VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution
Affiliated to Periyar University
(Approved by AICTE and Re-accredited with 'A' Grade by NAAC)
Recognized Under 2(f) and 12 (b) of UGC Act, 1956.
Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

DEPARTMENT OF BIOTECHNOLOGY

Bachelor of Science

B. Sc SYLLABUS

[For the Candidates admitted on 2019-2020 onwards under Autonomous, CBCS & OBE pattern] (I to VI SEMESTERS)

SPONSORED BY ANGAMMAL EDUCATIONAL TUST

ELAYAMPALAYAM – 637 205, TIRUCHENGODE Tk., Namakkal Dt., Tamil Nadu VEERACHIPALAYAM – 637 303, SANKARI Tk., Salem Dt., Tamil Nadu

Tel.: 04288 234670 (4 lines), Fax: 04288 234894

Website: www.vivekanandha.ac.in e.mail: info@vicas.org

B.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging
	roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small-medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
	To train and develop students with the much needed biotechnological education, so that they
PO: 1	develop added competitive skill metrics (CSM) for industrial employment higher education
	and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their
FO: 2	applicability in the development of value added products for the welfare of the society
	To develop a broad range of biotechnological skills and knowledge, development of general
PO: 3	and specific competences to meet-out current expectations and requirements of medical,
	pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio
FO: 4	statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains
FO: 5	including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic
150.1	sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
	To gain vertical mobility in career that will make students more competent to face
PSO: 3	national/international qualifying exams with practical knowledge acquaintance and in modern
	biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social,
150: 4	ethical, legal and cultural aspects of the society
	To understand the over-all theme/concepts of each specialization in biotechnology and
PSO: 5	analysing the frequency of its applicability in industry, research and for the goodness of
	society

SYLLABUS FRAMEWORK

Language I English I	Hour/Week nester I 6 6 5 4	3 3 5	Sen Language II English II	Hour/Week nester II 6	3
Language I English I	6 6 5	3	Language II	6	3
English I	6 5	3			3
=	5		English II		3
C T		5	U	6	3
Core I	4	1 -	Core II	4	5
Allied I		3	Allied II	4	4
Core practical I	4	3	Core practical II	3	3
Allied practical I	3	3	Allied practical II	3	2
VAC - YOGA	2	2	VAC – EVS	4	2
Total	30	22	Total	30	22
Semo	ester III		Sem	nester IV	
Language III	6	3	Language IV	6	3
English III	6	3	English IV	6	3
Core III	5	5	Core IV	5	5
Allied III	4	3	Allied IV	4	3
Core practical IV	4	3	Core practical IV	4	3
Allied practical	3	3	Allied practical IV	3	3
IV					
SBEC I	2	2	SBEC II	2	2
Total	30	22	Total	30	22
Sem	nester V	1	Sem	nester VI	
Core V	5	5	Core VII	5	5
Core VI	5	5	Core VIII	5	5
Core practical V	5	3	Core practical V	5	5
Core practical VI	5	3	Elective II	5	4
Elective I	4	3	NMEC II	2	2
NMEC I	2	2	SBEC IV	2	2
SBEC III	2	2	Library/Sports	1	-
Library/Sports	1	-	Mini project	5	5
Extension activity	1	1	Extension activity	-	1
Total	30	24	Total	30	29
Grand total					140

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2019-2020 onwards) YEAR I

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
SEMESTER I								
18U1LT01	I	Language I	Tamil I	6	3	25	75	100
18U1LM01			Malayalam I					
18U1LH01			Hindi I					
18U1LF01			French I					
18U1LE01	II	Language II	Foundation English	6	3	25	75	100
			I					
19U1BTC01	III	Core I	Cell Biology &	5	5	25	75	100
			Genetics					
19U1BTCP01	III	Core I	Lab in Cell	4	3	40	60	100
		Practical	Biology &					
			Genetics					
18U1BCA01	III	Allied I	Biochemistry I	4	3	25	75	100
18U1BCAP01	III	Allied	Lab in	3	3	40	60	100
		Practical I	Biochemistry I					
17U1VE01	IV	Value	Yoga	2	2	25	75	100
		Education I						
		Total		30	22	205	495	700
			SEMESTER II					
18U2LT02	I	Language II	Tamil II	6	3	25	75	100
18U2LM02			Malayalam II					
18U2LH02			Hindi II					
18U2LF02			French II					
18U1LE02	II	Language II	Foundation English	6	3	25	75	100
			II					
19U2BTC02	III	Core II	Microbiology	4	4	25	75	100
19U2BTCP02	III	Core	Lab in	3	3	40	60	100
		Practical II	Microbiology					
18U2BCA02	III	Allied II	Biochemistry II	4	4	25	75	100
18U2BCAP02	III	Allied	Lab in	3	3	40	60	100
		Practical II	Biochemistry II					
17U2VE02	IV	Value	Environmental	4	2	25	75	100
		Education II	Studies					
		Total		30	22	205	495	700
	Grand	Total of First	Year	60	48	410	990	1400

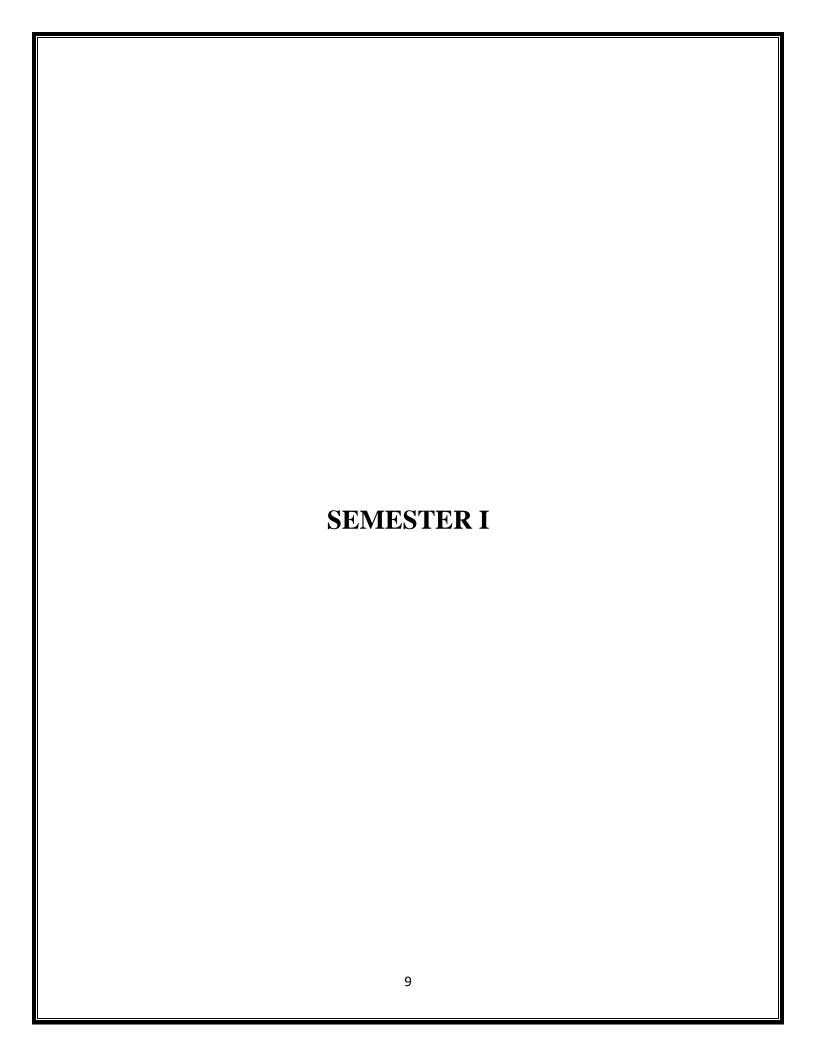
YEAR II

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total	
	SEMESTER III								
18U3LT03	I	Language III	Tamil III	6	3	25	75	100	
18U3LM03			Malayalam III						
18U3LH03			Hindi III						
18U3LF03			French III						
18U3LE03	II	Language III	Foundation	6	3	25	75	100	
			English III						
19U3BTC03	III	Core III	Molecular	5	5	25	75	100	
			Biology						
19U3BTCP03	III	Core	Lab in Molecular	4	3	40	60	100	
		Practical III	Biology						
19U3BOA01	III	Allied III	Plant Science I	4	3	25	75	100	
19U3BOAP01	III	Allied	Lab in Plant	3	3	40	60	100	
		Practical III	Science I						
	IV	SBEC I	Optional	2	2	25	75	100	
		Total		30	22	205	495	700	
			SEMESTER I	\mathbf{V}					
18U4LT04	I	Language IV	Tamil IV	6	3	25	75	100	
18U4LM04			Malayalam IV						
18U4LH04			Hindi IV						
18U4LF04			French IV						
18U4LE04	II	Language IV	Foundation	6	3	25	75	100	
			English IV						
19U4BTC04	III	Core IV	Genetic	5	5	25	75	100	
			Engineering						
19U4BTCP04	III	Core	Lab in Genetic	4	3	40	60	100	
		Practical IV	Engineering						
19U4BOA02	III	Allied IV	Plant Science II	4	3	25	75	100	
19U4BOAP02	III	Allied	Lab in Plant	3	3	40	60	100	
		practical II	Science II						
	IV	SBEC II	Optional	2	2	25	75	100	
		Total		30	22	205	495	700	
G	rand T	otal of Second	Year	60	44	410	990	1400	

YEAR III

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V	7				
19U5BTC05	III	Core V	Immunology	5	5	25	75	100
19U5BTC06	III	Core VI	Plant	5	5	25	75	100
			Biotechnology					
19U5BTCP05	III	Core practical	Lab in	5	3	40	60	100
		V	Immunology					
19U5BTCP06	III	Core practical	Lab in Plant	5	3	40	60	100
		VI	Biotechnology		_			
	III	Elective I	Optional	4	3	25	75	100
	IV	SBEC III	Optional	2	2	25	75	100
		NMEC I	Optional	2	2	25	75	100
19U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health	1	-	-	-	-
			Management	30				
Total					23	245	555	800
	ı	T	SEMESTER V		Γ	T	T	1
19U6BTC07	III	Core VII	Bioprocess	5	5	25	75	100
			technology					
19U6BTC08	III	Core VIII	Animal	5	5	25	75	100
			Biotechnology					
19U6BTCP07	III	Core practical	Lab in	5	5	40	60	100
		VII	Bioprocess					
			technology and					
			Animal					
			biotechnoogy			• •		100
	III	Elective II	Optional	5	4	25	75	100
	IV	SBEC IV	Optional	2	2	25	75	100
101150777 (7.21	IV	NMEC II	Optional	2	2	25	75	100
19U6BTMP01	IV	Research	Mini project	5	5	40	60	100
		Activity						
		Extension activ		-	1	-	-	-
		Library/Sports	Reference/Health Management	1	-	-	-	-
		Total	141anagement	30	29	205	495	700
	Tota	l of Third Year			140	1270	3030	4300

GRADE SUBJECT SUBJECT CODE Blective I Pharmaceutical Biotechnology 18U5BTE01 Elective II Enzymology and Enzyme Technology 18U5BTE02 Tissue Engineering 18U5BTE03 Genomics and Proteomics 18U6BTE04 Biophysics and Bioinstrumentation 18U6BTE05 Environmental Biotechnology 18U6BTE06 SBEC I Lab in food processing and technology 18U3BTS01 Developmental Biology 18U3BTS02 Food biotechnology 18U3BTS03 Lab in poultry science 17U4BTS04 Marine Biotechnology 18U4BTS05 Forensic science and technology 18U4BTS06 SBEC III Lab in Bioinformatics 17U5BTS07 SBEC III Biosafety, Bioethics and IPR 18U5BTS08 Cancer Biology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02		LIST OF ELECTIVE PAPERS	
Elective I	GRADE	SUBJECT	SUBJECT CODE
Tissue Engineering	Elective I	Pharmaceutical Biotechnology	18U5BTE01
Genomics and Proteomics		Enzymology and Enzyme Technology	18U5BTE02
Elective II Biophysics and Bioinstrumentation 18U6BTE05 Environmental Biotechnology 18U6BTE06 LIST OF SKILLED BASED ELECTIVE PAPERS Lab in food processing and technology 18U3BTS01 Developmental Biology 18U3BTS02 Food biotechnology 18U3BTS03 Lab in poultry science 17U4BTS04 Marine Biotechnology 18U4BTS05 Forensic science and technology 18U4BTS05 Forensic science and technology 18U4BTS06 Lab in Bioinformatics 17U5BTS07 SBEC III Biosafety, Bioethics and IPR 18U5BTS08 Cancer Biology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 NMEC I Concepts of Biotechnology 17U3BTN03		Tissue Engineering	18U5BTE03
Environmental Biotechnology		Genomics and Proteomics	18U6BTE04
LIST OF SKILLED BASED ELECTIVE PAPERS	Elective II	Biophysics and Bioinstrumentation	18U6BTE05
SBEC I Lab in food processing and technology Developmental Biology Food biotechnology Lab in poultry science Marine Biotechnology Forensic science and technology Lab in Bioinformatics SBEC III Biosafety, Bioethics and IPR Lab in Entrepreneurship in Biotechnology Raudebrs10 Nano Biotechnology 18U4BTS06 17U5BTS07 Biosafety, Bioethics and IPR Lab in Entrepreneurship in Biotechnology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN01 Concepts of Biotechnology 17U3BTN03		Environmental Biotechnology	18U6BTE06
SBEC I Developmental Biology 18U3BTS02 Food biotechnology 18U3BTS03 Lab in poultry science 17U4BTS04 Marine Biotechnology 18U4BTS05 Forensic science and technology 18U4BTS06 Lab in Bioinformatics 17U5BTS07 SBEC III Biosafety, Bioethics and IPR 18U5BTS08 Cancer Biology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		LIST OF SKILLED BASED ELECTIVE P	APERS
Food biotechnology		Lab in food processing and technology	18U3BTS01
Lab in poultry science	SBEC I	Developmental Biology	18U3BTS02
SBEC II Marine Biotechnology Forensic science and technology 18U4BTS05 Forensic science and technology 18U4BTS06 Lab in Bioinformatics 17U5BTS07 Biosafety, Bioethics and IPR Cancer Biology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Food biotechnology	18U3BTS03
Forensic science and technology 18U4BTS06 Lab in Bioinformatics 17U5BTS07 Biosafety, Bioethics and IPR 18U5BTS08 Cancer Biology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Lab in poultry science	17U4BTS04
Lab in Bioinformatics	SBEC II	Marine Biotechnology	18U4BTS05
SBEC III Biosafety, Bioethics and IPR 18U5BTS08 Cancer Biology 18U5BTS09 Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Forensic science and technology	18U4BTS06
Cancer Biology 18U5BTS09 SBEC IV Lab in Entrepreneurship in Biotechnology 18U6BTS10 Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Lab in Bioinformatics	17U5BTS07
SBEC IV Lab in Entrepreneurship in Biotechnology Nano Biotechnology 18U6BTS10 18U6BTS11 Biofarming 18U6BTS12 LIST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03	SBEC III	Biosafety, Bioethics and IPR	18U5BTS08
SBEC IV Nano Biotechnology 18U6BTS11 Biofarming 18U6BTS12 IST OF NON-MAJOR ELECTIVE PAPERS NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Cancer Biology	18U5BTS09
Biofarming		Lab in Entrepreneurship in Biotechnology	18U6BTS10
LIST OF NON-MAJOR ELECTIVE PAPERSNMEC IBiosafety, Bioethics and IPR17U5BTN01Bioinformatics17U5BTN02NMEC IIConcepts of Biotechnology17U3BTN03	SBEC IV	Nano Biotechnology	18U6BTS11
NMEC I Biosafety, Bioethics and IPR 17U5BTN01 Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		Biofarming	18U6BTS12
Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03		LIST OF NON-MAJOR ELECTIVE PA	PERS
Bioinformatics 17U5BTN02 Concepts of Biotechnology 17U3BTN03	NMEC I	Biosafety, Bioethics and IPR	17U5BTN01
NMH(*II		Bioinformatics	17U5BTN02
Biotechnology for Society 17U3BTN04	NMEC II	Concepts of Biotechnology	17U3BTN03
	INIVIEC II	Biotechnology for Society	17U3BTN04


	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN					
KL	CPD	DESCRIPTION				
K1	Remember	Retrieving, recognizing and recalling knowledge from long-term memory				
K2	Understand	Constructing meaning from oral, written and graphic messages through interpreting				
К3	Apply	Carrying out or using a procedure through executing or implementing				
K4	Analyse	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing and attributing				
K5	Evaluate	Making judgments based on criteria and standards through checking and critiquing				
K6	Create	Putting elements to form a coherent or functional hole, reorganizing elements into a new pattern or structure through generating, planning or producing				
Note: I	KL: Knowledg	e Level; CPD: Cognitive Process Dimension				

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR MODEL AND SEMESTER EXAMINATION

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 20 X 1	K1 & K2	20	Multiple choice questions	
B: 1 out of 2 (5 X 5) Either or choice	K2, K3, K5 & K6	25	Short notes	75
C: 3 out of 5 X 10	K3, K4, K6	30	Essay type descriptive	

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR CIA I & II EXAMINATIONS

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A. 10 W 1	V1 0 V2	10	Multiple	
A: 10 X 1	K1 & K2	10	choice questions	
B: 1 out of 2 (1 X 5)	K2, K3, K5 & K6	5	Short notes	25
C: 1 out of 2 (1 X 10)	K3, K4, K6	10	Essay type descriptive	

CELL BIOLOGY & GENETICS

Paper : CORE I **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 Paper Code : 19U1BTC01 External : 75

PREAMBLE

To make the students to understand the basics concepts living cellular organization and cellular function and to impart knowledge of classical genetics

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire the conceptual knowledge of fundamentals of Cellular architecture	K1
CO2	Understand the functions of cellular organelles of cell, nucleus and	K1 & K2
	familiarize with cellular physiology	
CO3	Have a comprehensive knowledge on cellular energetics and basics of genetics	K2 & K4
CO4	Gain expertise in gene interaction mechanisms and ploidy levels	K3 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	L	M	M	M	L
CO2	M	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	M	S	S

UNIT	CONTENT	HOURS
Ι	History of cell biology and cellular architecture: Cell theory.	15
	Classification of cell types (prokaryotic & eukaryotic). Organization of	
	plant and animal cell. Cell wall and cell membrane. Cytoskeletal structures	
	- (Micro tubules, Micro filaments and intermediary filaments).	
	Cytoskeleton movements (Sliding & Contraction). Nutrient transport	
	(Active, passive & facilitated diffusion).	

II	Subcellular organelles and Chromosomal organization: Structure and	15
	functions of Endoplasmic reticulum, Golgi apparatus, Chloroplast,	
	Ribosomes, Mitochondria, Vacuoles, Lysosomes, Glyoxysomes,	
	Peroxysomes, Nucleus. Chromosome: Morphology, Structure. Specialized	
	chromosomes (Lambrush & Polytene).	
III	Cell cycle, Cell communication and cell death; Cell cycle - Mitosis and	15
	Meiosis, Regulation of cell cycle. Cell signalling – types of cell signalling -	
	G protein mediated (GPCR), Tyrosine kinase (TK) mediated signalling.	
	Cell death - types. Necrosis - causes and mechanism. Apoptosis:	
	morphology, mitochondrial and death receptor pathways. Differences	
	between apoptosis and necrosis.	
IV	Cellular energetics & History of genetics: Membrane potential, Chemi-	15
	osmotic hypothesis, Redox potential of the cell membrane, ATP formation.	
	Mendelian Principles, Segregation, Independent Assortment, Dominance	
	relations, Multiple alleles, Incomplete dominance, Over dominance.	
V	Gene interaction and Chromosome variation: Gene interaction,	15
	Epistasis, Lethality and lethal genes. Sex determination and sex linkage in	
	diploids, Linkage and crossing over. Chromosomal theory of inheritance,	
	maternal effects. Chromosomal variation in number (Ploidy) and changes	
	in chromosomal structure (addition, deletion, duplication, translocation &	
	inversion).	

SUGGESTED READINGS:

- 1. Alberts et al., 1994. Molecular Cell Biology of Cell Bruce, Galand publications NY.
- 2. Jack D. Bruke Cell Biology The William Company
- 3. Lodish et al., (2008). Molecular Cell Biology, 6th ed. Wilson J and Hunt T (2002). Molecular Biology of the Cell: A Problems approach, 4th ed.
- 4. EJ Gardner, MJ. Simmons and DP Snustad, 2006. Principles of Genetics 8th edition, John Wiley & Sons Publications.
- 5. Karp G. 2008. Cell and Molecular Biology, 5th edition. John Wiley and Sons Inc. Hardcover. ISBN: 978-0-470-04217-5.
- 6. PS. Verma and VS Agarwal. 1986. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company, New Delhi.
- 7. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 8. Abouelmagd and Ageeley. Basic Genetics. 2 nd ed. Univ Publ. 2013.
- 9. Twyman. Advanced Molecular Biology. BIOS Sci Publ. 2000.
- 10. Karp. Cell & Molecular Biology 8 thed 2016. Wiley.
- 11. Elrod S. Schaum's Outline of Genetics. 5 th ed. McGraw Hill. 2010.
- 12. Fletcher et al. Instant Notes in Genetics. 4th ed. Garland Science. 2012.
- 13. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.

MODEL QUESTION PAPER (CELL BIOLOGY AND GENETICS)

NAME OF THE COURSE: CELL	COURSE CODE:	DURATION: 3 Hrs
BIOLOGY AND GENETICS	19U1BTC01	
MAX MARKS: 75		

S	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS									
1	1. The cell was first discovered by									
a. S	Schwann	b. Robert Ho	oke		c.	Deba	ry		d.	Tatum
2	2. Cell theory was proposed by									
a	schleiden nd Schwan						Hooke		Beet Tatu	tle and ım
(4)	3. Microfil	laments are comp	osed n	nain	ıly o	f a prot	teins ca	lled		
a. <i>A</i>	Actin	b. Tubulin		c.	M	yosin		d.	chi	tin
4	The sub	units of prokaryo	tic ribo	osoı	me a	re				
a. 6	60s + 40s	b. 70s +	30s		c.	60s +	30s		d.	50s + 80s
5	The plan	nt cell wall mainly	y comp	ose	ed of	f				
a. (Cellulose	b. Starch		c.	Pr	otein		d.	Lip	id
6	5. Smooth	endoplasmic retion	culum	is t	he si	te of _				
a. Pro	otein	b. Carbohydr	ate		c.	Amin	o acid		d.	Lipid
syı	nthesis	synthesis				synth	esis			synthesis
7	7. The cell	theory not applic	able to)						
а	a. Bacteria	b. Algae			c.	Virus	es		d.	Fungi
8	3. Which of	one the power hou	ise of t	he	cell?)				
a. C	Cell wall	b. Mitochor	ndria		c.	Nucle	eus		d.	Ribosome
ç	Apoptos	sis cannot kill the	follow	ing	cel	ls				
	Cell infected with virus	b. Cell with l	DNA	c.	Ca	ncer ce	ells	d. I	mmı	une cell
		enzymes are relea	ased du	ırin	g ne	crosis	from_			
		b. Vacuoles					d.	Go	lgi b	odies
1	11. Chromosomes are duplicated during the cell cycle in									
а	a. B phase	b. G pha	se		c.	S pha	se		d.	P phase
1	12. Spindle fiber is formed during									
a. <i>A</i>	Anaphase	b. Telophas	se	c.	Pr	ophase	:	d.	Pro	metaphase
1	13. Which of the following is the end product of respiration process?									

a.	Release of	b. Release	e of CO ₂	c. Anabol	ism d	. Transfer of CO ₂	
	oxygen						
	14. Who is reg	arded as the fa	ther of g	genetics?			
	a. Bateson	b. Morg	an	c. Mende	l	d. Watson	
	15. Mendel ex	perimental ma	terial wa	S	?		
a.	Pisum sativum	b. Lathyrus odaratus	(c. Oryza sativa	d.	Mirabilis jalappa	
	16. What was organisms		nmonly u	used "energy	curren	cy" of cells for all	
	a. ATP	b. ADP	c. I	norganic phos	phate	d. DNA	
	17. What does	t-RNA bind w	ith	?			
	a. DNA	b. mRN	A	c. Northi	ng	d. rRNA	
	18. Lethal gen	es were first di	iscovered	d by?	'		
a.	William Ernest Castle	b. Lucien Cu	ienot c.	Clarence Co	ook	d. Gluecksohn- Waelsch	
	19. Repetition	of a chromoso	mal segr	ment means _		?	
a.	Deletion b.	Duplication	c.	Inversion	d	. Translocation	
	20. Walter Sut	ton and Theod	ore Bove	eri formally p	ropose	d that chromosomes	
	contain the genes in the year of						
	a. 1903	b. 1901		c. 1920		d. 1930	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE Q	UESTIONS
21. A) Write the classification of cell types?	(OR)
B) Write a short note on Cytoskeleton?	
22. A) Explain structure and functions of nucleus?	(OR)
B) Structure and morphology of chromosomes?	
23. A) Differences between apoptosis and necrosis?	(OR)
B) Explain the types of cell signaling?	
24. A) Write a short note on ATP formation?	(OR)
B) Redox potential of the cell membrane?	
25. A) What is gene and how to interact?	(OR)
B) Chromosomal theory of inheritance?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on cell types and cytoskeletal structures and movements
27. Explain the structure and functions of any five subcellular organelles
28. Write the essay on mitosis and meiosis and G-protein coupled receptor
29. Write an essay on mendlian principles
30. Explain the variation in chromosome structure and function

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN CELL BIOLOGY& GENETICS

Paper : CORE PRACTICAL I **Total Hours** : 60 Hours/Week : 4 **Exam Hours** : 05 Credit : 3 Internal : 40 Paper Code : 19U1BTCP01 External : 60

PREAMBLE

To make the students to understand the basics microscopy, cell division, histology, subcellular organelle isolation and mendelian principles

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring hands on skills on microscopy and visualization of	K1 & K2
	prokaryotic and eukaryotic cells	
CO2	Exposure towards various stages of cell division	K1 & K2
CO3	Gain knowledge on basics concepts organelle isolation and	K4
	estimation	
CO4	Performing and validating mono and dihybrid crosses experiments	K3 & K4 &
	and result interpretation	K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	M	S
CO4	S	S	S	M	M

Exp. No	Title	Hours
1	The Microscope: the bright field microscope, use of oil immersion (100x),	8
	Measurements: ocular and stage micrometers, measuring depth, measuring	
	area and measuring volume.	
2	Enumeration of cells (cell counting by Neubauer chamber).	4
3	Preparation of mitotic cells stages from onion root tip squash	4
4	Preparation of meiosis cell stages from Grass hopper testis cells.	8
5	Isolation of chloroplast from spinach leaves	4
6	Observation of specialized cells (Nerve cell, sperm cell, Muscle cell and	8
	Cardiac cell).	
7	Staining of macro molecules (Carbohydrate, Lipid and Protein)	4
8	Histochemistry: preparation of permanent slides, Periodic acid Schiff	8
	(PAS) reaction	
9	Mono & Dihybrid cross	4
10	Buccal smear preparation (Bar body preparation)	4

