide spot eflects the amount of mRNA h the cell
		vidence for a relationshi uence similarity. These		e also g	given that are not
a.	Genes are closely linked on the same chromosomes	b. Genes are transcribed from the same DNA strand	c. Gene fusions are observed between otherwise separate	the co	nylogenetic profiles show e genes are not that ommonly present in ganisms

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE	QUESTIONS
21. A) Write an short Biological DatabaseB) Explain the NCBI data base	(OR)
22. A) Give an account on BLOCKS, PRINTSB) Explain the application of Pfam	(OR)
23. A) Write short note on sequence alignmentB) Briefly define Scoring matrices	(OR)
24. A) Write short notes on Phylogenetic AnalysisB) Write about database similarity search	(OR)
25. A) Explain ORF finderB) Explain the steps involved in Restriction site analysis	(OR)

- 26. Give a detailed account on Biological databases
- 27. Explain elaborately about the types of Biological data bases
- 28. Give a detailed account on BLAST
- 29. List out the difference between Local alignment and Global alignments
- 30. Give a detailed account on Molecular Docking

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>NMEC – II</u>

CONCEPTS OF BIOTECHNOLOGY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17 U3BTN03	External	: 75

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning Strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying Enzymes	8
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8

techniques

SUGGESTED READINGS:

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

MODEL QUESTION PAPER (CONCEPTS OF BIOTECHNOLOGY)

NAME OF THE COURSE: CONCEPTS OF BIOTECHNOLOGY	COURSE CODE: 17 U3BTN03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	V - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	IE QUESTIC	DNS
1. The following is	not a branch of Biotechno	ology		
a. Genetic engineering	b. Tissue culture	c. Physiology	d. Micro	biology
2. Cell theory was	proposed by			
a. Schleiden and Schwann	b. Robert Hooke	c. Leeuwen Hooke	d. Beetle	e and Tatum
3. DNA recombina	ant technology is also cal	led as		
a. Gene manipulation	b. Totipotency	c. Splicing	d. G	ene cloning
4. The PCR techn	ique was developed by_			
a. Karry mullis	b. Kohler	c. Milstein	d.Altma	n
5. Gene cloning m	eans			
a. Production of mutated genes	b. Production of wild genes	c. Production of dominant genes	рори	ction of large Ilation of desire A fragment
6. A small circular I	ONA present in bacterial			
a. Enzyme	b. Ribosomes	c. Plasmids	d. Vecto	or
-	A samples are taken from			
a. Same individual	b. Different individual	c. Different species	d. None	of the above
8. The function of R	Restriction enzyme is to			
a. Cut the DNA	b. Join the DNA	c. Amplify the DNA	d. None	of the above
9. Who discovered	the restriction enzymes?			
a. Natham & Arber and smith	b. Watson & Crick	c. Boyer & Col	nen d.	Paul & Berg
10. Which organism	has the highest number	of vectors?		
a. Yeast	b. Mammalian cells	c. E.coli	d.	Fungi
11. Boliver and Roc	lriguez constructed which	n vectors		
11. Boliver and Roc a. P ^{uc8}	lriguez constructed which b. Y ^{1p7}	c. P ^{BR322}	d. M ¹³	
a. P ^{uc8}	0	c. P ^{BR322}		
a. P ^{uc8}	b. Y ^{1p7}	c. P ^{BR322}		ng

	a. Cloning a small fragments	b. Cloning a fragment	0	c. Clonin prokar		d. Cloning eukaryotes
	14. Single stranded vectors are useful			, , , , , , , , , , , , , , , , , , ,		
	a. For sequencing b. For oligo nucleotide c. For		c. For prep	probe paration	d. All the above	
	15. Chemicals used	for gene transfer met	thod			
	a. Polyethylene	b. Dextran	c. (Calcium chlori	de	d. All the above
	16. Polymerase used	for PCR is extracted	d from?			
	a. E.coli b.	Bacillus sp c	. Thermos	s aquaticus	d. Sacchar	omyces cerevisiae
	17. At which temperature does the DNA is denatured during PCR?					
	a. 60°C	b. 54°C	c.7	74°C	d.9	94°C
	18. Molecular mark	ers include				
	RAPD	b.AFLP		c.AFLP	d. All o	f these
	19. Western blotting	is the techniques for	r the detect	ion of		
a.	Specific RNA in a sample	b. Specific DNA in a sample	-	cific protein sample	d. Spe sample	cific glycolipids in a e
	20. What is probe?					
a.	Chemically synthesized DNA	b. Purified DNA	c. Fragn duple	nented DNA x	synt	er purified or hesized single single ided DNA

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

26. Write the essay strategies of gene cloning

27. Explain the types and functions restriction enzymes

28. Write the essay P^{BR322} and uses of this vector

29. Write a essay on gene transfer methods

30. Explain PCR principle methodology and applications

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

<u>NMEC – II</u>

BIOTECHNOLOGY FOR SOCIETY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U3BTN04	External	: 75

PREAMBLE

To make students on understanding the applied part of biotechnology to non-major and non-life science back ground students