MODEL QUESTION PAPER (LAB IN CELL BIOLOGY & GENETICS)

NAME OF THE COURSE: LAB IN CELL	COURSE CODE:	DURATION: 6Hrs
BIOLOGY & GENETICS	19U1BTCP01	
MAX MARKS: 60		

MAJOR EXPERIMENT						
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS			
1. (i) Explore any one of the stages of mitosis from the onion root tip squash (A) sample.						
, , <u> </u>	ılts for observation		(OR)			
(ii) Isolate the n	nitochondria from the gi	ven plant sample (A). D	isplay the results for			
observation			(OR)			
(iii) Perform tot	tal blood cell count (cell	counting by Neubauer of	chamber) from the			
given blood san	nple (A). Display the res	sults for observation				
MINOR EXPERIME	NT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Perform carb	oohydrate staining from	the given leaf sample (B	3). Display the results			
for observation			(OR)			
(ii) Isolate chlor	roplast from the given le	eaf sample (B). Display t	the results for			
observation			(OR)			
(iii) Determine	the sex of the individual	from given buccal epith	nelial cell sample (B)			
V 11 1	method. Display the resu	ılts for observation				
SPOTTERS		(5 2	X 4 = 20 MARKS			
3. Identify the given spotters C, D, E, F & G and comment on them						
RECORD		$(1 \times$	5 = 5 MARKS)			
VIVA-VOCE			5 MARKS			
TOTAL	TOTAL 60 MARKS					

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

BIOCHEMISTRY I

Paper	: ALLIED I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U1BCA01	External	: 75

PREAMBLE

To make the students to understand the basics biological molecules existing the living cell systems. Students also acquire knowledge on their biological functions and their importance in cell growth and development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring knowledge on carbohydrate and its types in biological	K1 & K2
	systems.	
CO2	Understanding the basic concepts on proteins and amino acids and	K1 & K2
	their properties	
CO3	Under the role of biological catalysts (Enzymes) and lipids, their role	K2, K3 & K4
	in basic biochemical reactions	
CO4	To gain over all information on vitamins, their physiological	K4, K5 & K6
	functions and deficiency symptoms and consequent diseases	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Carbohydrates – Carbohydrate – classification, monosaccharide's (glucose, fructose, galactose & xylose)- physical and chemical properties, disaccharides (sucrose, lactose), polysaccharides (glycogen, starch, pectin, keratin sulphate & chondroitin sulphate).	12
II	Amino acids and proteins: Classification, Structure, Essential and Non-essential amino acids. Definition, Classification, Functions and Properties of protein. Proteins structure -primary, secondary, tertiary and quaternary structures.	12
III	Enzymes: Definition, holo enzyme, apo enzyme, active site, Enzyme units,	12

	classification, Lock and Key model and Induced fit hypothesis. Enzyme					
	kinetics (MM & LB plot), factors affecting enzyme activity.					
IV	Lipids: Classification, structure, function and properties of simple,					
	compound, Derived, Essential fatty acids and Non-essential fatty acids,					
	cholesterol.					
V	Vitamins: Classification, occurrence, deficiency symptoms and	12				
	biochemical functions of vitamins (Fat soluble and water soluble vitamins).	12				

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G.Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY I)

NAME OF THE COURSE: BIOCHEMISTRY I	COURSE CODE:	DURATION: 3 Hrs
	18U1BCA01	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS								
1. The g	general formula	of monosacch	aride is					
a. CnH ₂	nOn	b. Cn ₂ H ₂ C)n		c. CnH ₂ O ₂ n		d.	CnH ₂ nO ₂ n
2. The a	2. The aldose sugar is							
a. Glyco	erose	b. Ribulose	c	. Er	ythrulose	d.	Dihyo	doxyacetone
3. Polys	3. Polysaccharides are							
a. Polyr		b. Acids			c. Proteins			d. Oils
4. The r	nost important	epimer of gluc	ose is					
a. Galac	ctose	b. Fructose			c. Arabinose	;		d. Xylose
5. A het	eropolysacchra	ide among the	followi	ng is			•	
a. Inulii	1	b. Cellul	ose		c. Heparin		(d. Dextrin
6. An example of a saturated fatty acid is								
a. Palm	itic acid	b. Oleic a	cid	c.	Linoleic acid		(d. Erucic acid
7. Mole	cular formula c	of cholesterol is	;					
a. C27H	I45OH	b. C29H47OH			с. С29Н47ОН		(d. C23H41OH
8. Sphir	ngomyelins are							
a. Phos	pholipids	b. Nitrolipids		c. Glycolipids		3	d. Alcohol	
9. The 6	end product of s	saponification i	s					
a. Glyco	erol	b. Acid		c. S	oap		d. B	Both (A) and (C)
10. All p	roteins contains	S		•		1		
a. Same		Different			ino acids		d.	Only a few amino
	o acids	amino acids		currin	g in nature			acids
	11. Sulphur containing amino acid is							
a. Meth		b. Leucine c. Valine d. Asparagine				d. Asparagine		
12. An es	ssential amino a	acid in man is -						
a. Aspa	rtate	b. Tyrosine c. Methionine d. Serine			d. Serine			
13. Whic	h of the follow							
a. Anse	rine	b. Glutathior	ne	c. C	Glucagon		d. β-	-Lipoprotein

	14. Vitamins are						
	a. Accessory	b. Gener	ally	c.]	Produced in	ı	d. Proteins in
	food factors	synthe	esized in the	(endocrine		nature
		body			glands		
	15. One manifestat	tion of vitamin	A deficiency	is			
	a. Painful joints	b. Ni	ght blindness	С	. Loss of l	nair	d. Thickening of
							long bones
	16. Vitamin K is fo	ound in		•		_	
	a. Green leafy pla	ants	b. Mear	t	c. Fis	sh	d. Milk
	17. In human body	highest conce	ntration of as	corbic ac	id is found	in	
	a. Liver	b. Adrenal	cortex	c. Adrenal medulla		lla	d. Spleen
	18. A nucleoside c	onsists of					
	a. Nitrogenous	b. Purine or	c.	Purine o	r pyrimidir	ne d. I	Purine + pyrimidine
	base	pyrimidin	e base +	base + p	hosphorou	s t	pase + sugar +
		sugar				Į į	phosphorous
	19. RNA does not	contain				· ·	
a.	Uracil	b. Adenine		c. Thy	mine		d. Ribose
	20. The major cata	bolic product	of pyrimidine	s in huma	ın is		
	a. Alanine	b. Urea		c. Uric			Guanine

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL TH	E QUESTIONS
21. A) Explain Polysaccharides	(OR)
B) Write the structure and importance of maltose.	
22. A) Classify the fatty acids with examples.	(OR)
B) Write the structure of cholesterol.	
23. A) Explain the reactions of amino acid with ninhydrin	(OR)
B) Describe the primary structure of protein	
24. A) Write about energy rich bond	(OR)
B) Explain oxidative phosphorylation	
25. A) Write about Vitamin E	(OR)
B) Explain the structure & sources of Vitamin C	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Classify the carbohydrate with examples	
27. Classify the lipids with examples	
28. Write the structural organisation of protein	
29. Explain the double helical structure of DNA	
30. Write the structure, physiological function & deficiency symptoms of Vitamin A	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOCHEMISTRY I

Paper : ALLIED PRACTICAL I **Total Hours** : 60 Hours/Week Exam Hours : 03 : 3 Credit : 3 Internal : 40 : 18U1BCAP01 Paper Code External : 60

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

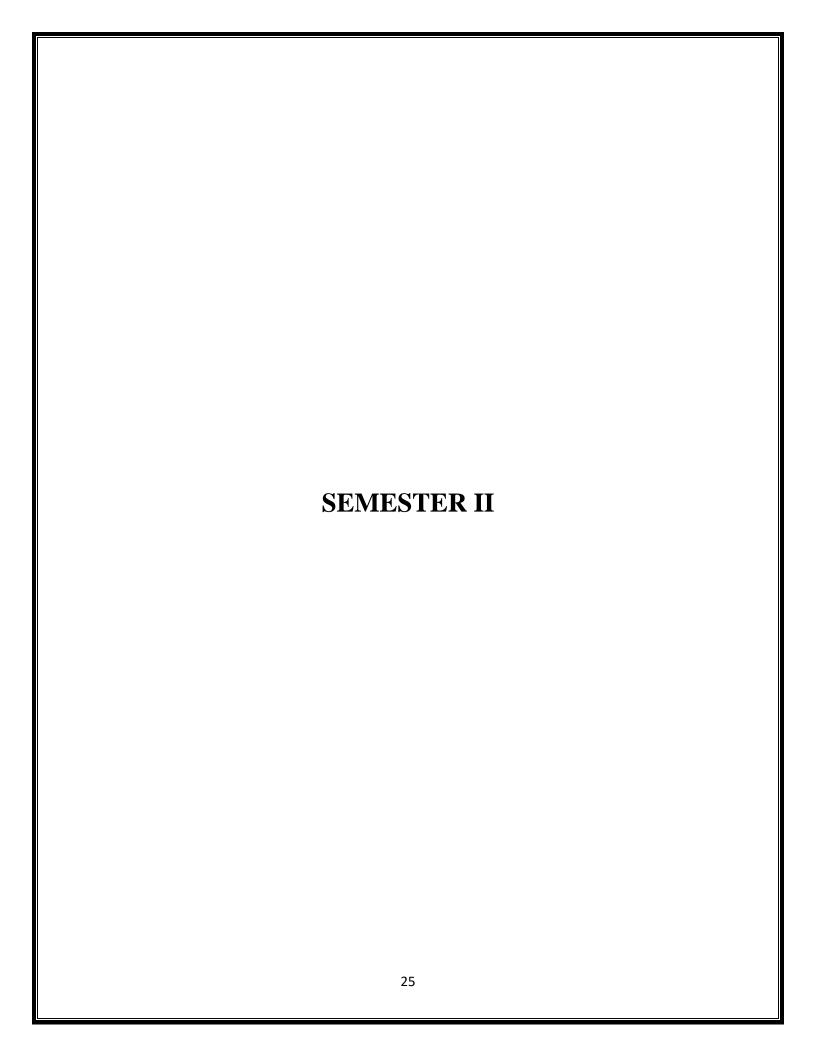
On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring knowledge on qualitative analysis of carbohydrates.	K3, K4 & K5
CO2	Acquiring knowledge on qualitative analysis of aminoacids.	K3, K4 & K5
CO3	Under the role of thin layer chromatography in the separation of	K3, K4 & K5
	amino acids	
CO4	Under the role of thin layer chromatography in the separation of	K3, K4 & K5
	lipids	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	M	S	M	S	M
CO4	M	S	M	S	M

Ex. No	CONTENT	HOURS
1	PREPARATION OF SOLUTION Normal, Molar, Percentage solution and calculation	3
2	Analysis of sugars a) Monosaccharides - Glucose, Fructose.	6
3	Analysis of sugars a) Monosaccharides - Galactose, Pentose.	6
4	Analysis of sugars b) Disaccharides - Sucrose, Maltose and Lactose.	6
5	Analysis of sugars c) Polysaccharide – Starch	3


	6	Analysis of amino acids a) Histidine b) Tyrosine	6
	7	Analysis of amino acids c) Tryptophan d) Methionine	6
	8	Analysis of amino acids e) Cysteine f) Arginine	3
	9	Separation of amino acids by paper chromatography	3
Ī	10	Separation of lipids by thin layer chromatography	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY I)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 3 Hrs
BIOCHEMISTRY I	18U1BCAP01	
MAX MARKS: 60		

MAJ(OR EXPERIMENT
	Total 25 MARKS
1.	(i) Systematically analyze the give carbohydrate sample (A) and display the results fo
	observation (OR)
	(ii) Separate the given lipid sample (A) by thin layer chromatography.
MINO	OR EXPERIMENT
	Total: 25 MARKS
2.	(i) Separate the given amino acid sample (B) by paper chromatography and display
	the results for observation (OR)
	(ii) Systematically analyze the give amino acid sample (B) and display the results for
	observation.
RECO	ORD $(1 \times 10 = 10 \text{ MARKS})$
TOTA	AL 60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

MICROBIOLOGY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 19U2BTC02	External	: 75

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand historical prospective on the evolution of	K1 &K2
	microbiology and gaining the concepts microscopic techniques	
CO2	To acquire knowledge on the basic concepts on prokaryotic	K1 &K2
	cellular structure	
CO3	To acquaintance of basic nutritional requirements of	K2, K3 & K4
	microorganism and their growth pattern and media requirements	
CO4	To know about the anti-microbial therapy and their mode of	K2, K3, K4 & K5
	action on controlling the growth of microorganisms	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	DEFINITION AND SCOPE OF MICROBIOLOGY: History and	15
	recent Developments: Contributions of Leevenhoek, Louis Pasteur,	
	Robert Koch, Elie Metchnikoff, Edward Jenner, Alexnder fleming,	
	Spontaneous generation, Biogenesis of Microbiology.	
II	MICROSCOPY: Simple and Compounds microcopes. Dark field	15
	contrast, Fluorescence microscopes. Electron microscopes (TEM &	
	SEM). Stain and staining techniques – Simple, differential and	
	special staining (Endospore and Capsular).	

III	CELLULAR STRUCTURES OF PROKARYOTES: Ultra structure and functions of bacterial cell wall, Plasma membrane, Flagella, Pili and capsule. Ultra structure of fungi, Viruses and cyanobacteria	15
IV	STERILIZATION AND CULTURE TECHNIQUES: Physical and chemical methods. Growth of bacteria – multiplication – nutritional requirements. Factors affecting growth. Growth curve, Determination of growth. Media and its types, Culture techniques (pure culture, anaerobic culture). Preservation of cultures.	15
V	ANTIMICROBIAL CHEMOTHERAPY: Definition and types of antibiotics. Mode of action of broad and narrow spectrum antibiotics. Anti-microbial resistance. Mechanisms of resistance. Test for evaluating anti-microbial effect.	15

SUGGESTED READINGS:

- 1. Microbiology concepts and application by Paul A. Ketchum, Wiley Publications 2010.
- 2. Fundaments of Microbiology- Frobisher, Sauders & Toppan publications 1975.
- 3. Microbiology Ronald M. Atlas 1993.
- 4. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 5. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 6. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 7. Fundamentals of Bacteriology Salley 1996.
- 8. Microbiology Pelczar, Chan, Krieg, Tata McGraw Hill Publications 2005.
- 9. Frontiers in Microbial technology P.S. Bisen, CBS Publishers 1994.
- 10. Biotechnology: International Trends of perspectives A.T.Bull, G. Holl, M.D.Lilly, Oxford & TBH publishers 1987.
- 11. General Microbiology-C.B.Powar, H.F. Daginawala, Himalayan Publishing House 2011.

${\bf MODEL\ QUESTION\ PAPER\ (MICROBIOLOGY)}$

NAME OF THE COURSE: MICROBIOLOGY	COURSE CODE:	DURATION: 3 Hrs
	19U2BTC02	
MAX MARKS: 75		

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
	1. The third kingdom, protista, as suggested by E.H. Haeckel includes					
	a. bacteria	b. algae	c. fungi	d. all the above		
	2. Who discovered t	he bacteria that cause ch	nolera?			
a.	Pierre Berthelot	b. Robert Koch	c. Louis Pasteur	d. Rudolf Virchow		
	3. Which were the i	nvestigators lived at the	same time?			
a.	Darwin and Woese	b. Koch and Pasteur	c.Van Leeuenhoek Ricketts	and d. Berg and Hooke		
	4. Which of the follo	owing is not found in the	e kingdom Monera?			
a.	Organelles b.	Organized cell structure	c. Ability to repr	roduce d. Ability to use energy		
	5. Resolving power	of a microscope is a fun	ction of			
a.	Wavelength of light used	b. Numerical aperture of lens system	c. Refractive ind	d. Wavelength of light used and numerical aperture of lens system		
	6. In fluorescence m except the blue lig		following performs	the function of removing all light		
	a. Exciter filter	b. Barrier filter	c. Dichroic	mirror d. Mercury arc lamp		
	7. In Phase contrast	microscopy, the rate at v	which light enters th	rough objects is		
a.	the	versely proportional to bir refractive indices	to their refract	indices		
				sional picture of the specimen?		
a.	Transmission Electron Microscope	b. Scanning Electron Microscope	c. Compound Microscope	d. Phase Contrast Microscope		
	9. Which of the follo	owing is an example for	prokaryotic cell?			
	a. Hydra	b. Euglena	c. Chlamydor	monas d. mycoplasma		
	10. The unifying feature of the archaea that distinguishes them from the bacteria is					
a.	Habitats which are extreme environments with regard to acidity	b. Absence of a nuclear membrane temperature	c. Presence of a wall containing characteristic membrane	ng a that are 70S		
		is used in the production				
	a. cheese	o. citric acid c.	gluconic acid	d. citric acid and gluconic acid		

12. Fungi are sensitive to which of the following antibiotics					
a. Penicillin b. Tetracyclin c. Chloramphenicol d. Griseof					
13. SDA that supports	13. SDA that supports the growth of fungi is composed of				
a.Glucose and ammonia	b. Maltose and peptone	c. Sucrose and peptone	e d. Peptone		
14. The portion of the	growth curve where a ra	apid growth of bacteria is ob	served is known as		
a. Lag phase	b. Log phase	c. Stationary phase	d. Decline phase		
15. The generation tin	ne for E.coli is				
a. 20 min	b. 35 min	c. 39 min	d. 13 min		
16. What is the color	of colonies of Staphyloco	occus aureus upon its growt	h in nutrient agar ?		
a. Pink	a. Pink b. Red c. Violet d. Yellow				
17. Which bacteria ha	ve an unusual capsule an	nong the following?			
a. H. influenzae	b. K. pneumonia	c. S. pneumoniae	d. B. anthracis		
18. What is the chemi	cal nature of endotoxins	?			
a. Protein b.	Polysaccharide c	c. Lipo polysaccharide	d. lipid		
19. Nystatin is effective	ve in curing?				
a. Deep mycoses b.	a. Deep mycoses b. Dermatophytosis c. Systemic mycoses d. Candidiasis				
20. Which drug is use	d for treatment of leishm	aniasis?			
a.Chloroquine phosphate	a.Chloroquine phosphate b. Metronidazole c. Sodium stibogluconate d. Suramin				

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	TIONS
21. A) Explain the contributions of Louis Pasteur	(OR)
B) Explain about Biogenesis and Abiogenesis with examples	
22. A) Describe the working mechanism of phase contrast microscope	(OR)
B) Explain about SEM	
23. A) Write a short note on ultra-structure of bacterial cell	(OR)
B) Explain the structure of Fungi	
24. A) Explain the process of reproduction in bacteria	(OR)
B) Brief various media involved in growth of microbes	
25. A) Elaborate the antimicrobial resistance	(OR)
B) Explain the types of antibiotics	
SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUES	STIONS
26. Give detailed account on History of microbiology	
27. Give detailed account on TEM and specimen preparation	
28. Differentiate the Gram positive and negative organisms with example	es
29. Write a detailed account on various sterilization techniques	
30. Explain different types of antibiotics and antimicrobial resistance	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN MICROBIOLOGY

Paper	: Core practical II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U2BTCP02	External	: 60

PREAMBLE

To make students on understanding basic microbiological techniques, aseptic practices in laboratory. The candidate also shall know how to maintain and culture the microorganisms in laboratory and their biochemical identification mechanisms.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand and implement the principles of aseptic practices in	K1, K2 & K3
	laboratory	
CO2	To gain knowledge on the media preparation and culturing the	K2, K3 & K4
	microorganism	
CO3	To identify the microorganisms by staining techniques and	K3, K4 & K5
	biochemical tests	
CO4	To check the growth pattern of microorganisms towards various	K4, K5 & K6
	classes antibiotics	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	M	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	General Laboratory rules to be followed in microbiological	3
	laboratory	
2	Sterilization techniques (Dry heat, Moist heat, Filtration - membrane	4
	and HEPA filters)	
3	Preparation of nutrient media (Solid, semi - solid and liquid)	5
4	Isolation of pure culture (Streaking methods – simple, continuous,	2
	quadrant and 'T' streaking)	

	5	Simple and negative staining	3
•	6	Differential staining (Gram's staining, Capsule staining, Spore	10
	7	Fungal staining (LCB)	5
	8	Determination of bacterial motility (Hanging drop method)	5
	9	Biochemical characterization of microorganisms (IMViC), TSI test, Carbohydrate fermentation test, Urease test, Catalase test	12
	10	Antibiotic sensitivity test (Kirby-Bauer method)	10

MODEL QUESTION PAPER (LAB IN MICROBIOLOGY)

NAME OF THE COURSE:	COURSE CODE:	DURATION: 6Hrs
LAB IN MICOROBIOLOGY	19U2BTCP02	
MAX MARKS: 60		

MAJOR EXPERIMENT							
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS				
1. (i) Perform Gram's	1. (i) Perform Gram's staining for the given sample (A). Display the results for observation.						
		(0)	R)				
(ii) Perform LCB sta	aining for the given fun	gal (A) and display the r					
		(0)	/				
\ ' '	tility of the given bacter	rial strain (A) and displa	y the results for				
observation							
MINOR EXPERIME		1	1				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS				
	nsitivity pattern of the g	given bacterial culture (E	B) against the given				
antibiotics		(0)	/				
` ′	nt streaking from the bac	cterial sample (B) and di	* *				
observation		(O)	/				
, ,	•	erial culture (B) for hydr	rogen peroxide				
production and display the results for observation							
SPOTTERS		(5)	X 4 = 20 MARKS)				
3. Identify the given spotters A, D, H, F & G and comment on them							
RECORD $(1 \times 5 = 5 \text{ MARKS})$							
VIVA-VOCE 5 MARKS							
TOTAL 60 MARKS							

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

BIOCHEMISTRY II

Paper : ALLIED II **Total Hours** : 60 Hours/Week : 4 Exam Hours : 03 Credit : 3 Internal : 25 : 18U2BCA02 : 75 Paper Code External

PREAMBLE

To make students on understanding basic biochemical reaction mechanisms of various biomolecules. The students also acquire knowledge on their regulation and also about the concepts of various endocrine systems and their deficiency consequences in human being.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of thermodynamics and energy	K1 & K2
	production in living systems	
CO2	To understand the basic concepts of carbohydrate metabolism and	K1, K2 & K4
	their energy yield	
CO3	To understand the basic concepts of protein & lipid metabolism and	K1, K2 & K4
	their energy yield	
CO4	To understand the basic concepts of human endocrine system	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT		
I	Bio energetics – Laws of thermo dynamics, Concepts of free energy and standard free energy, Exergonic and Endergonic reactions. Electron transport chain. Inhibitors of ETC. Oxidative phosphorylation, High energy compounds.	12	
II	Carbohydrate metabolism: Glycolysis, Citric acid cycle with Energetics, glycogenesis, Glycogenolysis, HMP shunt.		
III	Protein metabolism: Transamination, oxidative and non-oxidative deamination, decarboxylation- urea cycle. Interrelationship of carbohydrates, proteins and fat metabolism.	12	
IV	Lipid metabolism: Basic principles of lipid metabolism. Oxidation of	12	

	saturated (α, β and ω) and unsaturated fatty acids. Oxidation of odd chain fatty acids, Cholesterol biosynthesis and its importance.			
V	V Endocrinology – Definition, Classification of Hormones, secondary			
	messenger(cAMP) Biological function and disorders of Pancreatic	12		
	Hormones (Insulin and Glucagon), Thyroid hormone (thyroxin).			

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G. Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY II)

NAME OF THE COURSE: BIOCHEMISTRY II	COURSE CODE:	DURATION: 3 Hrs
	18U2BCA02	
MAX MARKS: 75		

	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. In exergonic reaction heat is							
	a.	Consumed b		lo change ansfer	in heat	d.	Enthalphy in more than 1
	2. Hydrogen is transferred through a series of enzyme systems to form						
	a.	Oxygen	b. Water	c. Carb	ohydrate d	l. AT	P
	3.	One molecule of A	ATP is equal ton	nolecules	of NADP		
	a.	1		c.3		d. 4	
	4.	Oxidative phosph	orylation occurs in				
		Chloroplast	b. Mitochondria		Endoplasmic reti		d. Tonoplast
	5.	In which of the fo	llowing phase in glycoly	sis does t	he ATP is consum	ned?	
a.	Pa	yoff phase	b. Interphase	c. Prep	aratory phase	d.	Gap phase
	6.	The term glycoger	nolysis defines				
	a.	Break down of	b. Breakdown of		Synthesis of	(d. Synthesis of
		glucose	glycogen		glucose		glycogen
	7.	HMP stands for					
	a. Hexo kinase b. Hexose mono nitrate c. Hexose mono d. Hexose mono						
	shunt shunt phosphate shunt butyrate shunt			<u> </u>			
	8. Which of the following enzyme mainly involved in the process of glycogenesis?					esis?	
	a. Glucagon lyase b. Glycogen lyase c. Glycogen synthase d. Glucagon synthase			lucagon synthase			
	9.	Transamination of	f amino acids is chiefly c	atalyzed l	by		
		a. Deaminase	b. Transaminase	c. Tran	sketolase d.	Tran	s decarboxylase
	10	. Which of the follo	owing aminoacid involve	d in Urea	cycle?		
a.	Se	rine	b. Typtophan	c. Aspa	aragine	d. C	itrulline
	11	. SGOT is an enzyr	ne that catalyzes	- reaction			
	a.	Deamination	b. Trans deamination	c.	Transamination	(d. Decarboxylation
	12	. Non-oxidative dea	amination reactions is acc	complishe	ed by		
	a.	The conversion of			c. Removal	of	d. None of the
	alpha amino group COOH group to amino group above					above	
	to ammonia CO ₂ as nitrogen						
	13. Lipid metabolism entails the						
	a.	Synthesis of	b. Oxidation of fatty		uction of fatty	d	. Conversion of fatty
		fatty acids	acids	acid	S		acids in to glycerol

14. Fatty acid synthase is a multi-enzyme complex composed of sub units				
a. 1	b. 2		c. 3	d. 4
15. Phenanthrene nuc	leus is found in			
a. Stigmesterol	b. Ergosterol		c. Cholesterol	d. Levosterol
16. The precursor for	the cholesterol biosyn	thesis	is	
a. Acyl Co-A	b. Acetyl Co-A	С	c. Aceto acetyl Co-A	d. Keto acyl Co-A
17. Ductless glands s	ecretes			
a. Serum	b. Hormone		c. Plasma	d. CSF
18. Hyper insulinism	leads to	'		
a. Decreased level of glycogen	b. Increased leve of glucose	el	c. Increased level of glucagon	d. Increased rate of muscle phosphorylation
19. Which of the follo	owing is an example for	or seco	ondary messenger?	
a. cGMP b.	сТМР	c. cl	UMP	d. cAMP
20. Thyroid hormone is highly concentrated on				
a. Baso lateral	b. Baso lateral		c. Baso lateral	d. Baso lateral
plasma membrane	-	ane	plasma	plasma
of active	of active		membrane of	membrane of
histiocytes	hepatocytes		active thyocytes	
				thrombocytes

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Write short notes on standard free energy	(OR)		
B) Write about the inhibitors of ETC			
22. A) Explain the energetics of glycolysis	(OR)		
B) Write shortly on the process of glycogenesis			
23. A) Write short notes on transamination reactions	(OR)		
B) Write short notes on oxidative deamination reactions			
24. A) Explain the energetics of beta oxidation of fatty acids	(OR)		
B) Explain the oxidation of odd chain fatty acids			
25. A) Explain the clinical manifestations of hypo parathyroidism	(OR)		
B) Explain the complications faced by a victim having hyperglycemia			

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on electron transport chain
27. Give a detailed account on TCA cycle
28. Elaborately discuss on Urea cycle with neat chemical reactions
29. Write an essay on cholesterol biosynthesis with neat chemical reactions
30. Explain the biological function thyroid hormone. Add a note on hypo and hyper thyroidism

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ALLIED - LAB IN BIOCHEMISTRY II

: ALLIED PACTICAL II **Total Hours** : 60 Paper Hours/Week : 3 Exam Hours : 03 : 3 : 25 Credit Internal Paper Code : 18U2BCAP02 External : 75

PREAMBLE

To make students on understanding basic biochemical calculations and preparing reagents and solutions. The students also gain knowledge on estimating quantitatively the biomolecules substances.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Become familiar in preparing different strengths of solutions for	K1, K2, K4 & K5
	the basic requirement of executing biochemical experiments	
CO2	To know about the quantitative determination on the strength of	K1, K2, K4 & K5
	various specific biomolecules	
CO3	Gaining knowledge on using basic instruments such as	K1, K2, K4 & K5
	colorimeter and UV spectrophotometer for measuring the colour	
	intensity developed in the reaction mixture	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	M


Ex. No	CONTENT	HOURS
1	Estimation of glucose by ortho toluidine method	3
2	Estimation of glycine by formal titration method	3
3	Estimation of ascorbic acid by 2,4 dichloro phenol indo phenol method	3
4	Estimation of urea by diacetyl monoxime method	3
5	Estimation of DNA by diphenylamine method	3
6	Estimation of RNA by orcinol method	3
7	Estimation of protein by lowry's method	3
8	Estimation of cholesterol by zak's method	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY II)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 3 Hrs
BIOCHEMISTRY II	18U2BCAP02	
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Estimate the amount of glycine present in the given sample (A)	(OR)
(ii) Estimate the amount of ascorbic acid present in the given samp	ole (A)
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
(ii) Estimate the amount of RNA present in the given sample (B)	(OK)
(ii) Estimate the amount of RNA present in the given sample (B)	0 = 10 MARKS)

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

MOLECULAR BIOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U3BTC03	External	: 75

PREAMBLE

To make students on understanding basic structure of genetic materials (DNA & RNA) and molecular concepts of a gene expression and its regulatory mechanisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of DNA/RNA structure and	K1, K2
	experimental evidences as genetic material	
CO2	To under the mechanisms of replication of DNA and it regulation	K1, K2, K4
CO3	To know about the transcription process and its modifications	K1, K2, K4
	into functional mRNA and translation into proteins	
CO4	To under the concepts of gene regulation and know about the	K2, K3, K4 & K5
	mechanisms of transposition	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	M	S
CO3	S	S	M	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
	Genetic material: Evidences showing DNA and RNA as genetic material;	12
I	DNA- Chemical composition & molecular structure, Watson and Crick's	
	model - its biological significance; Forms of DNA (A, B, C, D & Z).	
	DNA replication : Origin & Models of - Meselson and Stahl's experiment -	16
	types of replication - Mechanism of DNA replication in prokaryotes and	
II	eukaryotes - Enzymology of replication. DNA repair- causes of DNA	
	damage & biochemical mechanism of DNA repair. Homologous	
	recombination- Holliday model	
***	Transcription: RNA types and functions; RNA polymerase; Transcription	16
III	in prokaryotes and eukaryotes; Post transcriptional modification -	

		Transcription and processing of RNA in prokaryotes; RNA editing.	
I	V	Translation & Protein synthesis: Central dogma of life: Genetic code: Properties of genetic code; codon- anticodon interaction- Wobble hypothesis and elucidation of genetic code; Translation in prokaryotes and eukaryotes; Post translational modification of proteins & molecular chaperonins.	16
,	V	Regulation of gene expression : Gene expression in transcriptional level (lac and trp operon); gene expression in bacteriophages. Transposons – types and mechanism of transposition.	15

SUGGESTED READINGS:

- 1. David Freifelder . 1990. Molecular Biology, 2nd Edition. Narosa Publishing house
- 2. George M. Malacinski. 2008. Essentials of Molecular Biology, 4th Edition. Narosa Publishing house
- 3. Veer Bala Rastogi. 2010. Fundamentals of Molecular Biology. Ane Books India
- 4. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losile. 2008. Molecular Biology of the gene, 5th Edition. Pearson Education.
- Lodhish, Berk, Matsun dairg, Kaiser, Krieger, Scott, Zipursky and Darnell. 2004. Molecular Cell Biology, 5th Edition. W. H. Freeman and Company
- 6. Robert F. Weaver. 1999. Molecular Biology. WCB Mc Graw Hill
- 7. E. D. P. De Robertis & E. M. F De Robertis, Jr. 2001. Cell and Molecular Biology, 8th Edition. Lipin cott William and Wilkins
- 8. Lehninger. 2005. Principles of Biochemistry. Nelson Cox, CBS Publishers
- 9. Alexander Mc Lenna, Andy Bates, Puil Turner & Mike White. 2015. Molecular Biology, 4th Edition. GS Garlan Sciences, Taylor and Francis Group
- 10. George M. Malacinski & David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 11. Richard R. Sinden.1994. DNA Structure and function. Academic press
- 12. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 13. Pragya Khana. 2008. Cell and Molecular Biology. IK International Publishing House
- 14. William D. Stanfield, Jaine S. Colome and Raul J. Cano. 2008. Shaum's Outline- Molecular Cell Biology. Tata Mc Graw Hill
- 15. H.S. Bhamrah & Kavita Juneja. 2002. Molecular Cell Biology. Anmol Publications
- 16. G. P. Jeyanthi. 2009. Molecular Biology. MJP Publishers
- 17. N. Vidhyarasthi & D. M. Chelan. 2007. Molecular Biology. IK International Publishing House
- 18. P.S. Verma & V. K. Agarwal. 1998. Concepts of Molecular Biology. S. Chand and Company Ltd
- 19. Phil Turner, Alexander Mc Lennan, Andy Bates & Mike White. 2001. Molecular Biology, 3rd Edition. Bios Instant Notes
- 20. H. D. Kumar. 2000. Molecular Biology, 2nd Edition. Vikas Publishing House
- 21. AVSS Sambamurhty. 2008. Molecular Biology. Narosa Publishing House

MODEL QUESTION PAPER (MOLECULAR BIOLOGY)

NAME OF THE COURSE: MOLECULAR BIOLOGY	COURSE CODE:	DURATION: 3 Hrs
	19U3BTC03	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS				
1. Number of hydrogen bonds between adenine and thymine is				
a. 1	b. 2	c.	. 3	d. 4
2. Difference bety	ween RNA and DNA lies	on		
a. Sugar	b. Phosphate group	c. Nitrogeno	ous base	d. None of the above
3. The distance be	etween two adjacent nitro		is A	0
a. 2.4	b. 3.4	c.4.4		d. 5.4
4. DNA in chrom	osome is tightly packed v	with		
a. Histones	b. Glycoproteins	c. Lipopr	roteins	d. Glycoproteins
5. Which of the fe	ollowing mode of replicat	tion is observed i	n a living cell	?
a. Conservative	b. Dispersive	c. Semi-Cor	nservative	d. None of the above
6. Which of the fe	ollowing protein relaxes t	he frictional pres	ssure found or	the replication fork?
a. Helicase	b. Gyrase	c. Topo	oisomerase	d. SSB
7. Which of the fe	ollowing maintains the sin	ngle stranded nat	ure of DNA?	
a. Helicase	b. Gyrase	c. Topo	oisomerase	d. SSB
8. Photo reactivat	ion of DNA is catalyzed	by		
a. Gyrase	b. Topoisomerase	c. UVr B		d. Photolyase
9. The regulatory	elements in a DNA is co	ntrolled by		
a. Cis elements	b. Trans elements	c. Structur	al elements	d. Control elements
10. Introns in mRN	NA is removed by	-		
a. Editing	b. Splicing	c. Capping	d. F	oly adenylation
	ween holo and core enzyn			
a. Alpha subunit	b. Beta subunit	c. Epsil	on subunit	d. Zigma subunit
12. Formation of lariat is commonly found during				
a. Transcription	b. Post transcriptional modifications	c. Translation		t translational difications
13. Each codon is	characterized by	•	•	
a. Singlet nucleotide	b. Doublet nucleotide	c. Triplet nu	ıcleotide	d. None of the above

	14. The starting codon AUG codes for which of the following amino acid?				
	a. Cysteine	b. Methionine		c. Serine	d. Threonine
	15. Glycosylation of	proteins describes the	additi	ion of to the grov	ying poly peptide chain
	a. Glucose	b. Gelatin	c.	Chalmoogric acid	d. Vitamin A
	16. Which of the foll	owing machinery inv	olved i	in post translational modif	ications of proteins?
	a. Molecular	b. Molecular		c. Molecular channels	d. Molecular
	motors	chaperons			locomotors
	17. The function of t	rans acetylase is to			
a.	Transfer of	b. Transfer of C	H ₃ C-	c. Transfer of CH ₂ C=C	d. Transfer of
	CH ₃ C=O group	OH group		group	CH ₃ COOH group
	18. Ty element is for	and in			
	a. Bacteria	b. Fungi		c. Protozoa	d. Yeast
	19. Retroposons is commonly found in				
	a. Retroviridae	b. Rhinovirida	ie.	c. Adenoviridae	d. Poxviridae
	20. Catabolic repression refers to				
	a. Regulon	b. Operon		c. Citron	d. Recon

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain the experiments that proves DNA as genetic material	(OR)			
B) Explain the structure of tRNA and mRNA with neat sketch				
22. A) Explain the Meselson's & Stahl experiment	(OR)			
B) Write shot notes on prokaryotic DNA polymerase				
23. A) Explain RNA splicing	(OR)			
B) Explain the process of transcription termination				
24. A) Explain Wooble hypothesis	(OR)			
B) Explain the properties of genetic code				
25. A) Explain the mechanism of transposition	(OR)			
B) Explain the structure of lactose operon				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Explain the chemical and physical structure of DNA	
27. Give a detailed account on DNA replication in prokaryotes	
28. Give a detailed account on Eukaryotic transcription	
29. Explain the process of translation in prokaryotes	
30. Explain the lac operon. Add a note on its regulation	

LAB IN MOLECULAR BIOLOGY

: Core practical III Paper **Total Hours** : 75 Hours/Week : 4 Exam Hours : 05 Credit : 3 Internal : 40 Paper Code : 19U3BTCP03 External : 60

PREAMBLE

To make students on understanding basic procedure in isolation separating purifying proteins. The students gain knowledge in DNA quantification and gene transfer methods

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about the isolation, purification and quantification of	K1, K2, K3, K4 &
	protein	K5
CO2	To know about the separation and quantification of DNA	K1, K2, K3, K4 &
		K5
CO3	To know about the various types of gene transfer techniques	K1, K2, K3, K4 &
		K5 K1, K2, K3,
		K4 & K5
CO4	To identify and isolate the mutated bacterial by special	K2, K4 & K5
	techniques	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of protein	4
2	Estimation of protein by Lowry's method	4
3	Purification of protein by dialysis	4
4	Separation of proteins by native – PAGE	4
5	Separation of DNA by agarose gel electrophoresis	4
6	Quantification of DNA by UV-visible spectrophotometer	4
7	Induction of mutation in bacterial cells UV light	4
8	Bacterial DNA transformation by CaCl method	4
9	Bacterial conjugation	4
10	Isolation of auxotrophic mutants by replica plating technique	4

MODEL QUESTION PAPER (LAB IN MOLECULAR BIOLOGY)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
MOLECULAR BIOLOGY	19U3BTCP03	
MAX MARKS: 60		

MAJOR EXPE	RIMENT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Isolate protein from the given sample (A). Display the results for observation. (OR)			
(ii) Separate t	he protein from the gi	ven sample (A) by SDS-F	PAGE. Display the results for
observation.			(OR)
(iii) Transform	m the given DNA sam	ple (A) in to given host co	ell by appropriate method.
Display the re	esults for observation		
MINOR EXPE	RIMENT		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Purify the	given protein sample ((B) by dialysis. Display th	ne results for observation (OR)
(ii) Separate t	he given DNA sample	(B) electrophoresis and	display the results for observation
		(OR)	
(iii) Perform	catalase test for the giv	ven bacterial culture (B) f	for hydrogen peroxide production
and display th	ne results for observati	on	
SPOTTERS			(5 X 4 = 20 MARKS)
3. Identify the	3. Identify the given spotters A, D, H, F & G and comment on them		
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $			
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT SCIENCE I

Paper : ALLIED III **Total Hours** : 60 Hours/Week : 4 Exam Hours : 05 Credit : 3 Internal : 40 Paper Code : 19U3BOA01 External : 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on basics of fungi and algae	K1 & K2
CO2	To gain knowledge on basics of bryophytes	K1 & K2
CO3	To gain knowledge on basics of lichens	K1 & K2
CO4	To gain knowledge on basic concepts of plant physiology	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	S	S	S
CO3	S	M	S	S	S
CO4	M	S	S	M	M

UNIT	CONTENT	HOURS
I	ALGAE: General characteristics of algae. Study on thallus structure,	
	reproduction and life cycle of Gellidium, Gracillaria and Polysiphonia.	12
	Economic importance of algae in industries.	
II	FUNGI: General characteristics of fungi. Study on thallus structure,	
	reproduction and life cycle of Agaricus, Penicillium and Saccharomyces	12
	cerevisieae. Economic importance of fungi.	
III	LICHENS: General characteristics of fungi. Study on thallus structure,	
	reproduction of foliose, Crustose, Fruticose and Squamulose groups of	12
	lichens	
IV	BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS: General	
	characteristics. Study on the structure, reproduction and life cycle of	12
	bryophytes (Marchantia), Pteridophytes (Lycopodium), Gymnosperms	12
	(Cycus) and their economic importance.	
V	PLANT PHYSIOLOGY: Absorption of water (Active and passive).	
	Photosynthesis (Light and Dark reactions). Cyclic and non-cyclic	12
	photophosphorylation. Transpiration and its types (Stomatal transpiration).	

SUGGESTED READINGS:

- 1. Vashishta BR, AK. Sinha. (2010). Botany for Degree student Fungi. S. Chand & Co. New Delhi.
- 2. Pandey SN, Mishra SP and Trivedi PS. (2009). A text book of
- 3. Botany, Vol II, Vikas Publishing House Pvt. Ltd., Delhi.
- 4. Rao, KN, Krishnamoorthy KV and Rao GS. (1979). Ancillary Botany S. Viswanathan Pvt., Madras.
- 5. Text Book of Algae. (2018). KS. Bilgrami and LC Saha, 1st edition, CBS Publishers.
- 6. Algae. (2011). OP. Sharma, Tata Mc Graw Hill Education.
- 7. Advances in Mycology. (2012). Sohan Sharma, random Publications Publishers and Distributors, New Delhi.
- 8. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited.
- 9. BP Pandey. (1986). Text Book of Botany, Vol I & II Chand. S & Co. New Delhi.
- 10. Fuller. HJ and Tippo O. (1949). College Botany, Henry Holt & Company.
- 11. Ganguly AK. (1975). General Botany Vol I. (1971) and Vol II. The new Book stall, Calcutta.

LAB IN PLANT SCIENCE I

Paper	: ALLIED PRACTICAL III	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOAP01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant	K4, K5 & K6
	kingdoms	
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

1.	Sectioning of given specimens	$(3 \times 8 = 24 \text{ marks})$
	a. Algae (or) Fungi	8 marks
	b. Bryophyte (or) Pteridophyte	8 marks
	c. Gymnosperms	8 marks
2.	Identification of spotters (Permanent slides)	$(4 \times 3 = 12 \text{ marks})$
	d. Algae (or) Fungi	4 marks
	e. Bryophyte (or) Pteridophyte	4 marks
	f. Gymnosperms (or) Lichens	4 marks
3.	Identification of spotters (Morphology)	$(3 \times 3 = 9 \text{ marks})$
	g. Algae	3 marks
	h. Fungi	3 marks
	i. Bryophyte/Pteridophyte/Gymnosperm	3 marks
4.	Identification of the given setup (Physiology)	$(3 \times 1 = 3 \text{ marks})$
	j. Ganong's photometer (or) Wilmutt's bubbler	
5.	Identification of spotter (Economic importance)	$(1 \times 2 = 2 \text{ marks})$
	k. Gellidium (or) Penicillium (or) Yeast	
6.	Record	10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I LAB IN IN FOOD PROCESSING AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS01	External	: 60

PREAMBLE

To make students on understanding basic concepts of food quality management and deals with various food processing concepts and technologies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant	K4, K5 & K6
	kingdoms	
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	To study different types of blanching of fruits and vegetables	4
2	Preservation of food by canning	4
3	To perform cut out analysis of caned product	4
4	Preservation of food by high concentration of sugar i.e. jam	4
5	Preservation of food by high concentration of salt/acid i.e. pickle	4
6	Preservation of food by addition of chemicals i.e. tomato ketchup	4
7	Preservation of milk by pasteurization and sterilization	4
8	Determination of total fat, protein in milk and milk products	4
9	Estimation of synthetic Food colour in sweets, confectioneries and	4
	beverages	
10	Detection of adulterants in edible oil and ghee	4

MODEL QUESTION PAPER (LAB IN FOOD POCESSING AND TECHNOLOGY)

NAME OF THE COURSE: LAB IN FOOD	COURSE CODE:	DURATION: 6Hrs
PROCESSING AND TECHNOLOGY	18U3BTS01	
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Perform cutou	t analysis of the	given canned food sam	pple (A). Display the results for	
observation.			(OR)	
(ii) Preserve the gi	ven food sample	(A) by sugar/salt/acid	(OR)	
(iii) Estimate the a	mount of total fa	at from the given milk s	sample (A)	
MINOR EXPERIM	ENT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform food p	reservation by ch	nemical additives for th	ne given food sample (B) (C	OR)
(ii) Perform paster	rization of milk	from the given milk sa	ample (B)	OR)
(iii) Estimate the a	(iii) Estimate the amount of synthetic Food colour in the given sweet/confectionary/beverage			
sample (B)				
SPOTTERS			(5 X 4 = 20 MARKS)	
3. Identify the given	spotters A, D, H	I, F & G and comment	on them	
RECORD	RECORD $ (1 \times 5 = 5 \text{ MARKS}) $			
VIVA-VOCE 5 MARKS				
TOTAL	_		60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I DEVELOPMENTAL BIOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U3BTS02	External	: 75

PREAMBLE

To make students on understanding basic concepts of mammalian developmental systems and also to deals with the developmental system plants

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of animal system development	K1, K2 & K3
CO2	To understand the concepts of vertebrate system development	K1, K2 & K3
CO3	To understand the concepts of plantsystem development	K1, K2 & K3
CO4	To understand the concepts of invertebrate system development	K1, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	M

UNIT	CONTENT	HOURS
I	Basic concepts of development in animal system-I Stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, lineages of three germ layers.	8
II	Basic concepts of development in animal system-II Mechanisms of differentiation-cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development, model organisms in Developmental biology.	8
Ш	Early Development in invertebrate / vertebrate models Drosophila, <i>C.elegans</i> , Xenopus, Mouse/ human, Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), and body plan patterning.	8

IV	Late Development in invertebrate /vertebrate models Organogenesis- development of central nervous system in vertebrates, vulval formation in <i>C.elegans</i>	8
	Basic concepts of development in Plant system Organization of the plant cell, plant meristems and cell fate; root and	
V	shoot development; secondary growth; vascular development; Sexual reproduction; flower development; mechanisms of gametogenesis and fertilization.	

MODEL QUESTION PAPER (DEVELOPMENTAL BIOLOGY)

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
DEVELOPMENTAL BIOLOGY	18U3BTS02	
MAX MARKS: 75		

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS				
1. How many cleavages are completed in 16 cell stages of frog's egg?					
a.	3	b. 8	c. 4	d. 12	
2.	The expulsion of	f completely developed	foetus from the uterus is	s known as	
a.	Ovulation	b. placentation	c. gestation	d. parturition	
3.	For fertilization	of frog's egg			
	perms of same becies are essential	b. Sperms do not need penetration	c. Sperms of any animal can fertilize	d. Only presence of male is sufficient	
4.	Grey crescent is	present in	•	•	
a.	Zygote of frog	b. Brain of rabbit	c. Eye of frog	d. Retina of cockroach	
5.	Which of the fol	lowing does not show	metamorphosis?		
a.	Frog	b. Housefly	c. Hydra	d. Mosquito	
6.	The first phase in	n the sexual reproduction	on of organisms is		
a.	Spermatogenesis	b. Oogenesis	c. Spermiogenesis	d. Gametogenesis	
7.	The formation, d	levelopment and matur	ation of the female game	te is called	
a.	Ovulation	b. Oogenesis	c. Vitellogenesis	d. Folliculogenesis	
8.	During fertilization of	on the spermatozoa pe	netrate through the egg r	membranes with the help	
a.	Flagellum b.	Acrosome c. Sperm acrosom	lysins released from the dne	. Mitochondira located at the middle piece	
9.	During normal d	evelopment the activat	ion of the egg is achieved	d by	
a.	Vitellogenesis	b. Oogenesis	c. Spermatogenesis	d. Fertilization	
10	. When the eggs a	re released from the ov	vary of frogs they are at the	he	
a. prir	nary oocyte stage	b. secondary oocyte	stage c. ootid stage	d. matured ova stage	
11	. The formation of	f the neural tube is kno	wn as		
	Neurulation	b. Tubulation		d. None of the above	
12. During metamorphosis, the disappearance of larval organs is called					
	<u> </u>	b. Paedogenesis	c. Histolysis	d. Paedomorphosis	
13		e found in		-1	
a.	Birds	b. mammals	c. insects	d. molluscs	
14	14. Metamorphosis is a characteristic feature of				

a. Direct ontogenic development	b. Indirect ontogenic development	c. Chordates d.	Embryogenesis in mammals		
15. The sexual emb	15. The sexual embryo of the male and female frogs is called				
a. Copulation	b. Amphimixis	c. Syngamy	d. Amplexus		
16. Human egg is					
a. Centrolecithal	b. Microlecithal	c. Mesolecithal	d. Telolecithal		
17. Which of the fol	lowing develops from ed	ctoderm?			
a. Spinal cord and brain	b. Liver and heart	c. Eye and skin	d. Notochord and vertebral column		
	me structurally and funct ss of differentiation calle	cionally a spermatozoan, e	each spermatid has to		
a. Spermiation	b. Spermiogenesis	c. Spermatogenesis	d. Androgenesis		
19. In the human fer	nale, the primary oocyte	s remain small without ar	ny growth for		
a. 4-5 years	b. 6-8 years	c. 8 - 10 years	d. 12 -14 years		
20. The sperm producalled	uces substances of enzyn	natic nature of sperm lysi	n. In mammals, it is		
a. Hyaluronidase	b. Hyaluronic acid	c. Androgamone	d. Cryanogamone		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUES'	TIONS
21. A) What is differentiation? How it differs from redifferentiation?	(OR)
B) What is meant by embryonic period of development?	
22. A) State the functions of cytoplasmic determinants.	(OR)
B) Define inductive signals with an example.	
23. A) Define cleavage and mention its importance.	(OR)
B) What is gastrulation? State its significance.	
24. A) How the nervous system develops in human?	(OR)
B) What make up the central nervous system of vertebrates?	
25. A) Define plant meristem. State its types.	(OR)
B) Draw the structure of a flower and label its parts.	