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of silk worm, earth worm cultivation and its applications	K3, K5 & K6
CO2	To understand the concepts of bio fertilizers, bio plastics and Bioweapons	K3, K5 & K6
CO3	To understand the basic concepts of biodegradation of xenobiotic Compounds	K3, K5 & K6
CO4	To understand the concepts of generating genetically modified/transgenic organisms	K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Seri culture, Aquaculture, Apiculture, Vermi culture and Mushroom Technology	8
II	Biofertilizers, Biopesticides, Bio repellents, Pest control and management, Biomass (SCP), Bioplastics, Bioweapons.	8
III	Bio dyes, Bio fuels – Biodiesel & Biogas, Bio indicators, Biodegradation – Role of genetically modifies organisms	8
IV	Production of penicillin, Recombinant Vaccines (HBV), Recombinant Insulin, Plantibodies, Vaccines in animal cells, Gene therapy.	8
V	Transgenic animals and their applications. Mice, Sheep and Fish. Transgenic plants and their applications – BT cotton, Flavr-Savr tomato and golden rice	8

SUGGESTED READINGS:

- 1. Animal Biotechnology, Ranga MM (2000). Agrobios
- 2. Introduction to Plant Biotechnology. Chawla (2003).2nd edition. Oxford and IBH publications.
- 3. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 4. Industrial Microbiology Patel AH (2005). Mac Millan Publishers.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- Environmental Biotechnology, Chatterji AK, 3rd edition, PHI Learning Pvt Ltd, Newdelhi.

MODEL QUESTION PAPER (BIOTECHNOLOGY FOR SOCIETY)

NAME OF THE COURSE: BIOTECHNOLOGY FOR SOCIETY	COURSE CODE: 17U3BTN04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	V - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	E QUESTIONS
1. Sericulture is a re	earing of		
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish
2. Aquaculture is a	rearing of		
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish
3. Which of the foll	owing is used as food to	feed Bombyx mori?	
a. Hibiscus leaves	b. Mulberry leaves		d. Nome of the above
4. The seeds used for	or mushroom cultivation	is called as	
a. Callus	b. Bed	c. Spawn	d. Altman
5. Which of the foll	owing can be used as bio	oweapons?	
a. <i>Bacillus</i>	b. Escherichia	c. Streptococcus	d. Clostridium
	owing is used as SCP to		
a. Azolla	b. Spirullina	c. Mushroom	d. Yeast
	wing is an example for b	_	
a. PBH	b. PVC	c. PCC	d. PCV
8. Bacillus thuringi	ensis is used as		
a. Biofertilizer	b. Biopesticide	c. Bioplastic	d. Biorepellent
9. The chemical fun	ctional group that gives	color to the substance is	called as
a. Iodophore	b. Basophore	c. Chromophore	d. None of the above
10. Which organism	n produces biodiesel?		
a. Chrococcus	b. Botrycoccus	c. Scenedesmu	d. Both b & c
11. Biogas is produ-	ced by certain bacteria by	y the process of	·
a. Acetogenesis	b. Chlorogensis	c. Methanogenesis	d. Nitrification
12. Petroleum hydro	ocarbons are greatly degr		
a. Serratia	b. Bacillus	c. Proteus	d. Pseudomonas
13. Recombinant va	ccines are produced by -		
a. Cutting	b. Grafting	c. Harvesting	d. Cloning
14. Hepatitis is com	monly caused by		
a. Bacteria	b. Fungi	c. Virus	d. Protozoa
15. Penicillin is pro	duced by		
a. Bacteria	b. Fungi	c. Virus	d. Protozoa
16. Insulin is pancre	-	of peptide chair	
a. 1 b.		d. 4	
17. Which of the for technology?	llowing product is produ	ced from animals system	s through transgenic

a. Fibrin	b. Antithrombin	c. Insulin	d. Interferon	
18. Recombinant proteins (RPs) are extensively produced by using one of the following cell line				
a. MCF	b. CHO	c. HeLa	d. MG-63	
19. BT cotton is generated for the purpose of				
a. Controlling cotton production	b. Controlling Honey b population	ee c. Controlling button propagation	erfly d. Controlling cotton pests	
20. Transgenic tomato was produced by recombinant DNA technology for the purpose of				
a. Increasing CHO content	b. Increasing vitamin content	c. Increasing lipid content	d. Increasing protein content	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write shot notes on the rearing of silkworm	(OR)
B) Write a short note on the applications of vermin compost	
22. A) Explain the uses of SCP.	(OR)
B) List out the hazardous consequences of bioweapons	
23. A) List out the composition of biogas	(OR)
B) Write short notes on pest control management	
24. A) Write short notes on plantibodies	(OR)
B) Write short notes on gene therapy	
25. A) How will you produce golden rice?	(OR)
B) Briefly write about uses of Flavr-Savr Tomato	

26. Give a detailed account on mushroom cultivation technology

27. Give a detailed account on biopesticide production

28. Give a detailed account on bio diesel production

29. Give a detailed account on penicillin production

30. Give a detailed account on the production of transgenic mice

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

190