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. V	What are the stages of a developing embryo? Give illustrations.
27. V	Why <i>Drosophila melanogaster</i> is used as model organisms? Comment on it.
	Justify the statement - <i>Caenorhabditis elegans</i> as an emerging model for studying the basic biology.
29. I	Describe germ layers and organs produced by them in detail.
30. I	Draw the structure of plant cell and elaborate its cell inclusions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I FOOD BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS03	External	: 60

PREAMBLE

To make students on understanding basic concepts of food preservation methods by applying technological basics. The paper also deals with the food spoilage, food adulteration and development of value added products

COURSE OUTCOMES

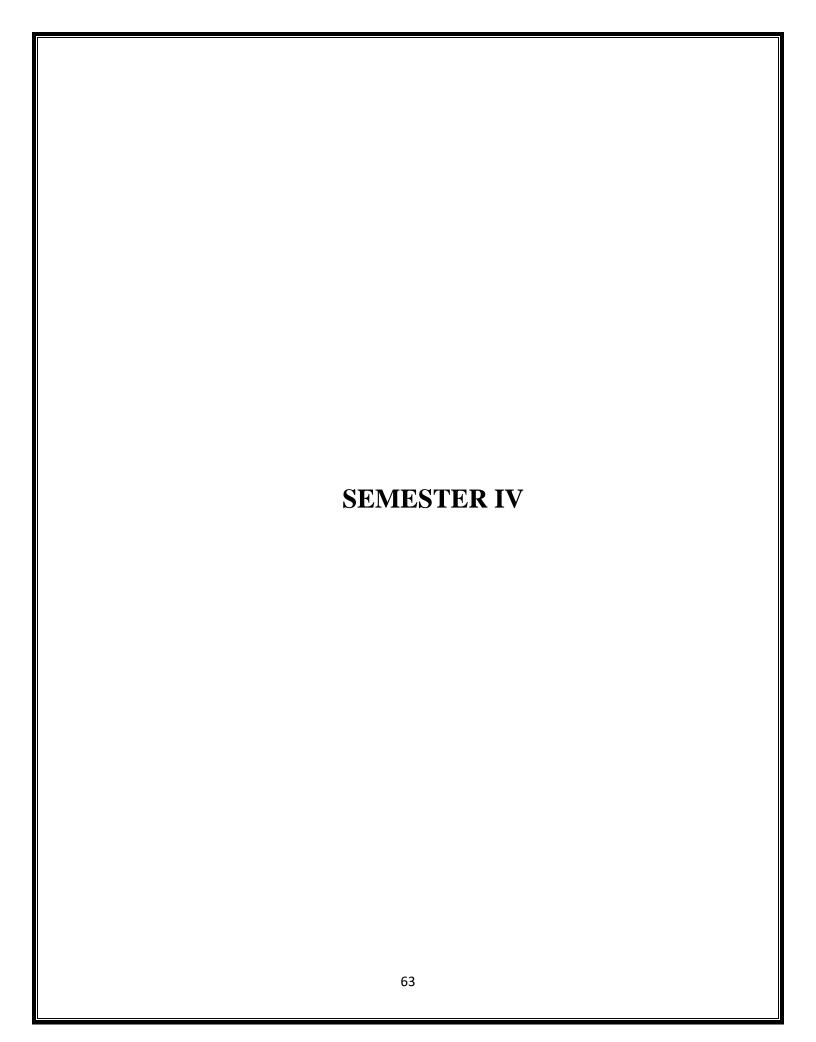
On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of basic food preservation methods	K1 & K2
CO2	To understand the role of water in food spoilage and preservation	K1 & K2
CO3	To explore the physical factors involving in food processing	K1 & K2
CO4	To make familiar with food sanitation and its importance	K2, K2 & K3

MAPPI	MAPPING WITH PROGRAMME OUTCOMES				
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	M	M	M

UNIT	CONTENT	HOURS
I	Food Preservation by application of Heat: Principles of Heat Transfer, Blanching, Pasteurization, Heat Sterilization.	8
II	Food Preservation through Water Removal: Forms of Water in Foods, Sorption of Water in Foods, Water Activity, Drying Technology, Evaporation Technology.	8
III	Food Preservation through Temperature Reduction: Chilling, Freezing, Food Preservation by Radiation, Ionizing Radiation, Microwave.	8
IV	Food Preservation by use of: Salt, Smoke, Sugar, Other Chemical Additives, Food Packaging, Food Plant Sanitation, Environmental Aspects of Food Processing.	8
V	Roles and Scientific Use of Water in Food Processing, Food Processing Waste Management, Process Operations, Principles, Good Manufacturing Practices, Food Laws and Regulations.	8

${\bf MODEL\ QUESTION\ PAPER\ (FOOD\ BIOTECHNOLOGY)}$


NAME OF THE COURSE: FOOD	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	18U3BTS03	
MAX MARKS: 75		

		SECTION	$N - A (1 \times 20 = 20)$	MARKS)	ANSWE	R ALL THE	QUESTIONS
	1.	Pasteurization is t	the process of heati	ng milk			
	a.	Above 121°C	b. Above boili	ng point		Below boiling point	d. Above 150 °C
	2.	Cold sterilisation	refers to the preser	vation of f	ood by		·
	a.	Refrigeration	b. Radiation		. Dehyd	ration	d. Lyophilisation
	3.	Who is regarded	as the father of can	ning?			
a.	Ni	colas appert	b. Louis Pas	teur	c	John hall	d. Bryan dokin
	4.	The reason for fo	od spoilage is				•
	a.	Growth of microo	organism b. A	Autolysis	c.	Rancidity	b. All the above
	5.	Before drying, ve	egetables should be				
a.	Αυ	itocleave	b.Salted		b.]	Blanched	c. Sulfured
	6.	A food additives	that prevent colour	and flavou	ır loss		1
	a.	Enzymes	b. Yeast		c. Fruit	buffer	d. Ascorbic acid
	7.	Preventing the gr	owth of pathogens	in food			
a.	Dar	nger zone b.	Contamination	c. Food	preservati	on d. C	Cross contamination
	8.	Jam and jellies ar	nd preserves can be	preserved	by adding	g sugar at co	ncentration of
	a.	65%	b. 75%		c. 4	40%	d. 30%
	9.	A fungus that cau	ises fermentation		•		
a.	Ba	cteria	b. Mold		c.	Yeast	d. Virus
	10	. A type of food containers		nique that	involves	s sealing foo	od in sterilized air light
	a.	Irradiating	b. Canning		c. 1	Freezing	d. Drying
	11	. Iodized salt conta	nins iodine in the fo	rm of			1
	a.	NaCl	b. KIO3		c.]	Kl	d. Na
	12	. The first synthetic	c sweetening agent	used as		?	
	a.	Cyclamates	b. Aspartam	e	c. S	Sucralose	d. Sacchavrin
	13	. Agar-agar is used	l as				<u>.</u>

A	0. 1 11 1 1 1 1	N T	1 6 1	
a. Antibiotic b.	Stabilizer and thickness	c. Nutrient supplement	d. Colouring agent	
14. Frozen storage is	generally operated at temper	rature of		
a0°C	b18°C	c50°C	d. 60°C	
15. What is the best r	nethod in storing nuts?			
a. Vacuum packing	b. Smoking	c. Drying	d. Freezing	
16 Sta	ndard help ensure food quali	ity?		
a. National	Packing	b. Legal	c. All of these	
17. The freezing poin	t for pure water is			
a. 10	b. 28	c. 15	d. 32	
18. Corn syrup is a m	ixture of	•		
a. dextrose and maltose	b. Dextrose and Galactose	c. Galactose and Maltose	d. Glucose and Galactose	
19is	s essential for forming haemo	oglobin in the blood		
a. Calcium	b. Iron	c. Phosphorn	d. Magnesium	
20. Fat is completely	digested in the			
a. Stomach	b. Mouth	c. Small intestine	d. Mouth	
SECTION	-B (5 X 5 = 25 MARKS) A	NSWER ALL THE OLIES	STIONS	
21. A) Write short not			(OR)	
22. A) Explain drying	5		(OR)	
23. A) Notes short not	B) Define contamination? What is the role of water in contamination? 23. A) Notes short notes on freezing? (OR)			
24. A) Write short not	e of radiation in food preserves on chemical additives?		(OR)	
25. A) What is food properties and a B) Food laws and a		preservation?	(OR)	

SI	ECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the	essay on food preservation principles and application?
27. Explain t	he evaporation methodology?
28. Write an	essay on the physical, chemical methods of food preservation?
29. Write an	essay on the environmental aspects of food processing?
30. Roles and	d scientific uses of water in food processing industries?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

GENETIC ENGINEERING

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U4BTC04	External	: 75

PREAMBLE

To make students on understanding basic principles of gene manipulation and its application in the development of novel pharmaceutical and drug products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about DNA manipulating enzymes and its role in rDNA	K1 & K2
	technology	
CO2	To gain knowledge on different types plasmid vectors and their	K1 & K2
	usage	
CO3	To acquire knowledge on basic gene cloning strategies	K2, K3 & K4
CO4	To evaluate the usage and applications of gene cloning for the	K5 & K6
	development value added products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	SCOPE AND MILESTONES OF GENETIC ENGINEERING: Biomolecular tools and their applications in genetic engineering: Restriction endonucleases and its types, DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I.	15
II	GENE CLONING VECTORS: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors and artificial chromosomes (YAC and BAC). DNA sequencing (Maxam-Gilbert and Dideoxy) methods. DNA amplification: PCR (Principles & types - RT PCR, Real time PCR and Nested PCR). cDNA synthesis and cloning:	15

	mRNA enrichment, reverse transcription.	
III	CLONING STRATEGIES: Cloning of interacting genes - Yeast two hybrid systems. Cloning of differentially expressed genes - Nucleic acid micro arrays and Site directed mutagenesis. Methods to study gene regulation: DNA transfection, Primer extension, S1 mapping, RNase protection assay.	15
IV	INTRODUCTION TO CLONING: Detection & Screening of clones. Expression strategies for heterologous genes. Vector engineering and codon optimization. <i>In-vitro</i> transcription, expression of cloned genes in prokaryotes (bacteria – Glucose promoter) and eukaryotes (Yeast – Alcohol promoter).	15
V	APPLICATIONS OF rDNA TECHNOLOGY: Processing of recombinant proteins, Purification and refolding, characterization of recombinant proteins, stabilization of proteins. T-DNA tagging and transposon tagging: Role of gene tagging in gene analysis, Transgenic and gene knock out technologies: Targeted gene replacement and chromosome engineering.	15

SUGGESTED READINGS:

- 1. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 2. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 4. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.
- 5. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 6. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA. Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 7. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 8. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 9. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 10. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 11. Molecular Biotechnology Glick and Pasternak.
- 12. Principles of gene manipulations Old & Primrose.

MODEL QUESTION PAPER (GENETIC ENGINEERING)

NAME OF THE COURSE: GENETIC ENGINERING	COURSE CODE:	DURATION:
	19U4BTC04	3 Hrs
MAX MARKS: 75		

SECTION – A (20 X 1 = 20 MARKS) ANSWER ALL THE QUESTIONS				
1. <i>Taq</i> polymerase is isolated from				
a. E.coli b.		Thermus d. B.	acillus stereothermophilus	
2. Which of the foll	owing sequence is recognize	ed by Hind III?		
a. AA GCTT	b. A AGCTT	c. GTCGA C	d. GT CGAC	
3. RNase H cleaves	hybrid		1	
a. DNA-RNA	b. DNA-DNA	c. RNA-RNA	d. RNA-Protein	
4. Which of the foll	owing enzyme is used to cr	eate the sticky ends on DNA	.?	
phosphatase		nucleotidyl tranferase	. Alkaline phosphatase	
5. Which of the foll	owing vectors contains Ori	'C' sites from two different	species?	
a. Cosmids	b. M13 vectors	c. Shuttle vectors	d. Phagemids	
6. The insertional v	ector λgt10 can able to carr	y up to of foreign D	NA	
a. 4 kb	b. 5 kb	c. 7 kb	d. 8 kb	
7. The size of YRp7				
a. 5.8 kb	b. 6.8 kb	c. 5.7 kb	d. 6.7 kb	
8. Which of the foll	owing contains covalently	closed single stranded circul	ar DNA molecules?	
a. Phagemids	b. M13 vectors	c. Shuttle vectors	d. Cosmids	
9. Which of the foll	owing DNA is used as temp	plate in chain termination mo	ethod DNA sequencing?	
a. Plasmid DNA	b. Genomic DNA	c. Viral DNA	d. λDNA	
10. Denaturation of I	ONA during PCR is usually	carried out at°C		
a. 94	84	b. 64	c. 74	
11. The processed RNA is partially degraded by exonucleases to produce functional trancriptome. This method is called as				
a. cDNA library construction	b. mRNA enrichmen	sequencing	d. DNA amplification	
12. In yeast two hybrid analysis, the target gene is fused with the gene for one of the pair if transcription factors and the vector construct is ligated in to a vector				
a. YAC	a. YAC b. BAC c. SEN d. Lambda			
	13. The glucoamylase (GOX) promoter found in <i>Aspergillus nidulans</i> is induced by and repressed by			

	a. Starch, Glucose	b. Starch, Fructos	e c. Starch, Galactose	d. Starch, Xylose
	14. The chemical me	thod of DNA sequencing	can be used to rapidly sequen	ce DNA that are
	a. < 0.5	b. > 0.5	c. < 1.0	d. > 1.0
	15. The DNA – phos	phate containing mixture	is incubated with the recipien	t cells for
a.	24 hrs	b. 48 hrs	c. 72 hrs	d. 98 hrs
	16. Short pulses are a	generated in electroporation	on in higher voltage at the rate	e of
	a. 1100 V	b. 1200 V	c. 1300 V	d. 1400 V
	17. Which of the following protein is first manipulated for enhancing its enzymatic activity through protein engineering?			
	a. Amylase	b. Subtilisin	c. Anti-trypsin	d. Chymotrypsin
	18. Which of the following assay is useful for monitoring for the purification and function mf many different enzymes catalysing the synthesis of polymers like DNA, RNA, or proteins?			
	a. Enrichment	b. Manipulating	c. Incorporation	d. Sequence specific
	assay	assay	assay	targeting assay
	19. Which of the following method comes under gene tagging technology?			
a.	Selection based gene tagging	b. rDNA tagging	c. Marker assisted tagging	d. Epitope tagging
	20. The given chromosome can be engineered by the principle of			
	a. Addition	b. Point mutation	c. Inversion	d. None of the above

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) Write short notes on DNA modifying enzymes (OR)
B) Write short notes on type III restriction endonucleases
22. A) Write about PBR 322 with neat illustrations (OR)
B) Explain about the principle of mRNA enrichment
23. A) Explain the process of site directed mutagenesis (OR)
B) Explain the principle of S1 mapping with neat illustrations
24. A) Give a brief account on codon optimization (OR)
B) Explain the expression of cloned in eukaryotes with suitable example
25. A) Write short notes on transposon tagging (OR)
B) Write shortly about gene knock technology
B) Explain the expression of cloned in eukaryotes with suitable example 25. A) Write short notes on transposon tagging (OR)

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on restriction endonucleases
27. Give detailed account on M13 vectors
28. Give detailed account on cloning differentially expressed genes
29. Give detailed account on expression of heterologous genes
30. Give detailed account on processing, purification, refolding and characterization of recombinant proteins

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN GENETIC ENGINEERING

Paper : Core Practical IV **Total Hours** : 75 Hours/Week : 4 Exam Hours : 06 Credit : 3 Internal : 25 Paper Code : 75 : 19U4BTCP04 External

PREAMBLE

To make students on understanding basic principles on the usage of genomic and plasmid DNA in the development of microbial recombinant clones by selection strategies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To isolate genomic and plasmid DNA, and to digest them restriction	K2, K3 & K4
	enzyme	
CO2	Shall acquire practical knowledge on ligating vector and target DNA	K2, K3, & k4
CO3	Shall know about the amplification strategies of cloned vector	K3, K4 & K5
CO4	To demonstrate the selection of recombinant clones by using selectable markers	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Genomic DNA from E.coli	10
2	Isolation of Plasmid DNA mini prep and maxi prep from E.coli	10
3	Construction of restriction map of a plasmid by Hind III and BamHI	10
4	Ligation of DNA and plasmid by T4 DNA ligase	5
5	Purification of DNA fragment from gel by electro-elution	5
6	Amplification of ligated plasmid by PCR	10
7	Transformation of recombinant DNA in Host <i>E.coli</i> by CaCl method	10
8	Selection of recombinant clones by (IPTG-X-gal: Blue white selection)	15

MODEL QUESTION PAPER (LAB IN GENETIC ENGINEEING)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6 Hrs
GENETIC ENGINEERING	19U4BTCP04	
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
4. (i) Isolate ger	nomic DNA from the gi	ven bacterial samp	ole (A). Display the results for	
observation			(OR)	
(ii) Isolate pla	asmid DNA from the gi	ven bacterial samp	ble (A). Display the results for	
observation			(OR)	
(iii) Perform	restriction digestion of	the given DNA sar	nple (A) using the given	
enzyme/s. Display th	e results for observation	n		
MINOR EXPERIM	IENT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
5. (i) Perform li	gation of the given DN	A sample (B) using	g DNA ligase. Display the	
results for ob	servation		(OR)	
(ii) Perform I	ONA transformation in	the given host cell	sample (B) using calcium	
chloride			(OR)	
(iii) Purify th	e given DNA sample (H	B) by electro elution	n. Display the results for	
observation				
SPOTTERS			(5 X 4 = 20 MARKS)	
6. Identify the given spotters C, D, E, F & G and comment on them				
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$	
VIVA-VOCE 5 MARKS				
TOTAL 60 MARKS				

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT SCIENCE II

Paper	: ALLIED IV	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospectives.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic concepts of phyllotaxy	K1 & K2
CO2	To make clear cut understanding of Bentham's and Hooker's classification	K1 & K2
CO3	To understand the concepts of plant anatomy and ecology	K4 & K5
CO4	To understand the concepts of plant embryology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	M
CO2	M	S	S	S	S
CO3	S	M	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	EXTERNAL MORPHOLOGY: Phyllotaxy. Types of leaf – simple and	
	compound. Inflorescence – Rocemose, Cymose and special types (Head &	12
	Cyathium). Terminology with reference to flower description.	
II	TAXONOMY: Bentham & Hooker's system of classification. Study of	
	major plant families and their economic importance (Annonaceae,	12
	Rubiaceae, Cucurbitaceae, Asteraceae and Poaceae).	
III	ANATOMY: Simple & Permanent tissues: Parenchyma, Collenchyma &	
	Sclerenchyma. Complex permanent tissues: Xylem & Phloem. Primary	12
	structure of dicot root and stem; monocot root and stem.	
IV	PLANT ECOLOGY: Climatic factors, morphological and anatomical	12
	adaptations in hydrophytes and xerophytes.	12

V	EMBRYOLOGY: Structure of anther and male gametophyte. Types of	
	ovule and female gametophyte (Polygonum). Fertilization process. Structure	12
	and development of dicot embryo (Capsell - Bursa pastoris).	

SUGGESTED READINGS:

- 1. Bhijwani SS and Bhatnagar SP. (2009). The embryology of angiosperms. Vikas Publishing House Private Limited, New Delhi.
- 2. Davis PH and Heywood VM. (1965). Principles of Angiosperm Taxonomy. Oliver and Boyd, Edinburgh.
- 3. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited, New Delhi.
- 4. Pandey BP. (2001). Plant Anatomy. S.Chand and Company Private limited, New Delhi.

LAB IN PLANT SCIENCE II

Paper	: ALLIED PRACTICAL IV	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U4BOAP02	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospective.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the practical concepts of general plant families	K1 & K2
CO2	To understand the microscopic observations of anatomy	K1 & K2
CO3	To acquire practical exposure in sectioning of plant tissues	K1, K2 & K4
CO4	To acquire basic experimental approach on mounting and preparation of permanent slides	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

ii) Dicot stem or Dicot root

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	M
CO2	S	S	S	M	S
CO3	M	S	S	S	M
CO4	S	S	M	S	S

1.	Identification of plant families (Any two out of five)	$(2 \times 5 = 10 \text{ marks})$
	a. Annonaceae, Rubiaceae and Cucurbitaceaei	5 marks
	b. Asteraceae and Poaceae	5 marks
2.	Identification of spotters (Economic importance)	$(5 \times 3 = 15 \text{ marks})$
	c. Annonaceae	3 marks
	d. Rubiaceae	3 marks
	e. Cucurbitaceae	3 marks
	f. Asteraceae	3 marks
	g. <i>Poaceae</i>	3 marks
3.	Sectioning of given plant part (Morphology)	(2 x 5 = 10 marks)
	h. i) Monocot stem or monocot root	

	i.	i) Hydrophyte		
		ii) Zerophyte		
4.	Dissec	t and mount anyone stage of the given plant embryo (j)	(1×6)	= 6 marks)
5.	Identif	ication of spotters (Permanent slides)	(3×3)	= 9 marks)
	k.	Anatomy (Simple and complex tissue)		3 marks
	1.	Embryology (Transverse section of anthers and types of or	vules)	3 marks
	m.	Ecology (Zerophyte - Nerium and Hydrophyte - Hydrilla)		3 marks
6.	Recor	d		10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - II

LAB IN POULTRY SCIENCE

Paper : SBEC I **Total Hours** : 40 Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 17U4BTS04 : 75 External

PREAMBLE

To make students on gaining practical exposure on poultry science and technology and its economic management and quality analysis of poultry products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD	
CO1	Evaluate quality control parameters of poultry for disease	K4, K5 & K6	
	diagnosis		
CO2	To evaluate the microbial contamination of poultry products for	K4, K5 & K6	
	quality enhancement		
CO3	To evaluate poultry micro flora	K4, K5 & K6	
CO4	To validate the preservation of poultry products and evaluation	K4, K5 & K6	
	of its nutritive quality		

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	S	S	S

Ex.no	CONTENT	HOURS
1.	Post-mortem examination of chickens and laboratory diagnosis of diseases	4
2.	Sero monitoring of viral infections in poultry	4
3.	Surveillance of common diseases prevailing in commercial poultry farms	5
4.	Screening of Salmonella of zoonotic importance in poultry and related products	4
5.	Monitoring the health management in commercial poultry farms	5
6.	Isolation and prevalence of Microbes in poultry products	5
7.	Egg preservation by various methods	4
8.	Egg quality analysis	4
9.	Protein and Lipid estimation from egg samples	5

MODEL QUESTION PAPER (LAB IN POULTRY SCIENCE)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
POULTRY SCIENCE	17U4BTS04	
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform the	enumeration of microbe	s from the given poultry	sample (A) (OR)	
(ii) Perform pre	eservation of the given eg	gg sample (A) by salt me	ethod (OR)	
(iii) Estimate th	e protein level in the giv	en poultry sample (A) b	y Lowry's method	
MINOR EXPERIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform lipid	2. (i) Perform lipid estimation from the given poultry sample (B) (OR)			
(ii) Perform pre	(ii) Perform preservation of given egg sample (B) by freezing (OR)			
(iii) Find out th	e thickness of given egg	shell sample (B) by Gau	ige meter	
SPOTTERS	SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$			
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $				
VIVA-VOCE	VIVA-VOCE 5 MARKS			
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - II

MARINE BIOTECHNOLOGY

Total Hours : SBEC I : 40 Paper Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 18U4BTS05 : 75 External

PREAMBLE

To make students on understanding the significance and importance of marine micro biota and its rational applicability in the development of industrially important products. The students also gain knowledge on the environmentally hazardous management marine ecosystem.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basics of marine ecosystem and its pollution issues	K1 & K2
CO2	To understand basic biodegradation and bioremediation marine ecosystem pollutants	K2 & K4
CO3	To understand the principles of bio fouling	K2 & K4
CO4	To acquire knowledge of wastewater treatment in marine ecosystem	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	M
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Marine organisms and environment interaction: Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction; Green - house gases (CO2 and Methane)	8
II	Pollution: Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans) and accumulators: Application of Protein biomarkers; Biosensors and biochips.	8
III	Biomaterial interaction: Biodegradation and Bioremediation; Biodegradation of natural and synthetic waste materials; Bioremediation;	8

	Separation, purification and bio removal of pollutants.		Ī
	Fouling and corrosion: Biofouling; Biofilm formation; Marine fouling		1
IV	and boring organisms - their biology, adaptation; Factors influencing the	8	
	settlement of macrofoulers; Antifouling and Anti boring treatments;		
	Corrosion Process and control of marine structures.		
**	Wastewater bio treatment: BOD, COD; Biosensors; Biomolecules;		
V	membrane and transducer; Bioaugmentation-estimation of microbial load;	8	
	Methods of Inorganic and Organic waste removal.		

SUGGESTED READINGS:

- 1. Recent Advances in Marine Biotechnology Volume 3 Milton fingerman et al., 1999.
- 2. Cynobacterial and Algal Metabolisms and Environment Biotechnology Tasneem Fatma, 1999.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000.
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Environmental Biotechnology Gareth M.Evams et al., 2003
- 6. Biotechnology, Recombinant DNA Technology, Environmental Biotechnology S.Mahesh et al., 2003

MODEL QUESTION PAPER (MARINE BIOTECHNOLOGY)

NAME OF THE COURSE: MARINE	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	18U4BTS05	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS								
1	1.	1. Which of the following is/are example(s) of conventional source of energy?						
8	a.	Fossil fuels		b. Solar energy		c. Tidal ene	ergy	d. all of the above
2	2.	Global warmin	g is	s caused due to				
г	a.	Decrease in		b. Decrease in C		c. Decre	ase in	d. increase in
		CO ₂ conc.		conc.		SO_2 c	onc.	NO_2 conc.
3	3.	Which is the m	ost	primitive group of a	algae	?		•
8	a.	Blue green alga	ae	b. Red algae		c. Brov	vn algae	d. Green algae
4	4.	Ability to fix at	tmo	ospheric nitrogen is t	found	d in		
8	a.	Leaves of some		b. Chlorella		c. Some	marine	d. Some Blue
		crop plants				Red al	lgae	green algae
	5.	Which of the fo	ollo	owing bacterium is c	alled	as the superbu	g that co	ould clean up oil spills?
8	a.	Bacillus subtili	S	b. Pseudomoni	as	c. Pseud	lomonas	d. Bacillus
				putida			ificans	denitrificans
6	6.	Which of the fo	ollo	owing is a major cau	se of	pollution?		
8	a.	Plants	b	. Bacterial spore		c. Fungi	d.	Hydrocarbon gas
7	7.	Minamata disea	ase	is caused by pollution	on of	f water by		
8	a.	Mercury		b. Lead		c. Tin	4	d. Methyl iso cyanide
8	8.			=	f the	following gen	etically	modified organism will
		be the best cho	ice					
8	a.	Plant		b. Animal	c.	Bacteria		d. None of the above
ç	9.	Purification str	ate	gies in municipal wa	iter s	upplies involve	es	
8	a.	Sedimentation		b. Filtration		c. Disinf	ection	d. All the above
1	10.	Sedimentation	of	large particulate mat	ter is	s enhanced by		
a. A	lu	minium	b	. Potassium		c. Potassium		d. Chlorine
1	11.	Septic tank is -						
		aerobic condition	b			An anaerobic co		d. An anaerobic
			condition with					
tr	eat	tment system		suspended growth biological		treatment systen	11	suspended growth treatment system
				treatment system				trouthent system

12. The process of converting environmental pollutants into harmless products by naturally occurring microbes is called				
a. Ex situ bioremediation	b. Intrinsic bioremediation	c. Extrinsic bioremediation	d. None of these	
13. Dry corrosion is	also called as	1	'	
a. Chemical corrosion	b. Electrochemical corrosion	c. Wet corrosion	d. Oxidation corrosion	
14. Which of the fol	lowing comes under the w	vet corrosion?		
a. Concentration cell corrosion	b. Oxidation corrosion	c. Liquid metal corrosion	d. Corrosion by other gases	
15. Initial attachmen	nt of microorganisms ofter	n involves		
a. Flagella and is reversible	b. Flagella and is irreversible	c. Exopolymers and is reversible	d. Exopolymers and is irreversible	
16. What is the valu	e of fouling factor for sea	water?		
a. 0.0001-0.0002 m ² K/W	b. 0.0002-0.0003 m ² K/W	c. 0.0003-0.0004 m ² K/W	d. 0.0004-0.0005 m ² K/W	
	ch the biological processe is called	s are used to purify wate	r in a wastewater	
a. secondary sewage treatmer	b. primary sewag at treatment	c. wastewater reduction	d. biochemical reduction	
18. Aggregates of m	icrobes as tiny masses in	activated sludge process	is called	
a. Activated sludge	e b. Masses	c. Colloidal masses	d. Floccules	
19. High BOD indicates				
a. Less polluted water	b. Less number of organisms	c. More polluted water	d. None of the above	
20. BOD/COD ratio	will always be			
a. = 1	b. > 1	c. <1	d. None of the above	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Describe the food and feeding habits of marine organisms	(OR)
B) Briefly describe the pigments present in marine organisms	
22. A) Discuss the role of microbes in the sea	(OR)
B) Discuss the sources of pollution in marine environment	
23. A) Discuss the current status of seaweed farming in India.	(OR)
B) Give an account on the NMR characterization of biomolecules.	
24. A) Discuss the role of biotechnology in fouling and corrosion	(OR)
B) Give an account of bio-deterioration in marine environment	
25. A) Describe the composition, fate and effects of sewage pollution in sea	(OR)
B) Give account of the sources and treatment of oil pollution in sea.	

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIC	ONS

- 26. Discuss "Sea is a Biological Environment".
- 27. Discuss the sources of pollution and treatment methods in marine environment.
- 28. Give a detailed account on Biodegradation and Bioremediation
- 29. Describe the Corrosion process and control measures
- 30. Give detailed account on various techniques involved in waste water treatment using microbes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - II

FORENSIC SCIENCE AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS06	External	: 75

PREAMBLE

To make students on understanding the importance of forensic principles and technology and its practical applicability in identifying the candidate who convicted the crime scenery. The students also gain added skills in terms tracing the victim death by means of adapting the measurable molecular approaches.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gain knowledge on forensic science laboratories across India	K1, K2 & K3
CO2	Acquires knowledge on fingerprint identification system	K3, K4, & K5
CO3	Know whereabouts on the FAI and the concepts of fatality forensics	K3, K4, & K5
CO4	Understand the concepts of DNA finger printing technology	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction, definition, Scope and branches of forensic science. Central F.S.L. and State F.S.L. Biological Evidence: Nature, collection, identification, evaluation of hair and fibres.	6
II	Definition and Classification of fingerprints (Henry system). Taking fingerprints from living and dead persons. Automatic fingerprint identification system (AFIS).	7
III	Forensic Art Illustration: Introduction, Finding and identifying human face image. Post mortem drawing, methods of superimposition.	5
IV	Fatality Forensics: Introduction, cause, manner and characteristics of death, Road traffic fatality (RTF) investigation. General classification of RTFs.	5
V	DNA Fingerprinting (DFP) technology: An overview, Applications of DFP in forensic investigations, paternity disputes. DNA Profiling practice in India with reference to criminal cases.	7

SUGGESTED READINGS:

- 1. Richard Saferstein, 2001, Criminalistic: An Introduction to Forensic Science. 7th edition Prentice-Hall, New Jersey.
- 2. Chowdhri, S., Forensic Biology B.P.R. &D, Govt. of India.
- 3. Cammins, H. and Middle C., 1961. Fingerprints Palms and Soles. Dover Publications.
- 4. Furley, M.A. and Hamington, J.J. Forensic DNA Technology.
- 5. Kirby, DNA Fingerprinting Technology.
- 6. Epplen, J.T. and Eabjulm, T., 1999. DNA Profiling and DNA Fingerprinting Bukhaagar Verlag, Switzerland.
- 7. Taylor, 2000. Forensic Art and Illustration, CRC Press.

MODEL QUESTION PAPER (FORENSIC SCIENCE AND TECHNOLOGY)

NAME OF THE COURSE: FORENSIC	COURSE CODE:	DURATION: 3 Hrs
SCIENCE AND TECHNOLOGY	18U4BTS06	
MAX MARKS: 75		

		SECTION	- A	$(1 \times 20 = 20 \text{ M})$	1ARK	(S)	ANSWER ALL T	HE (QUESTIONS
	1.	The dark portion	n of	the fingerprint	is call	ed -			
	a.	Core		b. Valley		(c. Delta		d. Ridge
	2.	The most comm	on t	ype of fingerpri	int pa	ttern	is		
	a.	Whorl		b. Accidental			c. Loop		d. Arch
	3.	Fingerprints dis	solv	ed in this only g	grow l	back	with scars on the	m m	aking them more unique
	a.	Base		b. Water			c. Acid		d. Neutral
	4.	Most common f same side they	_		t has	ridg	es that enter from	the 1	right and exit from the
	a.	Arch		b. Whorl			c. Wheel		d. Loop
	5.	The region in sk	in f	ound in between	n the	epid	ermis and dermis	is th	elayer
	a.	Тор		b. Subcutan			c. Cuticle		d. Basal
	6.	The study of fin	gerp	orint is called		-			
	a.	Dactylography	b.	Printology	C	c. <i>A</i>	Anthropometry	(d. None of the above
	7.	Fingerprints on sweat to make a				h th	is chemical that re	eacts	with amino acids in
	a.	Ninhydrin		b. Iodine		c.	Cyanocrylate		d. Silver nitrate
	8.	What is the basi	s fo	r the determinat	ion o	f the	primary classific	ation	of fingerprints?
	a.	The presence or absence of arch patterns		b. The presence or absence o whorl pattern	f	c.	The presence or absence of loop patterns		d. The presence or absence of minutiae
	9.	For most finger	orint	examiners, the	chen	nical	of choice for visu	ualiz	ing latent prints is
	a.	Ninhydrin		b. Iodine			c. Chlorate		d. Silver nitrate
	10	. The oldest chem	nical	method used to	visu	alize	e latent prints is		
a.	Las	er illumination		b. Iodine fum	ning	c.	Cyanocrylate esta fuming	er	d. Silver nitrate reagent
	11.	. Identical twins l	nave	identical					, ,
	a.	Genetic makeup)	b. Eyes		c.	Fingerprints		d. None of the above
	12	. Fingerprints for	mati	on is					
a.		on-going time process	b.	Complete by age	the	c.	Occurring at birth	d.	Occurring during fetal development
	13.	. The only way to	per	manently chang	ge you	ır fii	ngerprint is to		

a. Damage dermal papillae	b. Wash with acid	d c. Sand the ridges	d. Burn the skin			
14. The most common ridge pattern is						
a. Arch	b. Whorl	c. Wheel	d. Loop			
15. Fingerprints are -						
a. Valuable evidence	b. Individual evidence	c. Class evidence	d. Always good			
16. DNA finger print	ing was developed by					
a. Francis Crick	b. Khorana	c. Alec Jeffrey	d. James Watson			
17. The technique to	distinguish the individu	als based on their DNA pr	rint patterns is			
a. DNA fingerprinting	b. DNA profilin	g c. Molecular fingerprinting	d. All the above			
18. The DNA fingerp	rint pattern of a child is	·	•			
a. Exactly similar to that of both of the parents		c. 100% similar to the mother's DNA print	d. 50% bands similar to father and rest similar to mother			
19. Each individual h		rprint as individuals differ	in			
a. Number of	b. Location of minisatellites on	c. Size of minisatellites on	d. All the above			
minisatellites on chromosome	chromosome	chromosome				
minisatellites on chromosome 20. DNA profiling ted	chromosome chnique to demonstrate	chromosome the similarity between dif DNA sequences is called				

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUEST	IONS
21. A) Write short notes Organizational set up of Forensic Science Labora	tories (OR)
B) Write short notes on Scope and branches of forensic science	
22. A) Write about Classification of fingerprints	(OR)
B) How will you take fingerprints from living and dead persons?	
23. A) How will you find and identify human face image?	(OR)
B) How will you perform post mortem drawing?	
24. A) Write about Road traffic fatality (RTF) investigation	(OR)
B) Explain the basic injury mechanisms	
25. A) Explain the applications of DNA fingerprinting technology	(OR)
B) Write short notes on statutory considerations	

SECTION - C	$^{\circ}3 \times 10 =$	30 MARKS)	ANSWER ALI	THE	DUESTIONS
DECITOR O	J 11 10 -	20 1111 HILLS)			CEDITOIN

- 26. Give a detailed account on Organizational set up of Forensic Science Laboratories
- 27. Write an essay on digital comparison of finger prints
- 28. Write elaborately on Forensic artist in court
- 29. Give a detailed fatality forensic science
- 30. Write an essay on quality assurance measures of DNA fingerprinting

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

IMMUNOLOGY

Paper : Core V **Total Hours** : 75 Exam Hours Hours/Week : 5 : 03 Credit : 5 Internal : 25 Paper Code : 19U5BTC05 External : 75

PREAMBLE

To make students on exposing themselves to know in underlying concepts of biology of the immune system and how immunity being developed in human beings. In addition the students also know whereabouts on the mechanisms on the host pathogen interaction, principle defence mechanisms against infectious diseases and basic immune diagnostic techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire knowledge on history on immunology development, and	K1 & K2
	cells and their role in developing overall host immune system	
CO2	Knowing about the functions and properties of immunoglobulin	K1 & K2
	and its expression in genetic level	
CO3	Acquire knowledge on antigen recognition and its processing	K1, K2 & K4
	principles by host immune system	
CO4	Acquire basic concepts of immune regulatory molecules and	K1, K2, K4 & K5
	their role in defence and concepts of autoimmunity	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	HISTORY AND SCOPE OF IMMUNOLOGY: Types of Immunity. Cells of Immune system. Organs of Immune response and their functions. Haematopoiesis. Antigen- properties, classes, epitopes, haptens and adjuvants. Factors influencing antigenicity. Immunoglobulin- Structure, types, properties and functions.	13

II	IMMUNOGLOBULINSANDITSEXPRESSION:Immunoglobulin- Immunoglobulin diversity.Structure, types, properties and functions.Immunoglobulin diversity.gene re-arrangements.Generation antibody and its regulation.	15
III	ANTIGEN PROCESSING AND PRESENTATION: MHC – types and importance- distribution and function. Antigen processing and presentation to T- lymphocytes. Major classes of MHC genes and its regulation.	17
IV	CYTOKINES, IMMUNE CELL ACTIVATION AND ALLERGIC REACTIONS: Definition of cytokines, classification and types of cytokine, Biological functions of cytokines. Cytokine receptors. T-cell and B-cell activation and differentiation. Hypersensitivity reactions and its types.	15
V	AUTOIMMUNITY: Definition, types of autoimmune disorders. Mechanism of autoimmunity. Vaccines and its types. Immune response to bacterial, protozoal, parasitic diseases. Immuno deficiency diseases (HIV). Transplantation immunology – types of grafts. Mechanism of graft rejection. Immune suppression.	15

SUGGESTED READINGS:

- 1. Ivan Riot Blackwell, 1988. Essentials of Immunology (6th Edition): Scientific Publications, Oxford,
- 2. Paul W.E (Eds) Ravan prss 1988. Fundamentals of Immunology:, New York,
- 3. Harlow and David Lane, 1988. Antibodies A laboratory Manual: cold spring harbor laboratory.
- 4. Janis Kuby Immunology, 1997. WH Freeman & Company, New York.
- 5. Tizard,1995.Immunology IV Ed Saunders college publishers, New York.
- 6. Robert M.Coleman., 1992. Fundamental Immunology. 2 nd edition., Wim. C.Brown Publishers.
- 7. Eli Benjamini et al., 1991. Immunology A short course –Wiley Publishers, NY.

${\bf MODEL\ QUESTION\ PAPER\ (IMMUNOLOGY)}$

NAME OF THE COURSE: IMMUNOLOGY	COURSE CODE:	DURATION: 3 Hrs
	19U5BTC05	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS									
1. The ability of an organ	nism to resist infections by	the pathogens is called?							
a. Infection	b. Hypersensitivity	c. Immunity	d. Allergy						
2. Which of the following	g is NOT a poly morpho n	uclear leukocyte?							
a. Eosinophil	b. Mast cell	c. Macrophage	d. Basophil						
3. Name the first cell wh	3. Name the first cell which recruited at the place of infection.								
a. Nk cell	b. Basophil	c. Neutrophil	d. Macrophage						
4. Which of the following	g cell is a multipotent cell?	?							
a. T-cell	b. B-cell	c. HSC	d. Monocytes						
5. Which of the following	g antibody gives a primary	immune reaction?							
a. IgG	b. IgM	c. IgA	d. IgE						
6. What is the origin of E									
a. Pancreas	b. Liver	c. Thymus	d. Bone marrow						
7. Who discovered the st	ructure of immunoglobuling	n by treating it with beta-	mercaptoethanol?						
a. Nisonoff	b. Edelman	c. Porter	d. Whittekar						
8. Name the heavy chain	of IgG.								
a. M	b. E	c. α	d. γ						
	g is NOT the characteristic								
a. Large in size b. Foreig	gnness c. Highly comp	olex d. Reproduce on	ly by binary fission						
10. Name the molecule wh	hich constitutively express	ed on the dendritic cell?							
a. Class I MHC	b. Class II MHC	c. APC	d. Antigen						
	g polypeptide is important	for the expression of MI	HC I on the cell membrane?						
a. Interferon	b. β ₂ -microglobin	c. Lymphokine	d. Interleukin						
12. Name the part of proce	essed antigen that binds to	the MHC molecule and	recognized by T-cells?						
a. Immunoglobulin	b. Paratope	c. Epitope	d. Chaperone						
13. Name the cytokines w	hich released in response t	o virus infection?							
a. Monokines	b. Interferons	c. Lymphokines	d. Interleukins						
14. Name the nerve stimulator which is responsible for the pain of the inflammation.									

a. Bradykinins	b. Prostaglandin	b. Prostaglandin c. Histamines						
15. Name the class of immunoglobulin which takes part in hypersensitivity reaction?								
a. IgG	b. IgM	c. IgA	d. IgE					
16. Out of these, which	transcription factor does not	take part in B-cell activ	vation?					
a. Abl	b. NF- kB	c. Jun	d. Fos					
17. Which among the f	17. Which among the following is not an autoimmune disease?							
a. Myasthenia gravis	b. Systemic lupus erythemat	ystemic lupus erythematosus c.Grave's disease d. Sickle cell disease						
18. Vaccination was in	vented by?	•	•					
a. Jenner	b. Pasteur	c. Koch	d. Salk					
19. Heat killed vaccine	19. Heat killed vaccines are							
a. Dead cells of bacter	a. Dead cells of bacteria b. Dead cells of virus c. Dead cells of fungi d. A & B							
20. The major molecule	20. The major molecule responsible for graft rejection is							
a. B-cells	b. T-cells	b. T-cells c. MHC d. antibodies						

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS					
21. A) Explain the organs involved in immune system (OR					
B) Write a short note on factors influencing antigenicity					
22. A) Give a short note on antibody production	(OR)				
B) Explain the IgA and IgM					
23. A) Explain the process of MHC regulation	(OR)				
B) Describe Apoptosis					
24. A) Explain Type II hypersensitivity	(OR)				
B) Brief about the classification of Cytokines					
25. A) Explain Autoimmunity	(OR)				
B) Describe AIDS and HIV types.					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give an detailed account on cells involved in Immune system
27. Explain Immunoglobulin's types, structure and functions
28. Give a detailed account on Antigen processing and presentation
29. Describe the types of hypersensitivity
30. Give detailed account on various types of vaccines and explain with suitable example

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT BIOTECHNOLOGY

Paper : Core VI **Total Hours** : 75 Hours/Week Exam Hours : 03 : 5 Credit : 5 Internal : 25 : 75 Paper Code : 19U5BTC06 External

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and	K1 & K2
	basic tissue culture techniques and their principles	
CO2	Gaining knowledge on plant secondary metabolites and their role in	K1 & K2
	defence mechanisms	
CO3	To acquire knowledge on the generation novel plant varieties by	K3, K4 & K5
	genetic manipulation strategies	
CO4	Exposing towards the application of secondary metabolites in drug	K4, K5 & K6
	development and value added products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, media preparation, plant growth regulators. Applications of crop improvement in agriculture, horticulture and forestry.	12
П	PLANT TISSUE CULTURE TECHNIQUES: Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
III	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors. Development of Insect resistant, Herbicide resistant and virus resistant plant varieties. Production of antibodies and viral antigens in plants. Biodegradable	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization - drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Cytoplasmic Male sterility (CMS).	15

SUGGESTED READINGS:

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited,1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- 10. Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

${\bf MODEL\ QUESTION\ PAPER\ (PLANT\ BIOTECHNOLOGY)}$

NAME OF THE COURSE: PLANT	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	19U5BTC06	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS											
1. Who is the father of	of tissi	ue cult	ure?								
a. Bonner	b.Ha	berland	lt	С	Laibach	1		b.	Ga	utheret	
2.The growth of plan	t tissu	es in a	rtificial m	nedia is cal	lled						
a. Gene expressi			o. Trans				nt tissue cu			d. Cell hybridization	
3.A is an	n exci	sed pie	ece of leaf	f or stem ti	issue use	ed in	microprop	agatio	n.		
a.Microshoot		b	.Medium			c.	Explant			d.Scion	
4.Cellular totipotency	y is th	e prope	erty of								
a. Plant		b. Ar			c. I					d. All of these	
5. In plant tissue culti	ure, w	hat is	the term (ORGANO	GENES]	IS m	neans?				
a. Formation of callus culture b. Formation of root & c. Genesis of organ d. None of shoot from callus culture above				d. None of the above							
6. In a cell, protoplas	t cons	ists the	e followin	g EXCEP	T						
a. Cell wall			b.	Cell memb	brane		c. Nucleus		d.	d. Cytoplasm	
7.In a callus culture								•			
a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxin promote root formation			b. Increasing level of auxin to a callus induces shoot formation and increasing level of cytokinin promote root formation c. Auxins and cytokinins are not required			d.	Only auxin is required for root and shoot formation				
8.The phenomenon o callus is known as			on of mat	ure cells to	the me	riste	ematic state	leadin	g to	the formation of	
a. Redifferentiat	ion	b.	Dediffe	rentiation		c. 6	either (a) or	r (b)		d. none of these	
9. T-DNA transfer an	ıd pro	cessing	g into plar	nt genome	requires	s pro	oducts of w	hich of	the	following genes?	
a. vir A,B		b. <i>v</i>	rir G,C			c.vi	ir D,E	d.	All	of these	
10. Which of the follo	owing	g are us	ed as sele	ection marl	ker for tl	he ce	ells transfo	rmed w	vith 2	Agrobacterium?	
a. Neomycin phosphotransferase		b. Streptomycin phosphotransferase c. Hygromycin phosphotransferase above					•				
11. Which technique	is use	ed to in	troduce g	enes into d	dicots?						

a. Electroporation	b.	Particle accelerate	tion	c. Mi	croinjection	d. Ti	plasmid infection		
12. Genome is									
a. Genes on nuclear DNA	D	b. Nuclear DNA + mitochondrial c. Nuclear DNA + d. Nuclear DNA + DNA chloroplast DNA							
13. The process of expression of foreign genes in a plant is called									
a. Gene expression		Transgenesis			transformatio	on d. C	Cell hybridization		
14. Which of the follo	owing is co	onsidered as a vis	sual n	narker?					
a. Antibiotic marker	b. R	esistance marker		c. Sele	ctable marke	er d. S	Screenable marker		
15. Name the first tran	sgenic vir	us resistant plant	?			•			
a. Rice	b. C	otton		c. Tob	acco	d.	Tomato		
16. Which of the follo	wing is su	pplemented with	vitan	nin A in	order to impi	rove its nut	tritional quality?		
a. Cotton		b. Potato			c. Ton	nato	d. rice		
17. Which of the follo	wing is No	OT the class of se	econd	lary meta	bolite?				
a. Amino acid	a. Amino acid b. Terpenes c. Phenolics d. alkaloids						d. alkaloids		
18. Name the class of		metabolites whi	ich is	characte	rized by the	presence of	f the hydroxyl		
group with an aromati		DI 11			11 1 1 1				
a. Glycosides	b	. Phenolics		c. A	Alkaloids	d.	Terpenes		
19. Azolla is used as b	iofertilize	r as it has	I .						
a. Rhizobium	b	. Cyanobacteria	a	c. N	Iycorrhiza		arge quantity of amus		
20. Which sterility is e	xploited i	n hybrid seed pro	oducti	on?	L				
a.Male genetic sterility		Cytoplasmic generality is found		nale	c. Cytoplas sterility		d. Genetic		
CECTI	N D (5	V 5 25 MADI	(ZC) A	NICHMEI		OHECTI	ONIC		
		$\frac{\mathbf{X} 5 = 25 \mathbf{MARI}}{\mathbf{nedia}}$	NS) A	MOWE	CALL THE	QUESTI (OR			
21. A) List out the types of media. (OR) B) Mention about auxin.									
22. A) Write note on o						(OR	R)		
B) Explain em	bryo cultu	re.							
23. A) Briefly discuss			1 .			(OR	R)		
B) Biosynthesi 24. A) What is called		of cytokine-exp		two ever	mnles	(OR	2)		
B) Write note		_	vviui	two caal	npics.	(O)	<i>S)</i>		
25. A) Explain about s						(OR	R)		

B) Briefly explain Cytoplasmic male sterility.

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.
- 27. Explain protoplast isolation, culturing and fusion.
- 28. Draw and explain agrobacterium mediated gene transfer.
- 29. Write note on genetic engineering in plants.
- 30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN IMMUNOLOGY

Paper : Core Practical V **Total Hours** : 75 Hours/Week Exam Hours : 03 : 5 Credit : 3 Internal : 40 Paper Code : 19U5BTCP05 External : 60

PREAMBLE

To make students on practical exposure towards immunological techniques in-terms of handling of laboratory animals, qualitative and quantitative estimation of antigen - antibody specificity.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gaining knowledge on handling of laboratory animals	K1 & K2
CO2	Knowing about the methods of immunization of bleeding and separation serum and plasma from blood	K2, K3 & K4
CO3	Analysis of qualitative and quantitative estimation of antigen and antibody interaction	K4, K5 & K6
CO4	To know about the basic principles of blotting techniques in terms of practical approach	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	M	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Handling of laboratory animals	5
2	Methods of bleeding and routes of immunization	10
3	Preparation of Serum and plasma	5
4	ABO Blood grouping (Rh typing) (Agglutination)	5
5	WIDAL test (Agglutination)	5
6	ASO test (Agglutination)	5
7	Pregnancy test (Agglutination inhibition)	5
8	Radial immune diffusion test (Precipitation test)	5
9	Rocket Immuno electrophoresis test (Precipitation)	5

1	.0	Ouchterlony	double	immunodiffusion	technique	(ODD)	5
		(Precipitation)					3
1	.1	Counter curren	it immunoe	lectrophoresis (CIE) (Precipitation)		5
1	.2	DOT ELISA to	est		_		5
1	.3	Western Blotti	ng- Demon	stration			10

MODEL QUESTION PAPER (LAB IN IMMUNOLOGY)

Ī	NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6 Hrs
	IMMUNOLOGY	19U5BTCP05	
Ī	MAX MARKS: 60		
	MAX MARKS: 60		

MAJOR EXPE	ERIMENT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Identify	the Blood group for the g	given sample (A) and dis	splay the results for observation
		- -	(OR)
(ii) Perforn	n Radial immune electrop	horesis for the given ser	rum and anti-serum sample (A)
			(OR)
(iii) Perform	n WIDAL test for the give	ren plant sample (A)	
MINOR EXPE	RIMENT		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Prepa	re Serum/Plasma from th	e given blood sample (E	3). Display the results for
observat	ion		(OR)
(ii) Perfo	orm DOT ELISA for the	given serum sample (B)). Display the results for
observat	ion		(OR)
(iii) Perf	form ASO test from the g	iven blood sample (B)).	Display the results for
observat	ion		
SPOTTERS			(5 X 4 = 20 MARKS)
3. Identify	the given spotters C, D, I	E, F & G and comment of	on them
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN PLANT BIOTECHNOLOGY

Paper : Core Practical VI **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit Internal : 40 : 3 Paper Code : 19U5BTCP06 External : 60

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Plant genomic DNA	5
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5
3	Preparation of MS media	10
4	Establishment of seed germination from carrot seeds	5
5	Establishment of shoot tip culture using MS media	10

6	Establishment and maintenance of callus culture	10
7	Micro propagation of callus culture (Shoot & Root systems)	10
8	Isolation of protoplast (Enzymatic method)	5
9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column chromatography	10
10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT	COURSE CODE:	DURATION: 6 Hrs	
BIOTECHNOLOGY	19U5BTCP06		
MAX MARKS: 60			

MAJOR EXPERIMENT					
Exp: 12	Exp: 12 Obs: 5 Res: 3 Total: 20 MARKS				
1. (i) Isolate plant	genomic DNA from the	given plant sample (A)	(OR)		
(ii) Perform shoot	tip culture from the giver	n explant sample (A)	(OR)		
(iii) Perform callus	induction from the given	n explant (A)			
MINOR EXPERIMENT	NT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Isolate protoplast from the given plant mesophyll tissue sample (B)					
(ii) Prepare synthetic seeds from the given plant seed sample (B) (OF					
(iii) Separate chlorophyll pigments from the plant leaf extract sample (B) by appropriate					
method					
SPOTTERS		(5 X	4 = 20 MARKS)		
3. Identify the given spotters C, D, E, F & G and comment on them					
$\mathbf{RECORD} \qquad (1 \times 5 = 5 \mathbf{MARKS})$					
VIVA-VOCE 5 MARKS					
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE - I

PHARMACEUTICAL BIOTECHNOLOGY

Paper : Elective I **Total Hours** : 75 Hours/Week Exam Hours : 03 : 4 Credit : 3 Internal : 25 Paper Code : 18U5BTE01 External : 75

PREAMBLE

This paper encodes information on pharmacology, drug designing, sources and applications of drug discovery. Students also understand the basic and applications of pharmacology and sources of drug. Also enables them to understand the concepts of rDNA technology in drug designing.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the principles of pharmacology and its development	K1 & K2
	history	
CO2	To understand principles of action of drugs and mechanism of action	K2, K3 & K4
	to wards various diseases	
CO3	To understand the concepts of developing therapeutic agents through	K4, K5 & K6
	genetic engineering principles	
CO4	To explore the applications of pharmaceutical chemistry and its	K4, K5 & K6
	development	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	S	S	S
CO3	M	S	S	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to pharmacology : History & development in pharmacology. Principles of pharmacology. – Pharmacology in the 20 th century – Drugs – Sources, dosage forms and routes of administration	15
II	Drug names & Classification systems: General Principles of Drug action	15

	Pharmacokinetics, Pharmacodynamics, measurement of drug action.	
III	Chemotherapy: Therapeutic drugs – Protein synthesis inhibitors, Antibacterial, antifungal, anti protozoal, antiviral, anti helmithic, anticancer, anti-inflammatory drugs.	15
IV	Introduction to r-DNA technology: production of biological: Human Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor VIII.	15
V	Production and applications: Probiotics, anticancer and anti-inflammatory agents. Biochips, biofilms and biosurfactants.	15

SUGGESTED READINGS

- 1. A Text Book of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.
- 2. Pharmacology H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingston.
- 3. Basic Pharmacology Foxter Cox. Butterworth's 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure
- 5. Pharmaceutical Biotechnology S.S. Purohit, Kaknani, Saleja
- 6. Pharmacology Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Williams Edition.
- 7. Integrated pharmacology Page, Curtis, Sulter, Walker, Halfman. Mosby Publishing Co.

MODEL QUESTION PAPER (PHARMACEUTICAL BIOTECHNOLOGY)

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
PHARMACEUTICAL BIOTECHNOLOGY	18U5BTE01	
MAX MARKS: 75		

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
	1.	Clinical pharm	nacol	logy was established by		?		
a.	Sc	hwann	b. :	Robert Hooke	c.	William Withering		d. William Wroth
	2.	The most wide	ely u	sed drug classification s	yst	tems are?		
	a.	ATC		b. ADP		c. AKT		d. ATP
	3.	The drugs that	are	taken though nasal route	e is	s called		,
a.	Su	bcutaneous		b. Ear drops		c. Inhaler		d. Intraosseous
	4.	Parenteral adm	ninis	tration can be performed	d b	y?		
	a.	Injection		b. Oral		c. Tablet		d. Powder
	5.	The action of o	drug	s on the human body is	cal	led as?		
a.]	Phai	rmacodynamics		b. Pharmacokinetics		c. Drug action		d. Transporter protein
	6.	What the body	doe	s with the drug is called	las	8?		
a.	Dr	ug action b.	Pha	armacodynamics c.	P	harmacokinetics	d. T	ransporter protein
	7.	Initial consequ	ience	e of drug-receptor comb	oina	ation is called		
	a.]	Pharmacodynan	nics	b. Drug action		c. Drug Effect d.	Phar	macokinetics
	8.	Biochemical a	nd p	hysiological changes that	at c	occur as a consequen	ce of	drug action called
	a.	Drug action		b. Drug Effect		c. Pharmacodynami	cs	d. Pharmacokinetics
	9.	A group of ma	teria	lls that fight against path	og	genic bacteria?		
a.	An	tibacterial agen	ts	b. Antiviral agents		c. Antifungal agen	ts	d. Anticancer agents
	10	. Anti-inflamma	atory	drugs make up about h	alf	of?		
a.	Ar	nalgesics		b. Prostaglandins		c. Paracetamol		d. Aspirin
	11	. Abnormal cell	grov	wth called as	?	?		
	a.	Cancer		b. Viral		c. Cell growth		d. Tissues
	12	. Fungal cell wa	ıll sy	nthesis inhibition as		?		'
	a.	Nystatin		b. Caspofungin		c. Azoles		d. Naftifine
	13	. Insulin hormor	ne pi	oduced by?				
	a.	Pancreas		b. Liver		c. Mitochondri	a	d. Kidney

	14. Erythropoietin is a hormone produced primarily by?				
	a. Liver	b. Kidney	c. Pancreas	d. Mitochondria	
	15. Factor VIII is an es	ssential blood-clotting prot	ein, also known as?		
a.			c. Glycoprotein	d. Embolism	
	16. Erythropoietin also	known as	_		
	a. Hematopoietin	b. Glycoprotein cytokine	c. Erythropoiesis	d. Hypoxia	
	17. Probiotics are often	n called as?			
	a. Helpful" Bacteria b. Helpless" Bacteria		c. Helpful Virus	d. Helpless Virus	
	18is	s the property of a substance	e or treatment that reduces	inflammation?	
	a. Anti-cancer	b. Anti-inflammatory	c. Inflammatory	d. Cancer	
	19are a different surfaces?	collective of one or more	types of microorganisms t	hat can grow on many	
a.	a. Biofilms b. Anti-inflammatory		c. Biochips	d. Anti-cancer	
	20. Bio surfactants are also called as				
	a. Microbial surfactants	b. Bacterial surfactants	c. Viral surfactant	s d. Biochips	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Explain the history and development of pharmacology.	(OR)	
B) Explain the various routes of administration of drug.		
22. A) Explain about pharmaco kinetics	(OR)	
B) Write brief notes on the measurement of drug action		
23. A) Write shortly about Anticancer drugs	(OR)	
B) Write short notes on antibacterial drugs		
24. A) Write short notes on Erythropoietins	(OR)	
B) Write short notes on Interleukins?		
25. A) What is probiotics? Explain in brief	(OR)	
B) Write short notes on Biochips		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on pharmacology?
27. Explain in detail on the general principle of drug action?
28. Write an essay on therapeutic drugs?
29. Write an essay on r-DNA technology?
30. Explain in detail about the production and application of drugs?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U5BTE02	External	: 75

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUT COMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit	K1 & K2
	measurement and extraction	
CO2	To explore to the usage of enzymes at molecular level such as active	K3 & K4
	site, isoenzymes and their biochemical fundamentals	
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial	K5 & K6
	enzymes	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Enzymes : Introduction, Definition, History, Classification and Nomenclature of enzymes. Intracellular localization of enzymes, Extraction and purification of enzymes. Enzyme units. Substrate specificity.	
11	Active site: Salient features, Theories of ES complex formation – Lock and Key, Induced fit and Substrate strain theory. Structure and functions of coenzymes, Isoenzymes and their separation rates. Collision and transition state theories. Factors affecting enzyme activity	15

	Ш	Enzyme kinetics : Order of reaction, Activation energy, Kinetics of enzyme catalyzed reactions – Steady state kinetics – Michaelis Menten equation, and its transformation. Bi – substrate reaction – random, ordered and ping pong mechanisms.	15
	IV	Enzyme inhibition : Reversible and irreversible inhibitors. Mechanism of catalysis – acid base, electrostatic, covalent, metal ion and enzyme catalysis, electrostatic proximity and orientation effects. Mechanism and action of chymotrypsin, lysozyme and carboxy peptidase.	15
•	V	Immobilization of enzymes : Methods and application. Clinical and Industrial application of enzymes, Enzyme engineering – site directed mutagenesis.	15

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY	COURSE CODE:	DURATION: 3 Hrs
AND ENZYME TECHNOLOGY	18U5BTE02	
MAX MARKS: 75		

	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS										
	1.	Enzymes are bro	adly	classified into	- typ	oes					
a.	4		b. 3	5	c.	6				d.	7
	2.	The function of i	some	erases is					<u> </u>		
a.	Ge	ometrical changes	b.	Isomeric changes	c.	Ste	eric changes	d.	Sup	er nu	meric changes
	3.	Enzyme activity	depe	nds on							
	a.	Substrate conc.		b. Substrate availability		c.	Substrate binding site		(d. A	ll the above
	4.	Which of the fol	lowin	g method is used in so	epara	ating	g specific enzyı	mes	from	its c	rude sample?
	a.	Dialysis	b.	Native PAGE		c.	2D PAGE		(d. Is	oelectric focusing
	5.	Which of the following active site of enz		g concept model desc	ribes	s the	e conformation	al ch	ange	es occ	curring at the
a.	Loc	ck & Key model	b. I	nduced fit hypothesis	c.	Su	bstrate strain co	once	pt d	l. N	one of the above
				quation describes							
a.	Rat	te of enzyme activ	ity	b. Rate of substrate	acti	vity	c. ES form	natio	on		d. All the above
	7.	Bi substrate reac	tions	indirectly describes the	ne co	nce	pt of				
a.	Loc	ck & Key concept	b.	Induced fit hypothesi	s c	. Su	bstrate binding	the	ory	d. N	None of the above
	8.	Which of the fol	lowin	g physical factor affect	ets th	ne e	nzyme activity	?			
a.	Enz	zyme conc.		b. Substrate Conc.		c.	Binding site		(d. p	Н
	9.	Which of the fol	lowin	g is an example for is	oenz	zym	e?				
	a.	ACTH		b. GH		c.	LDH		(d. F	SH
	10	. Activation energ	y is t	he energy required for			-	•			
a.		vating enzyme		Activating substrate	fa	ctoi					ing physical factors
	11. The kinetics of enzyme – catalysed reactions can be analysed in terms of steady state models if the substrate concentrations are										
a.		ore than an order		ess than an order of	c.		ore than the rate	e			than the rate of
		magnitude		nagnitude lower than			magnitude			_	nitude lower than
	_	her than the	t	he enzyme level		_	ther than the			the e	nzyme level
		zyme level					zyme level				
	12	. The reaction bety	ween	ADP and phosphocre	atine	wc	rks under the p	rinc	iple (of	

a. Random mechanism b. Double displacement mechanism c. Ping pong mechanism d. B & C 13. Which of the following type of enzyme inhibition shows an increase in KM value with constant Vmax? a. Competitive b. Non – Competitive c. Un – Competitive d. None of the above 14. Allosteric enzymes displays a sigmoidal curve in contrast to the ———————————————————————————————————							
A. Competitive b. Non – Competitive c. Un – Competitive d. None of the above 14. Allosteric enzymes displays a sigmoidal curve in contrast to the ———— displayed by Michealis – Menton enzymes a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an ———— a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease 16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by ———— a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a.Random mechanism	o. Double displacem	ent mech	anism	c. Ping p	ong mechanism	d. B & C
A. Competitive b. Non – Competitive c. Un – Competitive d. None of the above 14. Allosteric enzymes displays a sigmoidal curve in contrast to the ———— displayed by Michealis – Menton enzymes a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an ———— a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease 16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by ———— a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	13. Which of the following type of enzyme inhibition shows an increase in KM value with constant					ith constant	
a. Competitive b. Non – Competitive c. Un – Competitive d. None of the above 14. Allosteric enzymes displays a sigmoidal curve in contrast to the ————— displayed by Michealis – Menton enzymes a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an ———————————————————————————————————		owing type or enzym		atom bilo wa	an moreus.	o ili ilivi valao v	Tur Constant
14. Allosteric enzymes displays a sigmoidal curve in contrast to the displayed by Michealis – Menton enzymes a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease 16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?							
a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an	a. Competitive b.	. Non – Competitiv	e c.	Un – Coi	mpetitive	d. None	e of the above
15. Chymotrypsin is an	1		dal curve	in contras	st to the	displayed	by Michealis –
a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease 16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Hyperbolic curve b.	. Parabolic curve	c. Quad	dratic curv	e d.	Transcendenta	al curve
16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	15. Chymotrypsin is	an			•		
a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Cysteine protease	b. Serine pro	otease	c. Pi	roline prote	ase d. Le	eucine protease
17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	16. Carboxypeptidase	e A3 (CPA3) involve	ed in the	protein di	gestion by -		
a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Pancreatic cells	b. Liver c	ells	c. Ma	st cells	d. Tum	our cells
18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	17. Which of the foll	owing method is cor	nmonly u	ised in ma	intaining e	nzyme activity	
a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Entrapment meth	od b. Encaps	sulation	c.	Immobiliza	tion d. A	All the above
19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	18. Which of the foll	owing enzyme is use	ed in leath	her industi	ries?		
a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Amylase	b. Lipase		c. Pro	tease	d. DNA	ise
20. Which of following enzyme is used as deworming agent?	19. Which of the foll	owing technology is	followed	l for enric	hing the enz	zyme activity?	
	a. Yeast hybrid analysis	a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above					
a. Tryspin b. Papain c. Amylase d. Protease	20. Which of followi	ng enzyme is used as	s deworm	ning agent	?		
	a. Tryspin	b. Papain		c. Am	ylase	d. Prote	ease

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QU	JESTIONS
21. A) Explain about enzyme units	(OR)
B) Explain about substrate specifity	
22. A) Explain about isoenzymes	(OR)
B) Explain the factors affecting the enzyme activity	
23. A) Explain the steady state kinetics of enzymes	(OR)
B) Write short notes on the order of the enzyme reaction	
24. A) Explain the mechanism of action of chymotrypsin	(OR)
B) Write short notes on mechanism of enzyme catalysis	
25. A) Explain the process of site directed mutagenesis	(OR)
B) Explain about enzyme engineering	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on the classification of enzymes
27. Give detailed account on iso-enzymes
28. Give detailed account on MM and LB plot
29. Give detailed account on enzyme inhibition and its types
30. Give detailed account on industrial applications of enzymes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

TISSUE ENGINEERING

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U5BTE03	External	: 75

PREAMBLE

This paper deals with the use of combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. Tissue engineering involves the use of tissue scaffold for the formation of new viable tissue for a medical purpose.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the key topics in tissue engineering	K1, K2 & K3
CO2	To understand the stem cells and animal cells, processes, and	K3 & K4
	strategies to regenerate or repair damaged tissues	
CO3	To develop students ability to identify, formulate and adapt	K4 & K5
	engineering solutions to unmet biological needs	
CO4	To give students a knowledge of how the biomedical industry is	K4 & K5
	regulated and the route to market of for tissue engineered products	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents. Measurement of tissue characteristics, appearance, cellular component, ECM component, and physical properties.	15
	Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix & Cell-Cell Interactions, telomeres and Self renewal, Control of cell migration in tissue	15

	engineering.	
III	Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.	15
IV	Stem Cells: Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers. Stem cell systems - Liver, neuronal stem cells with characteristics: embryonic, adult, haematopoietic, fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells and induced pluripotent stem cells.	15
V	Stem cell therapy, Molecular therapy, <i>in-vitro</i> organogenesis, Neurodegenerative diseases, spinal cord injury, heart disease and muscular dystrophy. Stem cells and Gene therapy: Physiological models, tissue engineered therapies, product characterization. Preservation of stem cells: freezing and drying. Patent protection and regulation of tissue engineered products and ethical issues.	15

SUGGESTED READINGS

- 1. Bernhard O.Palsson, Sangeeta N.Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 2. Raphael Gorodetsky, Richard Schäfer. "Stem cell based tissue repair", Cambridge: RSC Publishing, c2011.
- 3. John P. Fischer, Antonios G. Mikos, Joseph D. Bronzino. "Tissue Engineering", CRC Press, 2012.
- 4. Larry L. Hench, Julian R. Jones. "Biomaterials, Artificial Organs and Tissue Engineering", CRC Press, 2005.
- 5. C. S. Potten, "Stem Cells", Academic Press, 1997.

MODEL QUESTION PAPER (TISSUE ENGINEERING)

NAME OF THE COURSE: TISSUE ENGINEEING	COURSE	CODE:	DURATION: 3 Hrs
	18U5BTE03		
MAX MARKS: 75			

	SECTION A (1 V 20 20 MADIS) ANSWED ALL THE OLIGITIONS								
	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS 1. The formation of blood vessel from the pre-existing blood vessel is known as								
	1.	The formation of						known	as
a.		ngiogenesis		ascularization		c. Osteoger			d. Phagocytosis
	2.	The Major Hist	ocompa	tibility Comp	lexes (l	MHCs) are			
a.	Sig	gnaling molecule	s b. C	Growth factors	s c. C	ell surface ma	arkers	d. Cel	l adhesion molecules
	3. Bone Morphogenic Protein (BMP) is a								
a.	Ce	ll surface marker		b. Growt	h factor	s c. H	ormone	(d. Neurotransmitter
	4.	Polyglycolic Ac	cid (PG	A) scaffold is	s				
	a.	Biotolerant	b.	Bioactive		c. Bioir	nert		d. Biodegradable
	5.	In tissue engine	ering, h	arvested cells	are froz	zen away and	stored in		-
a.		quid hydrogen		quid nitrogen		c. Liquid he		(d. Autoclave
	6.	Cell signaling of	ompour	nds cytokines	are a gr	oup of			
a.	Pro	oteins and peptide	es b.	Fats and trig	lyceride	es c. Carbo	hydrates	d. F	Hormones and steroids
	7.	c-AMP and c-C	MP fun	actions as				l	
	a.	Hormone	b. F	Receptor		c. Second r	nessenger	•	d. Ligand
	8.	The signals whi	ch affec	ct only cells of	f the sar	ne cell type a	s the emit	ting cel	l are
	a.	Endocrine	1	b. Autocrine		c. Parac	crine		d. none of these
	9.	Carbon nanotub	es are u	ised for tissue	engine	ering scaffold	s as they a	are	
	a.	Biocompatible	1	b. Biodegrad	able	c. Biop	olymers		d. none of these
	10	. PLA degrades v	vithin th	ne body to for	m			1	
	a.	Amino acid	b. Gl	ycolic acid	c.	Lactic acid		d. Ph	osphoric acid.
	11	. An example of	CAM is	·					
a.	Ca	dherin	b. Pr	otease		c. Growth h	normone	d.	Serine
	12	. For skin graftin	g the sc	affold used sh	ould be	:		l	
	a.	Biodegradable	b. Bi	oactive	c.	Biocompati	ble		d. Both (a) and (c)
	13. Endocrine signaling is performed by								
	a.	Enzymes	b. Hor	mones	C	. Cytokines			d. Carbohydrates
		. Programmed Co				•			•
			b. Lys			generation	d.	Defor	mation
	15	. The protein of o	cell that	binds to a spe	ecific me	olecules is kn	own as		
		Ligand		b. Receptor		c. Ho	rmone		d. Cytokine
	16. Notch is a cell surface protein that functions as a								

a. Receptor	b. Hormone	С	. Protein-A	(d. Cytokine.
17. Solid Free Forming is	a fabrication techr	nique for		•	
a. 2D scaffold b.	3D scaffold	c. Mi	cro scaffold	d. N	ano-patterned scaffold
18. Hydrogels can also be used as scaffolds for					
a. Cell growth b. Cell	delivery c. Cell growth and cell delivery			elivery	d. None of these
19. GABA is a					
a. Neurotransmitter b. Neuro inh		or	c.Contact inhi	bitor	d. Contact excitator
20. The family of receptors that play an important role in cell adhesion is					
a. Somatostatin	b. Interleukins c. Integrins		. Integrins	(d. Interferons

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) What are the different types of tissues in the mammalian body?	(OR)
B) Classify tissue based on their structure and function	
22. A) Briefly explain the different types of stem cells	(OR)
B) Briefly explain the process of cell placement on scaffold	
23. A) Describe different kinds of matrix materials used in tissue engineering	(OR)
B) Mention the importance of growth factors in the field of tissue engineering	
24. A) With the help of sketch, explain the process of differentiation of stem cells into cell lines	(OR)
B) What are the different risk factors involved with skin grafting?	
25. A) Mention the basic clinical goals and fundamental challenges of tissue engineering	(OR)
B) What are the basic criteria of a scaffold used for tissue reconstruction?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. With the help of a flow-chart, explain the different processes involved in wound healing
- 27. Describe the signalling pathway for cell's response to the ligand
- 28. Describe the engineering materials used in scaffold fabrication. Mention the parameters for scaffold selection.
- 29. With the neat sketch, explain the mechanism of adhesion between leukocytes and endothelial cells
- 30. Demonstrate bioreactor for achieving nutrient transport in an engineered tissue construct

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - III

LAB IN BIOINFORMATICS

Paper : SBEC III **Total Hours** : 30 Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 17U5BTS07 External : 75

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD	
CO1	To understand the basic concepts of functional and	K2, K3, K5 & K6	
	computational genomics and proteomics		
CO2	To acquire knowledge on the usage of biological software on	K2, K3, K5 & K6	
	generating databases both online/offline		
CO3	To understand the existence of globally available online soft	K2, K3, K5 & K6	
	wares and databases for nucleic sequence retrieval		
CO4	To understand the usage and deposition of sequences in to	K2, K3, K5 & K6	
	globally available structural databases		

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp. No	TITLE	HOURS
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3
6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3

8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
10	Program to store a DNA sequence in NCBI: Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN BIOINFORMATICS)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
BIOINFOMATICS	17U5BTS07	
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS		
1. (i) Retrieve the	gene sequence from Gen	nBank (A)	(OR)		
(ii) Find out th	e given query sequence (A) by BLAST analysis	(OR)		
(iii) Find out C	ORF in the given sequence	e sample (A)			
MINOR EXPERIM	ENT				
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS		
2. (i) Retrieve the protein structure of haemoglobin (B) (OR)					
(ii) Perform Phylogenetic Analysis for the given organism (A) (OR)					
(iii) Find out tl	ne RNA sequence from the	ne given DNA sequence	(B)		
SPOTTERS		(5 X	X 4 = 25 MARKS		
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $(1 \times 5 = 5 \text{ MARKS})$					
VIVA-VOCE			5 MARKS		
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - III

BIOSAFTEY, BIOETHICS & IPR

Paper : SBEC III **Total Hours** : 30 Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 18U5BTS08 External : 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	6
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	6
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non-patentable.	6
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	6

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of GM crops, biopiracy and biowarfare.	6

SUGGESTED READINGS:

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	18U5BTS08		
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
Bio-related research activities may not involve						
a. Micro organisms	b. Animal ce		d. All			
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV			
	agic fever is example for	,				
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I			
4. Physical contain	ment is achieved by					
a. One type	b. Two types	c. Three types	d. Four types			
5. Which one of the	following is not relevan	nt to sterilization techniqu	e?			
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave			
6. Cartagena Protoc from	ol on Biosafety to the C	onvention on Biological I	Diversity Effective			
a. 11 September	b. 12 September	c. 11 September	d. 12 September			
2003	2003	2004	2004			
7. Each Institutional	Biosafety Committee h	nas a nominee for	-			
a. DST	b. DBT	c. UGC	d. ICAR			
8. How many RCGI	M meeting held in 2018	?				
a. 7	b. 8	c. 9	d. 6			
9. The RCGM shall	not include the following	ng representative				
a. DBT b. Io	CMR	c. UGC	d. CSIR			
10. GEAC establishe	d under					
a. MoEF & CC	b. UGC	c. DBT	d. DST			
11. Trade name is oth	nerwise called as					
a. Patent	b. Model	c. Business name	d. Trademark			
12is any	information of commer	cial value concerning pro	duction			
a. Trade name	b. Trade Secret	c. Patent d.	Industrial Design			
13. IPR initially started in North Italy during the						
a. Renaissance	b. Renaissance	c. Renaissance	d. Renaissance			
era. In 1471	era. In 1472	era. In 1473	era. In 1474			
14. Protection of IPR not allow the following						

a. Innovator	b. Brand ow	ner	c. Teacher		d. Coj	pyright holder
15. Intellectual pro	15. Intellectual property not refers to creations of the mind					
a. Hard work	b. Inventions c. Literary and artistic works d. Names					
16. Which one is c	omes under type of	intelle	ectual property (II	P)?		
a. Copyright	b. Patent		c. Tradema	ark	d.	All the above
17. Mathematical a	17. Mathematical algorithms are					
a. Patentable	b. Non patentab	ole	c. Both	d.	None	of the above
18. Software is a						
a. Patentable	b. Non patentab	ole	c. Both	d.	None of	f the above
19. Patentable biot	echnological invent	ions is	·			
a. Proteins b. 1	a. Proteins b. DNA sequences c. Both of the (a) and (b) d. None of the above					
20. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning						
a. 4	b. 3		c. 2			d. 1

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS
21. A) Explain different levels of biosafety.
B) Explain different types of sterilization methods.
22. A) Explain the role of institutional committee.
B) Explain RCGM and GEAC?
23. A) explain object of Intellectual property law?
B) Explain the importance of IPR?
24. A) Write a note on benefits of patent.
B) Explain patentable and non-patentable biotechnological inventions?
25. A) Define bioethics, explain purpose and scope of bioethics?
B) Explain perspectives and methodology of bioethics?

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Explain different types of bio-safety measures in laboratory?	
27. Explain Cartagena protocol on biosafety.	
28. What is IPR and explain their different types?	
29. Patent - Definition, History and Law	
30. Explain framework for making ethical decisions.	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - III

CANCER BIOLOGY

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U5BTS09	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The students also gain added knowledge on ethical, legal and social considerations on implementing/marketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts of cancer biology and types of tumour	K1 & K2
CO2	Understand the mechanisms of cancer development and chemical	K1 & K2
	involved in carcinogenesis	
CO3	Understand molecular mechanisms and genetic principles of	K3, K4 & K5
	oncogene expression	
CO4	Acquiring the knowledge on developing drug discovery approach in	K4, K5 & K6
	the management and detection of cancer	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Fundamentals of cancer biology: Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes. Development and causes of cancer, Types of cancer, Benign and malignant tumours.	6
II	Principles of carcinogenesis: Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis.	6
III	Principles of molecular biology of cancer: Oncogenesis: Oncogenes, identification of Oncogenes, Retroviruses and Oncogenes, detection of Oncogenes, Growth factors related to transformations.	6

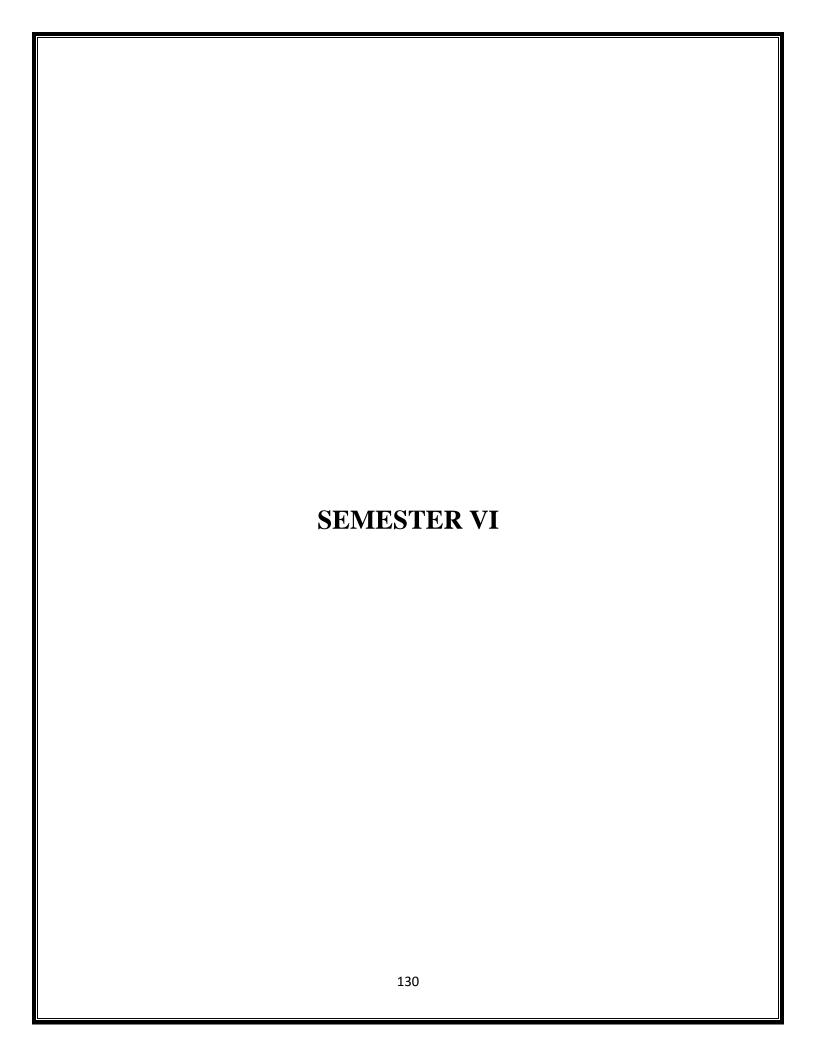
	Principles of cancer metastasis: Clinical significances of invasion,	
IV	heterogeneity of metastatic phenotype, three step theory of invasion,	6
	Proteinases and tumor cell invasion.	
	New molecules for cancer therapy: Different forms of therapy,	
\mathbf{V}	Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of	6
	aggressiveness of Cancer, Advances in Cancer detection.	

SUGGESTED READINGS:

- 1. King R.J.B., Cancer Biology, Addision Wesley Longmann Ltd, U.K., 1996.
- 2. Maly B.W.J., Virology a practical approach, IRL press, Oxford, 1987.
- 3. Dunmock.N.J and Primrose S.B., Introduction to modern Virology, Blackwell Scientific Publications.
- 4. Ruddon.R.W., Cancer Biology, Oxford University Press, Oxford, 1995.

MODEL QUESTION PAPER (CANCER BIOLOGY)

NAME	OF	THE	COURSE:	CANCER	COURSE	CODE:	DURATION: 3 Hrs
BIOLOGY					18U5BTS09		
MAX M.	ARKS	: 75					


		SECTI	ON – A (1	X 20 = 20 MAR	KS) ANS	WER ALL TI	HE QUES	STIONS	
	1. Cell	cycle is reg	gulated by						
a.	Kinase		b. CDI	Ks	c. Cyc	clins		d. cAMP	
	2. Whi	ch of the fo	ollowing is	tumour suppress	or gene?				
a.	a. MAP b. EGF c. RB d. p53								
	3. Whi	ch of the fo	ollowing is	an example for i	nalignant	tumour?			
a.	Skin car	icer b.	Hyperch	romic macrocytic	anaemia	c. Lung ca	ncer	d. Liver cancer	•
	4. Whi	ch of the fo	ollowing is	not a process of	metastasis	?			
a.		ent & Deta		b. Invasion		Angiogenesis	d.	Tissue degenerati	on
	5. Whi	ch of the fo	ollowing c	hemical causes co	ervical can	cer?	1		
a.	Asbesto	S	b. Benz	zapyrene	c. Eth	idium bromid	e d	l. Acrylamide	
	6. Con	tinuous exp	osure to a	sbestos causes			<u>'</u>		
a.	Intestina	l cancer	b. L	ung cancer	c.]	Liver cancer	d. A	ll the above	
	7. Deve	elopment o	of cancer i	n a specific site b	y the form	nation active	tumour p	olyps is induced b	y the
	form	ation of		_	-				
	a. Bloc	d vessels	b. Blo	ood venous	c. Blo	od capillaries		d. None of the ab	ove
	8. Meta	astatic mod	le cancer s	preading is mainl	y achieved	d by	system		
	a. Resp	oiratory	b.	Nervous	c.	Circulatory	(d. Excretory	
	9. Deve	elopment o	of blood ca	ncer is induced b	y which of	f the following	g factor?		
	a. Epitl	nelial	b.	Endothelial	c.	Christmas	(d. Vascular gr	rowth
	grow	th factor		growth factor		factor		factor	
	10. Once	ogenes are	expressed	from					
	a. RB §		b. Prote			supressor gene		d. Proto oncogene	S
	11. Which of the following gene is responsible for cancer development by retroviruses?								
a.	RTase		b. DNa	se	c. Ret	ro transposons	d.	None of the above	
	12. Eye	cancer is can	aused due	to the mutation in	n	gene			
	a. CAT		b. RB		c. Rho		d	l. CRISPER	
	13. Cancer cells of epithelial origin can even shed their typical qualities and characteristics and adopt a like phenotype								

	~: · ·				
a. Parenchyma b.	Cholenchyma	c. Mesenchyma	d. All the above		
14. Interaction between the tumour cell and the surrounding stroma is extremely important in the					
development of tu	mor				
a. Vasculogenesis	b. Capillary synth	nesis c. A & B	d. Angiogenesis		
15. The cell adhesion	complex runs from the ap	pical to the basal membrane	es and composed of		
a. Tight junctions	b. Adherent junct	c. Gap junction	d. All the above		
16. Which of the follo	wing factor is responsibl	e for the development of li	ver cancer?		
a. EGF	b. VGF	c. HGF	d. EnGF		
17. Treatment of canc	er cells by targeting them	with cytokines is mode of			
a. Chemotherapy	b. Radiation therapy	c. Immunotherapy	d. Hormone therapy		
18. The early stage of	colon cancer is detected	due to the expression of	gene		
a. dMMR	b. MACC 1	c. MACC 2	d. dMMR 2		
19. Prostate cancer ag	gressiveness can be conv	reniently detected by			
a. MALDI	b. ESR	c.pCaP	d. NMR		
20. Mammary gland tumour is detected accurately by					
a. Fluorescence imag technique	b. Electrical impedance scanning	c. Digital mammograp Computer detection system	hy & d. Nanotechnology aided based detection		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL TH	HE QUESTIONS
21. A) Explain the regulation of cell cycle	(OR)
B) Write short notes on signal switches	
22. A) Write short notes on chemical carcinogenesis	(OR)
B) Write briefly on the metabolic consequences of carcinogenesis	
23. A) How will you identify oncogenes	(OR)
B) Write shortly about the growth factors involved in the transforma	tion of normal cell in to cancer
cell	
24. A) Write briefly on the clinical significances of invasion	(OR)
B) Write about three step theory of invasion	
25. A) Explain the different forms of cancer therapy	(OR)
B) Write short notes on radiation cancer therapy	

	SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Give a	detailed account on tumour suppressor gene
27. Give a	detailed account on metabolism of carcinogenesis
28. Write	an essay on retroviral oncogenes
29. Explai	n the basic principles of cancer metastasis
30. Write	elaborately on the detection and prediction of cancer

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

BIOPROCESS TECHNOLOGY

Paper : Core VII **Total Hours** : 75 Hours/Week Exam Hours : 03 : 5 Credit : 5 Internal : 25 : 75 Paper Code : 19U6BTC07 External

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in	K1 & K2
	downstream processing	
CO2	Understand the concepts of designing fermentor both in laboratory	K1, K2 & K3
	and pilot scale and its mode of operation	
CO3	Gaining added information on the production of value added products	K4, K5 & K6
	from microorganisms	
CO4	Propagate mass production of agriculturally important value added	K4, K5 & K6
	products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	S	M	S
CO3	S	S	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	BASICS OF BIOPROCESS TECHNOLOGY: Introduction,	
	Definition, Scope and applications of Bioprocess. Introduction to	
	fermentation and downstream processing technology. Isolation and	15
	screening of industrially important microorganism. Strain	10
	improvement, preservation of microorganisms.	

II	DESIGN OF FERMENTOR: Fermentation types. Design of fermentor – parts and its functions. Types of Bioreactors (Air lift, cyclone, column, packed tower) Mixed bioreactor systems. Monitoring and controlling Bioreactors (pH, temperature and dissolved oxygen), Instrumentation for process control - Heat and mass transfer, oxygen transfer mechanism.	13
III	DOWN STREAM PROCESSING: Basic principles of Downstream processing – microbial cell disruption methods (Centrifugation, filtration fermentation broths). Cell separation techniques (Ultra filtration, Liquid-Liquid extraction) Chromatographic techniques: (Column & Ion exchange), Physical methods (Distillation, Fluid extraction and Electro dialysis).	15
IV	INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and applications – organic acids (Citric acid & acetic acid), Enzymes (Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins (ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).	17
V	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance of micro algae and its cultivation (<i>Spirullina & Chlorella</i>). Mass production of Biofertilizer (<i>Rhizobium & Azolla</i>). Mushroom cultivation (Milk and button mushroom). Production and applications of Biopesticide (<i>Bacillus thuringiensis</i>).	15

SUGGESTED READINGS:

- 1. Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS TECHNOLOGY)

NAME OF THE COURSE: BIOPROCESS	COURSE CODE:	DURATION: 3 Hrs
TECHNOLOGY	19U6BTC07	
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1.	1. Fed batch process belong to					
a.	Closed system	b. Continuous				d. Discontinuous
		system		batch syster		system
2.	Soyameal, pepton	ne and tryptone are us	sed as t	he source of		
	Carbon	b. Carbon & nitrog		c. Minera	1	d. Nitrogen
3.	Batch sterilization	n cycle time consists	of			
a.	Two phases	b. Three phases		c. Four phases		d. Five phases
4.	Protected ferment	tation uses which of	the giv	en below	· -	
a. Ste	erilized media	b. Pasteurized		asteurized media	ı	d. Unsterilized media
		media		vith low pH		
5.	A spray dryer wo	rks on the principle of	of			
a. Cor	ntact drying	b. Sublimation		e. Lyophilisatio	n	d. Adiabatic drying
6.	Which is not a fru	iit or a vegetable bas	ed fern	nented product?		
a.	Wine	b. Beer		c. Vinegar		d. Sauerkraut
7.	Which of the follo	owing is an upstream	proce	ss?		
a.	Product	b. Product		c. Media		d. Cell lysis
	recovery	purification				
8.	Pyrogen free water	er is related to				
a.	Endotoxin	b. O-polysacchar	ide	c. Peptidogly	can	e. Teichoic acid
9.	Which one is dow	vn steaming process?)			
a. Prod	luct recovery	b. Screening	c. Med	lia formulation	d.	Sterilization of media
10.	Which is the follo	owing is not a physic	al metl	nod for the cells r	upturii	ng?
a.	a. Milling b. Homogenization c. Ultra sonication d. Enzymatic digestion					
11. Ethanol fermentation is carried by						
a.	Lactobacillus	b. E.coli	c. Sa	ccharomyces cer	evisiae	d. Bacillus sp.
12.	What is the perce	ntage range of variat	ion in	ecovery costs?		,
a.	50-55%	b. 0-20% c. 5-7% d. 15-75%				
13.	13. Cell lysis becomes an important operation if the product is					

	a. Extra cellular	b. Heat labile	e	c. Toxic		d. Intra cellular
	14 Bacillus thuringiensis is used as					
	a. Insecticide	b. Fungicide	c.	Microbicidal agent		d. Rodenticide
	15. Yeast cells are g	ood sources of				
a.	Vitamin A&B	b. Vitamin A	&D	c. Vitamin B&I)	d. All the above
	16. The sugar conce	ntration of molasses	used	in fermentation ranges	betwe	een
	a. 10-18%	b. 20-30%		c. 4-5%		d. 30-38%
	17. The protein four	d in milk is	-			
	•		d. Trypsin			
	18. <i>Spirullina</i> is a					
	a. Edible fungus	b. Bio fertilize	er	c. Biopesticidal	d	. Single cell protein
	19. What is the scientific name of mushroom?					
a.	a. Funaria sp. b. Dryopteris sp. c. Agaricus campestris d. Fergus sp		d. Fergus sp.			
	20. Agar-Agar is ob	tained from				
	a. Diatoms	b. Gracilaria	ı	c. Fomes		d. Laminaria

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUE	ESTIONS
21. A) State the scope and application of bioprocess technology	(OR)
B) Write notes on strain improvements	
22. A) Explain about airlift bioreactors	(OR)
B) Illustrate the packed tower bioreactor with its uses.	
23. A) Briefly mention the principles and uses of centrifugation	(OR)
B) Elaborate on cell separation techniques	
24. A) List out the application of amylases	(OR)
B) Explicate the production and applications of lysine	
25. A) Highlight the importance of bio fertilizers	(OR)
B) What are mushrooms? Explain its cultivation methods	. ,

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. How will you develop an improved strain through recombination technique?
27. Illustrate the criteria for design of fermenters and specify its functions.
28. Explain basic principles of down streaming process
29. Explain the large scale production of penicillin and state its uses.
30. Describe the production and application of <i>Bacillus thuringiensis</i> .

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ANIMAL BIOTECHNOLOGY

: Core VIII Paper **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 Paper Code : 19U6BTC08 External : 75

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD		
CO1	Understanding the development of animal cell culture techniques and	K1 & K2		
	basic concepts of cell lines			
CO2	Gain knowledge on cell culture, animal cell growth dynamics	K1 & K2		
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques			
CO4	Knowing about the principles of ethical, legal and public issues on using			
	genetically animals in producing value added products			

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15
II	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15

III	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types. Production and development of animal vaccines for FMD, BTD, Rabbies and anthrax.	15
V	Public aspects if Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and rabbits.	15

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehenology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: ANIMAL BIOTECHNOLOGY	COURSE CODE: 19U6BTC08	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS													
	1.	The grow	th of anir	nal cel	lls in vitı	ro in	a sui	itable	cul	ture mediun	is c	alled	?
	a.	LB media	um	b. M	IS mediu	ım		c. N	VIT(CH's mediu	m	d. N	IEM medium
	2.	Who intro	oduced H	AT me	edium?		•				•		
	a.	Littlefield	d	b	. Ham			c.	. A	mold		d. Rous	s and Jones
	3. Name the type of culture which is prepared by inoculating directly from the tissue of an organism to culture media?												
a.	Priı	nary cell c	ulture	b. So	econdary	y cell	cult	ure	c.	Cell lines			nsformed culture
	4.	What is c	ell line?										
a.		lultilayer ılture	b. T	ransfo	rmed ce	lls		Multi cells	iple	growth of	d.		ulturing of ry culture
	5.	Which of	the follo	wing i	s NOT tl	ne pa	rt of	grow	/th n	nedium for	anim	al cultur	e?
a.	Sta	arch	b. S	erum	um c. Ca		Carbon source		d. Inc	organic salts			
	6.	Which of	the follo	wing i	s NOT tl	he ma	ajor	functi	ion (of the serum	?		
	a.	Promotio and bulb	n of tuber formation		b. Sti	mula owth	ite ce	ell		c. Enhand cell attachr		d.	Provide transport proteins
	7.	For cultur	ring, plasi	ma fro	m the ad	lult c	hick	en is j	pref	erred to mar	nma	lian plas	ma because
a. It forms a clear and solid coagulum even after dilution				b. It i	is too	opa	que		c. It does produc solid c	e	d.	It forms a semi solid coagulum	
	8.	Disaggre	gating of	cells c	an be ac	hieve	ed by	/					
a. Physical b. Enzymatic disruption digestion					All the above								
	9.	The tech	nique of o	rgan c	ulture m	ay be	e div	ided (on t	he basis of e	emplo	oying	
	a.	solid med	lium	b. li	quid me	dium	l	c. s	semi	i-solid medi	um	d. bo	th (a) and (b)
	10	. What are	the main	consti	tuents of	f cult	ure f	for an	ima	l cell growth	1?	•	
	a. Glucose and Glutamine b. Growth factors c. Cytokines d. All of the above												
	11. In animal cell culture, particularly mammalian cell culture, transformation means:												

a. Uptake of new genetic material	b. Phenotypion modificati in culture	c ons of cells	c. both (a) and (b)	d. Release of genetic information
		s found that	there is a lot of la	cells do not look very actic acid in the culture
a) Ethyl alcohol is being produced in excess	b) The cells have much oxygen	n	c) Glycolysis is being inhibite	oxygen
	nes can be cultured o-cultured indefinite			apparently develop the re called
a) established cell lines	b) primary of	cell lines	c) secondary cell lines	d) propagated cell lines
14. Higher dissolved	oxygen concentrati	on in the cu	lture media are to	xic and leads to
a) DNA degradation) lipid per oxidation		metabolism is greate onsumption	d) all of the above
15. Which of the foll	owing is the technic	que used fo	r the embryo cultu	ire?
a) Organ cultures on plasma clots	b) Organ cultures on agar		c) Whole embryo cultures	d) All of these
16. The major proble organs is that of		the isolation	n of free cells and	cell aggregates from
a) releasing the cells from their supporting matrix	b) inhibiting the cells from their supporting matrix		c) disintegrating the cells from their supporting matrix	
17. The technique of	organ culture may l	be divided o	on the basis of emp	oloying
a) solid medium b) l	iquid medium	c) both	(a) and (b)	d) semi-solid medium
18. An established ce				
a) 70 times at an interval of 3 days between subcultures	b) 40 times at an interval of 3 days between subcultures		c) 70 times at an interval of 1 day between subcultures	d) 50 times at an interval of 3 days between subcultures
19. In animal cell cult	ure, particularly ma	ammalian c	ell culture, transfo	ormation means
a) Uptake of new genetic material	b) Phenotypic modifications of cells in		c) both (a)and (b)	d) Release of genetic information
20. Which of the follo	owing is not the exp	olant technic	que ?	
a) Slide culture b) Ca	arrel flask culture	c) Roller t	test tube culture	d) Adherent primary culture

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write notes about primary cell culture techniques.	(OR)
B) Explain the techniques and application in organ culture.	
22. A) Write a detailed account on different types of media used in animal cell culture.	(OR)
B) Explain the behaviour of cell division and cell kinetics.	

23. A) Explain the principle and methodology of PCR Techniques	(OR)			
B) Give detailed account of the mechanism application of Microinjection				
24. A) Explain the principle, methodology and application of embryo transfer technology	y (OR)			
B) Write detailed about production and development of animal vaccines.				
25. A) Explain various strategies of ethical issues in Animal Biotechnology.	(OR)			
B) Discuss about a special features and applications of Stem cell culture.				

	SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26.	Write a detailed account on Animal cell culture Steps and maintenance?
27.	Explained in detail about the Animal cell culture Media and Balanced salt solutions?
28.	Describe about the Gene Transfer Techniques in Detail?
29.	Production and development of Animal vaccines with Good examples?
30.	Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 19U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic	K1, K2 & K3
	acid and SCP production. Prepare animal cell media and its	
	sterilization techniques.	
CO2	Understand in determining the microbial growth. To filter sterilize	K1 & K2
	the sensitive media ingredients and filtration technique.	
CO3	Estimating the production of single cell protein by biochemical	K2, K4 & K5
	method. Prepare suspension culture and cultivating viruses in	
	embryonated egg.	
CO4	Analysing milk qualitatively and separating aflatoxin fungal species	K2, K4 & K5
	by chromatographic method. Observation of different types of	
	animal cell lines.	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	M	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production of alcohol from grapes	3
3	Production and estimation of citric acid from Aspergillus species	10
4	Estimation of alcohol from grapes	10

5	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by			
	Lowry's method	10		
6	Immobilization of amylase by entrapment method			
7	Determination of bacterial growth by growth curve method	10		
8	Determination of Thermal Death point (TDP) of the bacterial sample	10		
9	Quality analysis of milk			
	a. MBRT test and	10		
	b. Rezasurin test	10		
10	Analysis of fungal aflatoxin by TLC			
11	Enumeration of microorganisms from bread	5		
12	Production of alcohol from grapes			
13	Production and estimation of citric acid from Aspergillus species	5		
14	Estimation of alcohol from grapes	5		
15	Production and estimation single cell protein from Azolla and Spirullina by			
	Lowry's method	5		
16	Immobilization of amylase by entrapment method			
17	Determination of bacterial growth by growth curve method	10		
18	Determination of Thermal Death point (TDP) of the bacterial sample	10		
19	Quality analysis of milk			
	c. MBRT test and	_		
	d. Rezasurin test	5		
20	Analysis of fungal aflatoxin by TLC			

MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY	COURSE CODE: 19U6BTCP07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 1	2	Obs: 5	Res: 3	Total: 20 MARKS
1.	(i) Estimate the	amount of alcohol from	the given fruit sample (A) /Isolate genimice
	DNA from the	given animal tissue samp	ple (A) (OR	(1)
	(ii) Estimate the	e amount of citric acid fr	om the given batch cultu	re medium (A)/
Perfori	n single cell sus	pension culture from the	given animal cell samp	le (A) (OR)
	(iii) Estimation	single cell protein from	the given sample (A) by	y Lowry's method/
Perfori	n viability test o	of the given animal cell s	uspension (A) sample	
MINO	R EXPERIME	NT		
Exp: 6		Obs: 2	Res: 2	Total: 15 MARKS
2.	2. (i) Perform immobilization of the given enzyme sample (B)/ Inoculate the given			
	infectious sample in the embryonated egg sample (B) (OR)			
(ii) Determine thermal Death point (TDP) of the bacterial sample (B)/ Perform				
monolayer culture from the given chick embryo fibroblast cells (B)(OR)				
(iii) Determine the quality of the given milk sample (B) by MBRT/Resazurin test/				
Disintegrate the given monolayer culture (B) by appropriate method				
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$				
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $				
VIVA-VOCE 5 MARKS				
TOTAL 60 MARKS				

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

GENOMICS AND PROTEOMICS

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 18U6BTE04	External	: 75

PREAMBLE

This paper deals with the basic principles of genome and its manipulating strategies end up with the development of novel candidate gene.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic structure of genome map in prokaryotic and	K2 & K3
	eukaryotic organisms	
CO2	To understand the mapping of different regions of DNA and its	K2 & K3
	amplification protocols	
CO3	To acquire knowledge on different tools used in the fields of	K2, K3 & K4
	proteomics	
CO4	To explore with the different application of proteomics in terms of	K4, K5 & K6
	protein mapping	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT			
I	Genomics -Overview of Genome anatomies. Prokaryotic Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem repeats, Transposons and transposable elements.			
II	DNA sequencing methods: Shot gun sequencing — Contig assembly. Techniques for gene location: ORF findings, Northern Hybridization, RT-PCR, RACE, S1 nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray technology			
III	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical	15		

	Mapping, Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene therapy for inherited disorders and infectious diseases and ethics.	
IV	Tools of Proteomics : The proteome – the life cycle of protein-analytical techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide Mass finger printing.	15
V	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific features. Protein expression profiling. Identifying protein - protein interactions. Mapping of protein modifications.	15

- 1. Terence A Brown.(2002) Genomes, 2nd Edition, Bios Scientific Publishers.
- 2. Tom Strachan and Andrew P Read (1999) Human Molecular Genetics, 2nd edition, Bios Scientific Publishers.
- 3. Daniel C. Liebler (2002) Introduction to Proteomics, tools for the New biology- Humana press. Totowa, NJ.
- 4. Pennington.S, M. Dunn (2001) Proteomics: From Protein Sequence to Function 1 edition Bios Scientific Publishers.

MODEL QUESTION PAPER (GENOMICS AND PROTEOMICS)

NAME OF THE COURSE: GENOMICS AND	COURSE CODE:	DURATION: 3 Hrs
PROTEOMICS	18U6BTE04	
MAX MARKS: 75		

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS								
	1. The study of full complement of proteins expressed by a genome is called								
		Proteome		b. Proteomics			enomics		d. Protein formation
		The effects of prot							
a.		notypic function						d.	Structural genomics
		The precise bioche							
a.		E		olecular function			lular function		d. Phenotypic function
	4.	The network of in	eractio	ons engaged in b	y pro	otein at c	ellular level	is de	escribed in
e.	Mol	ecular function	f. Ph	enotypic function	on g	g. Struc	tural genomi	cs	h. Cellular function
	5.	The goal of structu	ıral pro	oteomics project	is to)			
a.	•	stallize and		dentify and			oduce new		d. Remove disease
		rmine the structure		equence of all the		_	es to human		causing genes from
	of p	roteins		genes present in a numan body	the	beir	ngs		humans
	6.	Conserved gene or							
a.	Orth	nolog		b. Synteny		c.	Paralog		d. Microarray
	7. Sequencing of genomic DNA is included in								
a.	Stru	ctural genomics	b. M	Iolecular function	on c	c. Cellu	lar function	d.	Phenotypic function
		Genes of different other are	specie	es, possessing a	clear	sequence	e and function	nal 1	relationship to each
	a.	Ortholog		b. Synteny		c.	Paralog		d. Microarray
		techniques is usefu		ave this plant u	nder t	the threa	t of extinctio	n, w	rhich of the following
a.	Gen	etic engineering	b. In	vitro culture	c. D	NA fing	gerprinting	d.	Hybridoma technology
	10. Transgenic organisms are generally								
a.I	a.Extinct organisms b. Naturally occurring and c. Produced by plant d. Produced by gene endemic breeding technique transfer technology								
	11.	Genes of same spe	cies, s	imilarly related	to eac	ch other	are	•	
a.	Para	alog	b. Or	tholog		c.	Microarray		d. Synteny
	12.	Dolly, the first ani	mal pr	oduced by cloni	ng is	a			•
	a.	Cow		b. Sheep		c.	Rat		d. Dog

13. Collection of microscopic DNA spots attached to solid surface are?						
a. Ortholog		b. Microarray	c. Synteny	d. Paralog		
14. Ger	ne therapy is a to	echnique preferred to cure i	inherited diseases by			
a.Repairing gene	g the faulty b.	Introducing the correct copy of the gene	c. Adding new cells	to the body d. PCR		
15. Wh	ich of the follow	ving is a repressible operor	1?	·		
a. Lac		b. Trp	c. Gal	d. glu		
16. Exp	olant can be a			,		
_	t of the plant tissue culture	b. Plant extract used in tissue culture	c. Source of growth regulators added to media	d. Solidifying agent		
17. Wh	ich of the follow	ving is used to transfer gen	es in plants?			
a. Ti plasr		b. pBR 322	c. EcoR 1	d. pUC 18		
18. Wh	ich of the follow	ving bacterium is used for	gene transfer in plants?			
a. Agroba	cterium	b. Azotobacter	c. Rhizobium	d. E.coli		
19. Wh	19. Which of the following is an inducible operon?					
a. Glu		b. Lac	c. Gal	d. trp		
20. Inte	20. Integrated state of DNA from other organisms in host DNA is termed as					
a. Plasmid	ls	b. Phasmids	c. Episomes	d. cosmids		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Illustrate the different levels of packaging of DNA in eukaryotes.
27. State the mechanism of gene expression using RT-PCR technique.
28. Describe the implication of Human Genome Project.
29. Explain the principle, process and applications of 2-D gel electrophoresis.
30. Elucidate the principle and mechanism of mass spectroscopy in the analysis of metabolomics.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE II

BIOPHYSICS AND BIOINSTRUMENTATION

Paper : Elective II **Total Hours** : 75 Hours/Week **Exam Hours** : 03 : 5 Credit Internal : 25 : 4 Paper Code : 18U6BTE05 : 75 External

PREAMBLE

This paper deals with the basic instrumental principles leading to biological research outputs. It also describes the biophysical concepts of different biomolecules.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Explores student towards the biophysical properties of nucleic acids proteins	K1 & K2
CO2	Acquiring knowledge with the basic concepts of chromatographic techniques	K1, K2 & K3
CO3	Acquiring knowledge with the basic concepts of spectroscopic techniques	K3, K4 & K5
CO4	Exploring towards the use of radiation principles in the field of biomedical science	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	M	M
CO3	S	S	M	S	S
CO4	S	S	S	S	M

UNIT	CONTENT		
I	Biophysics Of Nucleic Acids: Transitional angles and their ranges. The pseudo-rotation cycle, syn – anti orientation of glycosyl bond. Geometries of Watson- Crick and Hoogsteen base pairs.	12	
II	Biophysics Of Proteins: Amino acids – Conformations. Phi and Psi angles. Ramachandran plot. Peptide bond isomerisation. Disulphide bonds, electrostatic forces, van der waals interaction and hydrogen bonds.	12	

Ш	Analytical techniques: Principles and applications of Chromatography (Paper, thin-layer, column, GC-MS, GLC, Ion exchange chromatography, HPLC).	12
IV	Analytical techniques: Principles and applications of spectroscopy. (UV-Vis, NMR, Raman spectroscopy, AAS and X-ray crystallography).	12
V	Radiation Biophysics: Basic concepts of radiography. Measurement of radioactivity: GM counter, Liquid and solid scintillation counter. Advantage and disadvantage of radio active compounds.	12

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi
- 2. Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency. Biophyscial chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 3. Biophysical chemistry Cantor and Schinmel. 2002
- 4. Biophysical chemistry principles and Techniques- Upadhyay, Upadhyay Nath.1997
- 5. Biophysics Arora, First edition, Himalaya Publications, New Delhi
- 6. Palanivelu, P (2001). Analytical Biochemistry, and separation techniques, Tulsi Book Centre. Madurai.

MODEL QUESTION PAPER (BIOPHYSICS AND BIOINSTRUMENTATION)

NAME OF THE COURSE: BIOPHYSICS	COURSE CODE:	DURATION: 3 Hrs
AND BIOINSTRUMENTATION	18U6BTE05	
MAX MARKS: 75		

	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1.	1. The right handed double helix of DNA contains base pairs per turn					
a.	9.5	b. 10.5	c. 11.5	d. 12.5		
2.	Which of the follow	ving bas pair geometry is o	considered as a rotation of	f one base with respect		
	to the other in the sa			1		
a.				Stagger		
3.	The twisting degree	of B form of DNA is abo	ut			
a.	60° b	o. 90°	c. 120°	d. 360°		
4.	When the ends of a the strands are	piece of double stranded l knotted	nelical DNA are joined s	o that it forms a circle		
a.	Topologically b	o. Geometrically	c. Physically	d. Isometrically		
5.	A typical stability o	f a protein domain range t	from to kcal/mo	ol		
a.	2, 5 b. 3,	6	c. 3, 7	d. 2, 6		
6.	spectrosco molten globule-like	pic suggest that lipid bind state in plasma	ing by apo lipoproteins is	s mediated via the		
a.	NMR	b. CD	c. AAS	d. Raman		
7.	The most common	type of protein folding is o	lescribed by the principle	e of		
a.	Tunnel landscape	b. Folding funnel	e. Realistic d landscape	. Levinthal paradox		
8.	Which of the follow	ving angle of proteins fold	ing is essentially flat and	fixed to 180°?		
a.	Alpha	b. Beta	c. Gamma d. Omega			
9.	Retention factor is a	related to	1	-		
a.	PC b	c. a	& b d.	GC		
10.		d is sent in to the column mined. Which of the follo		=		
a.	MS b. G	C c.	AAS d	. Ion exchange		
11.	. Elemental species o	f the given sample is dete	rmined by			
a.	TLC b	. GLC	c. GC-MS	d. AAS		
12.	. Cationic and anioni	c resins are used in				
a.	PC	b. TLC	c. AAS	d. IEC		
13.	. The substances four	nd in colourless solutions	can be measured by			
		b. UV-VIS				

	14. Sweep generator	is used in					
	a. NMR	b. X-ray	c. UV	-VIS	d. Raman sp	pectroscopy	
	15. Nickel oxide is used as monochromator in						
	a. X-ray	b. Raman		c. U	V-VIS	d. XRD	
	crystallography	spectros	copy				
	16. Activation energ	y of a given system	can be c	onveniently	determined b	y	
	a. XRD	b. NMR		c. AAS		d. UV-VIS	
	17. Becquerel is a ur	nit of measurement o	of				
	a. Fossil age b. Radioactivity c. Carbon da			dating	d. None of the above		
	18. Which of the fol	lowing particle has n	nedium (energy?	-		
a.	Alpha	b. Beta		c. Gamı	ma	d. Omega	
	19. GM counter is used for measuring						
a. Radiation frequency b. Ionizing radiation c. Effect of radiation d. Game			d. Gamma radiation				
	20. The main substan	nce used for nuclear	imaging	in cardiolo	ogy is		
	a. Thallium isotope b. Boron isotope c. Uranium isotope d. Tritiated water						

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS					
21. A) Write shots notes on syn – anti orientation of glycosyl bond (OR)					
B) Write short notes on transition angles of nucleic acids					
22. A) Write shot notes on peptide bond isomerization (OR)					
B) Write notes on electrostatic forces involved in protein stability					
23. A) Explain the applications of Thin layer chromatography (OR)					
B) Explain the principle of HPLC					
24. A) Explain the instrumentation of Raman spectroscopy (OR)					
B) List out the applications of atomic absorption of spectroscopy					
25. A) Explain the working principle of solid and liquid scintillation counter (OR)					
B) Briefly explain the disadvantages of radio active compounds					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on the geometrics of Watson & Crick model.
27. Give detailed account on Ramachandran plot
28. Write an essay on the working principle, instrumentation, applications, advantages and disadvantages of GC-MS
29. Give a detailed account on NMR. Add a note on its applications in the fields of medicine and defence
30. Write an essay on GM counter

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE II ENVIRONMENTAL BIOTECHNOLOGY

Total Hours Paper : Elective II : 75 Hours/Week : 5 Exam Hours : 03 Credit : 4 Internal : 25 Paper Code : 18U6BTE06 External : 75

PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To provide knowledge in environmental impacts in biotechnology	K1 & K2
CO2	To understand the concepts in various bioremediation techniques	K2 & K3
	related environmental aspects	
CO3	To impart new thoughts about biotechnological applications on	K3 & K4
	environmental issues	
CO4	To create awareness regarding the environmental policies for the	K3, K4 & K5
	improvement of environmental safety	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT					
	Biodiversity - definition, hot spots of Biodiversity, National Parks, Sanctuaries and Biosphere reserves, gene pool. Aquatic common flora and fauna in India - phytoplankton, zooplankton and macrophytes, terrestrial	15				
	common flora and fauna in India - forests, endangered and threatened specie					
II	Strategies for Biodiversity Conservation, cryopreservation, gene banks, tissue culture and artificial seed technology, new seed development policy 1988, conservation of medicinal plants. International conventions, treaties and protocols for Biodiversity Conservation.	15				

TTT	Bioremediation & Phytoremediation: Bio-feasibility, applications of bioremediation, Phytoremediation. Bio-absorption and Bioleaching of heavy metals: Cadmium, Lead, Mercury, Metal binding targets and organisms, Bio-absorption, metal - microbe interaction, Commercial biosorbents.	
I V	Waste water Treatment: Biological treatment system (Oxidation ponds, aerobic and anaerobic ponds, facultative ponds, aerated ponds), Biological waste water treatment, activated sludge treatment, microbial pollution in activated sludge, percolating filters, waste water treatment by biofilms.	15
	Solid waste pollution and its management: Current practice of solid waste management, composting systems, vermicomposting, sewage treatment.	15

- 1. Samit Ray and Arun K. Ray, Biodiversity and Biotechnology, New Central Book Agency (P) Ltd. (2007)
- 2. Pushpangadan P., Ravi K and V. Santhosh, Conservation and Economic evaluation of Biodiversity Vol.I& II (1997) Wealth of India CSIR, New Delhi.
- 3. An advanced text book of biodiversity. Principles and practice.By K. V. Krishnamurthy. Oxford and IBH company Pvt Ltd.
- 4. Biodiversity conservation: A Genetic Approach by S. Biswas. Oxford Book Company. 2007.
- 5. Alan Scragg. 1999. Environmental Biotechnology. Pearson Education Limited, England.
- 6. Jogdand, S. N. 1995. Environmental Biotechnology. Himalaya Publishing House, Bombay.
- 7. Technoglous, G., Burton, F. L. and Stensel, H. D. 2004. Wastewater Engineering-Treatment, Disposal and reuse. Metcalf and Eddy, Inc., TataMcGraw Hill, New Delhi.
- 8. De, A. k. 2004. Environmental Chemistry. Wiley Eastern Ltd. New Delhi.
- 9. Allsopp, D. and Seal, K. J. 1986. Introduction to Biodeterioration. ELBS/Edward Arnold, London.
- 10. Athie, D and Ceri, C. C. 1990. The use of Macrophytes in Water Pollution Control, Pergamon Press, Oxford.
- 11. Chin, K. K., and Kumarasivam. K. 1986. Industrial Water Technology Treatment, Reuse and Recycling. Pergamon Press, Oxford.

MODEL QUESTION PAPER (ENVIRONMENTAL BIOTECHNOLOGY)

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
ENVIRONMENTAL BIOTECHNOLOGY	18U6BTE06	
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1.	Phytoplanktons provide food to						
a.	Whales	b. Shrimp	c	Snails	d. All the above		
2.	The term biodive world	ersity hotspot specificall	y refers to -	biological	ly rich areas around the		
	15	b. 25	c. 35		. 45		
3.	The upper reache	es of the Himalayas forn	ning part of	the			
a.	Indomalaya ecoz	zone b. Palearctic ec	cozone c	. Indo-Burma	d. Sundaland		
4.	Endangered (EN	N), as categorized by			_		
a.		b. IUCN	c. VU		d. CR		
5.		restriction conservations are the tensive in situ conserva			•		
	4.7	b. 7.7	c. 5.		d. 6.7		
6.	New policy on se	eed development was fo	rmulated by	the ministry of			
a.	Science and tech	nology b. Agriculture	e c. Exte	rnal affairs d.	None of the above		
7.	The Convention	of biodiversity was open	_		n summit in		
	5 th June 1992	b. 5 th August 1992			d. 5 th August 1995		
8.	The Cartagena P was adopted in	•	the Conven	tion, also known	as the Biosafety Protocol,		
a.	January 2000	b. February 20	00 c	. March 2000	d. June 2000		
9.	Arsenic contami	nation in soil is recovered	ed by				
a.	Bioleaching b	o. Phytoremediation	c. Biorem	ediation d	. Bio feasability		
10	. Heavy metal tox systems	icity increases the produ	ction of	thereby de	creasing the antioxidant		
a.	ROS b.	. Hydrogen ions	c. Orga	nic nutrients	d. Oxygen		
11 is defined as the removal of metal or metalloid species, compounds and particulates from a solution by low cost biological materials							
a.	Bioleaching	b. Bioremediation	c. B	iosorption	d. Phytoremediation		
12	12. Algae are of special interest in search for and the development of new biosorbents materials due to their and their ready availability in practically unlimited quantities in the seas						
and oceans							
_	n filtration	b. High reflection	_	Adsorption	d. High sorption		
capa	capacity capacity capacity capacity						

	13. The bacteria present in the pond decompose the biodegradable organic matter and release					
	a. CO ₂	b. Ammonia		c. Nitrate	d. All the above	
	14. Laggons are also ca	ılled				
	a. Aerobic ponds b.	Oxidation ponds	c. F	facultative ponds	d. Aerated ponds	
				rpe of wastewater g aeration and a biolo	treatment process for ogical floc composed of	
	a. Viruses	b. Fungi		c. Helminthes	d. Protozoa	
	16. Research performed resulted in the isola			mental Microbiology h nt nutrient removal pro		
a.	Comamonas denitrificans	b. Brachymonas c. Aeromonas d. All the above denitrificans hydrophila				
	17. Which of the following is Not common, and generally not successful because of high capital, technical, and operation costs, high moisture content in the waste, and high percentage of inerts?					
	a. Incineration	b. Land filling	c.	Source reduction	d. Composting	
	18. Which of the follow	ving is NOT a compon	ent of	f bio compost?		
	a. Carbon	b. Nitrogen		c. Oxygen	d. Hydrogen	
	19. The most common	eath worm used for ve	rmico	omposting is		
	a. Eisenia foetida b. Lumbricus terrestris c. Lumbricus d. Perionyx excavatus rubellus					
	20. The most common temperatures of		sting	systems, red worms fee	ed most rapidly at	
	a. 10–25 °C	b. 15–20 °C		c. 15–25 °C	d. 10–20 °C	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QU	ESTIONS
21. A) Write short notes on hot spots of Biodiversity	(OR)
B) Write short notes on endangered and threatened species	
22. A) Write short notes on cryopreservation	(OR)
B) Write short notes on Biodiversity Conservation	
23. A) Write short notes on Bioleaching of heavy metals	(OR)
B) Write short notes on Commercial biosorbents	
24. A) Write short notes on activated sludge treatment	(OR)
B) Write short notes on percolating filters	
25. A) Write short notes on composting systems	(OR)
B) Write short notes on vermicomposting	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on Aquatic common flora and fauna in India
27. Give a detailed account on tissue culture and artificial seed technology

- 28. Give a detailed account on Bioremediation
- 29. Give a detailed account on Waste water Treatment
- 30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - IV

LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS10	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Develop the practical concepts of mushroom, spirullina, sericulture	K3, K4, K5 & K6
CO2	Develop the practical concepts of apiculture, aquaculture and vermicomposting technology	K3, K4, K5 & K6
CO3	Develop the practical concepts of wine production and sauerkraut production	K3, K4, K5 & K6
CO4	Develop the practical concepts of biogas production	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	M	S
CO3	M	S	S	M	S
CO4	M	S	S	M	L

Ex.no	CONTENT	HOURS
1.	Mushroom cultivation	4
2.	Azolla cultivation	4
3.	Spirullina cultivation	4
4.	Sericulture	4
5.	Epiculture	4
6.	Aquaculture (Fish/Prawn/Pearl)	4

7.	Vermicomposting	4
8.	Biogas production	4
9.	Sauerkraut production	4
10.	Wine production	4

MODEL QUESTION PAPER (LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
ENTREPRENEURSHIP IN	18U6BTS10	
BIOTECHNOLOGY		
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Azo	<i>lla</i> cultivation using the	given sample (A)	(OR)	
(ii) Perform Spi	irullina cultivation using	the given sample (A)	(OR)	
(iii) Peform ver	mi composting using the	e given earth worm samp	ole (A)	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform wine production using the given fruit sample (B) (OR)			(OR)	
(ii) Perform bio	gas production using the	e given raw sample mate	erial (B) (OR)	
(iii) Perform sa	uerkraut production usin	g the given cabbage sam	nple (B)	
SPOTTERS		(5 X	X 4 = 20 MARKS	
3. Identify the giv	en spotters C, D, E, F &	G and comment on then	n	
RECORD		(1 x	5 = 5 MARKS)	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{SBEC-IV}$

NANOBIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS11	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	O2 Know the concepts of fabrication of bio molecular structures	
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field medicine, health care and drug discovery	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.	8
II	Nanomaterials and its properties: Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.	8
III	Fabrication and Analysis of biomolecular nanostuructures: Atomic Force Microscopy, Scanning Probe Electron Microscopy and	8

		Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.		
•	IV	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	8	-
	V	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	8	

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger's principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

MODEL QUESTION PAPER (NANOBIOTECHNOLOGY)

NAME OF THE COURSE: NANO	COURSE CODE: 18U6BTS11	DURATION: 3 Hrs
BIOTECHNOLOGY		
MAX MARKS: 75		

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
	1. Who first used the term nano biotechnology?							
:	a.	Norio taniquchi	b.	Richard Feynma	n	c. Eric Drex	ler	d. Sumio
,	2.	10 nm = m						
;	a.	10-8	b.	10-9	c.	10 ⁻⁷	d.	10 ⁻¹⁰
,	3.	The size of the nar	no parti	cles range from _		_ nm	·	
;	a.	100 to 1000	b.	0.1 to 10	c.	1 to 10	d.	1 to 100
4	4.	Nano science can	be studi	ied with the help	of		<u> </u>	
	a.	Quantum		Newtonian	c.	Macro dynam	ics	d. Geophysics
		mechanics		mechanism				
	5.	The size of <i>E.coli</i>	bacteria	a is	nn	n		
	a	2000		5000	c.	50	d.	90
(6.	What does 'F' star						
;	a.	Fine	b.	Force	c.	Flux	d.	Front
,	7.	The two important	t proper	ties of nano subst	ances	are		
	a.			Sticking and	c.	Sticking and	d.	Temperature
		friction		temperature		friction		and friction
;	8.	1 nanometer is =_						
	a.	10-9	b.	10 ⁻⁸	c.	10^{-7}	d.	10 ⁻⁶
9	9.	Protein-coding gen	nes can	be identified by_				
a. '	Tra	nsposons	b.	ORF	c.	Zoo -blotting	d.	Northern
1	tag	ging		scanning				analysis
	10.	Nano particles targ	get the _		causin	g cells and rem	ove them	from blood
;	a.	Tumor	b.	Fever	c.	Infection	d.	Cold
	11.	The		to the ceramics a	re sup	perior coating		
	a.	Nano particles		Nano power		Nano crystal coding	d.	Nano materials
	12.	Which one is used	in elec	tron microscope?				
;	a.	Electron beams	b.	Magnetic fields	c.	Light waves	a	Electron beams and magnetic fields

13. Electron microscope can give a magnification up to						
a. 400,000x	b. 100,000x	c. 150	000x	d. 100x		
14. Which of these	e biosensors use the princip	ole of heat re	eleased or absorbed	d by a reaction?		
a. Potentiometric	1	e. Pie	ezo-electric f	f. Calorimetric		
biosensor	biosensor	bio	osensors	biosensors		
15. Biosensor mad	le up of					
a. A probe and a	b. A sensing layer		ansfer the probe	d. None of		
surface	and a transducer	mo	olecule	these		
16. Which materia	als are suitable for electrica	l signal tran	nsducing?			
a. PDMS	b. Sillicon	c. Gla	ass	d. Polyethylene		
17. Which one is	anti-cancerous agent?		·			
a. Paclitaxol	b. Insulin c.	Polyethylen	ne glycol d. I	Poly glutamic acid		
18. Which of the 1	Collowing co-solvents are u	sed to increa	ease the solubility of	f a drug?		
a. Ethanol	b. Sorbitol	c. Gly	ycerin (d. All of these		
19.The size of the	19.The size of the RBCisnm					
a. 50	b. 90	c. 200	000	d. 5000		
20. The width of	20. The width of a typical DNA molecule isnm					
a. 1	b. 2	c. 5	(d. 10		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) What are the challenges faced in the field of nano biotechnology?
B) Write a short note on nano material fabrication
22. A) Explain nano materials and its properties
B) Write short notes on quantum dots
23. A) Explain atomic force microscope
B) Explain about scanning probe microscope
24. A) Write short notes on types of biosensors
B) Explain the molecular recognition elements (MRE)
25. A) What is drug? Explain its discovery?
B) Short notes on nano medicine

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on topology of DNA
27. Explain the structure and function nano tubes nanowires
28. Write an essay on micro array technology and its applications
29. Write an essay on mode action of biosensors and application of biosensors
30. Explain about cancer research and cancer therapy

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{SBEC-IV}$

BIOFARMING

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS12	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the principles of conventional cropping systems and natural	K1 & K2
	farming	
CO2	Manipulate integrated pest management fo the development of pesticide	K2 & K3
	free plant products	
CO3	Develop the concepts of organic farming	K4 & K5
CO4	Understand the concepts of organic agricultural policy and GMOs	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	L	L
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	S

UNIT	CONTENT	HOURS
I	Agro-ecological zones and geographical distribution of crop plants in Tamil Nadu. Cropping systems - different types and their importance in food production- Package and practices followed for major crops and cropping systems in Tamil Nadu.	8
II	Green revolution in India - After effects - Definitions of Natural Farming, Traditional farming - Their concepts and scope - Natural Farming - Institutions- their activities and role.	8
III	Pest - Definition - categories of pests-pest control - natural, artificial-pest management IPM. Store grain pest management. Pesticides consumption and hazards. Role of biopesticides and biofertilizers in IPM.	8
IV	Organic farming - concept and relevance in the agriculture - problems and	8

		remedies - Encouragement and dissemination for effective practicing of		
		organic farming. Production and marketing of Organic products.		
7	V	Organic agriculture policy, Genetically Modified Organisms as organic	8	
		regulation		

- 1. Basu, D.N. and Guha, G.S. (1996). Agroclimatic regional planning in India, ARPU, Ahmedabad
- 2. Krishna, K. R., (2010). Agroecosystems of south India, Brownwalker press, Florida
- 3. John H. Perkins, *Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War*, Oxford University Press, 1997.
- 4. Lester R. Brown, Seeds of Change: The Green Revolution and Development in the 1970's, 1970, Praeger Publishers, New York.
- 5. Kogan, M 1998. Integrated Pest Management: Historical Perspectives and Contemporary Developments, Annual Review of Entomology Vol. 43: 243-270 (Volume publication date January 1998)
- 6. Dharam P. Abrol (Editor), Uma Shankar 2013. Integrated Pest Management: Principles and Practice Amazon text book store
- 7. NPCS Board of Consultants & Engineers, (2008). The complete book on organic farming and production of organic compost, Asia Pacific Business Press Inc.
- 8. Shalini Suri, APH, (2012). Organic farming Vedams books from India.

MODEL QUESTION PAPER (BIOFARMING)

NAME OF THE COURSE: BIOFARMING	COURSE CODE: 18U6BTS12	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION -	$-A (1 \times 20 = 20 \text{ MAR})$	(S) ANSWER ALL T	HE OUESTIC	ONS		
	Agro ecological zoning can be used as the basis of a methodology for					
a. Calculating maximum yield		c. Land resou		d. Land use planning		
2. Some of the nutrien decomposition, redu	ts contained in the dead ucing the need of		able to crops	during		
		Chemical fertilizer	d. Soil orga	anic matter		
3. World geographical larger region of Indi		lant distributions (WG	SRPD) is incl	luded within the		
a. Fauna of India b	. Flora of India c.	Fauna of Tamilnadu	d. Flora	of Tamilnadu		
4. In Tamilnadu, Coim	batore receives an aver	age rainfall from North	east Monsoo	on of		
a. 444.3mm b	. 443.4 mm	c. 434.4 mm	d. 344.	.4 mm		
5. Natural farming is a	n ecological farming es	tablished by	•			
a. Yamamoto Kombai	b. Masanobu Fukuok	a c. Shizen noho	d. Yoshika	zu Kawaguchi		
6. Cop rotation and corout	mpanion planting are th	e methods adopted wh	en fa	arming is carried		
a. Traditional	b. Organic	c. Mixed crop	d.	Natural		
7. Green revolution in	India refers to a period	when				
was converted into revenue generating system	b. Indian agriculture was converted into waste management system	was converted into renewable resource system	d conver e system	ted into industrial		
8. HYV seeds technica				0 1 1		
a. Fertilizer supply				Seed supply		
9. Pery Adkisson and l		<u>1997</u>	d. 1998	couraging IPM		
a. 1995 b 10. The most important						
		c. Beetles		of the above		
11. Biopesticides are important tools in integrated pest management programs for conserving the natural enemies and maintaining environmental health was described in						
	. 2015	c. 2016	d.	2017		
12. Which of the following pesticide is responsible for						
_	usceptibility to fungal fection	c. Egg shell thinni	_	line in juvenile ulation		
13. Which of the follow	ving is NOT the advanta	ge of organic farming?	, - -			

a.Maintains environment by reducing pollution level		b. Helps in keeping agriculture at a sustainable level	1	c.Ensures optimum utilization of natural resources for short term benefit		Enhances crop roduction by tillage tilization and forage ropping system	
	14. Which of the follo	owing state first receive	ed the	organic certification in I	ndia	?	
	a. Madhya Pradesh	b. Rajasthan		c. Maharashtra		d. Uttar Pradesh	
	15. NPOF stands for						
a.	National project on organic farmers	b. National Projectorganic farming		c. National Project on organic fertilizers	d.	d. National project on organic forages	
	16. Indian agricultura	l policy was framed an	d draf	ted by	•		
	a. ICAR	b. IARI		c. CSIR	d.	ICAS	
	17. The genetically en	ngineered seeds were in	ntrodu	ced in			
	a. 1994	b. 1995		c. 1996		d. 1997	
	18. 'Round-up ready	crops' is a common na	me of				
a.	Pesticide crops b.	Herbicide crops	c. S	aline resistant crops	d.	Drought resistant crops	
	19. The use of toxic and pervasive pesticides and petroleum based fertilizers is not allowed in the production of						
a.	Organic farm product	s b. Biopesticides		c. Bioinsecticides	d.	Bt - Cotton	
	20. Organic food prod	luction act (OFPA) wa	s ame	nded in			
	a. 1990	b. 1991		c. 1992		d. 1993	

SECTION – B (5 X 5 = 25 MARKS) ANSWER AI	LL THE QUESTIONS			
21. A) Write shot notes on the different types of cropping systems (OR)				
B) List out the packages and practice methods followed for r				
22. A) Briefly write about green revolution	(OR)			
B) Explain the benefits of natural farming				
23. A) Explain about store gain pest management	(OR)			
B) Explain the role of biopesticides in IPM				
24. A) Explain in brief about Organic farming	(OR)			
B) Explain the marketing of organic products				
25. A) List out the organic agriculture policies	(OR)			
B) Explain the use of organic policies in the development of	forage products			

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write an essay on different types and their importance of cropping system
27. Give a detailed account on natural farming
28. Write an essay in Integrated Pest Management (IPM)
29. Give a detailed account on organic farming, their production and marketing
30. Write elaborately on the role genetically modified organisms in framing the organic farming policies

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{NMEC-I}$

BIOSAFTEY, BIOETHICS & IPR

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN01	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in				
	Biotechnology.				
	Bioethics: Introduction to ethics and bioethics, framework for ethical				
\mathbf{V}	decision making. Ethical, legal and socioeconomic aspects of gene therapy.				
	Ethical implications of GM crops, biopiracy and biowarfare.				

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	17U5BTN01		
MAX MARKS: 75			

	SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS								
	1. Bio-related research activities may not involve								
	a.	Micro organisms	3	b. Animal ce	lls		c. Plant cell	S	d. All
	2. A pathogen that is unlikely to cause any disease in humans or animals								
	a.	Risk group I	b	. Risk group II		c.	Risk group II	-	d. Risk group IV
	3.	Korean hemorrh	agic f	ever is example for	r				
	a.	Risk group II	b	. Risk group III		c.	Risk group IV		d. Risk group I
	4.	Physical contain	nmen	t is achieved by				l .	
	a.	One type	b	. Two types		c.	Three types		d. Four types
	5.	Which one of the	e follo	wing is not relevar	nt to s	ste	rilization techn	que?	
a.	Etl	hanol	b	. Incinerator		c.	Microscope		d. Autoclave
	6.	Cartagena Protoc		Biosafety to the C	onve	nti	on on Biologic	al Di	versity came with
	a.	11 September	b	. 12 September	c.	11	September		d. 12 September
		2003		2003		20	004		2004
	7.	Each Institutiona	ıl Bio	safety Committee h	as a	no	minee for		
		a. DST		. DBT		c.	UGC		d. ICAR
	8.	How many RCG	M me	eeting held in 2018	?				
		a. 7	1	o. 8		c.	9		d. 6
	9.	The RCGM shal	l not i	nclude the following					
		a. DBT b. l	ICMR		c. 1	JC	ЭC	d	. CSIR
	10	. GEAC establishe	ed und	ler	1				
		a. MoEF &	b.	UGC	C	:.]	DBT		d. DST
	11	. Trade name is ot	herwi	se called as				•	
		a. Patent	b.	Model	c.]	Business name		d. Trademark
	12	is any	y info	rmation of commer	cial v	/al	ue concerning	orodu	
		a. Trade	b.		_	: .	Patent	d.	Industrial Design
	13	. IPR initially star	ted in	North Italy during	the -				
		a. Renaissanc	b			c.	Renaissance		d. Renaissance
	1 /	e era. In) not	era. In 1472			era. In 1473		era. In 1474
1	14	. FIOLECTION OF IPP	N HOLE	anow the following	<u>,</u>				

a. Innovator	b. Brand own	ner	c. Teacher	,	d. Co _l	pyright holder
15. Intellectual property not refers to creations of the mind						
a. Hard	a. Hard b. Inventions c. Literary and artistic works d. Names					
16. Which one is c	omes under type of i	intelle	ectual property (II	P)?		
a. Copyright	b. Patent		c. Tradema	ark	d.	All the above
17. Mathematical a	17. Mathematical algorithms are					
a. Patenta	a. Patenta b. Non patentable c. Both d. None of the above			of the above		
18. Software is a						
a. Patenta	b. Non patentab	le	c. Both	d.	None of	f the above
19. Patentable biot	echnological inventi	ons is	3			
a. Prote b. 1	ONA sequences	c. Bo	oth of the (a) and	(b)	d. None	of the above
•	of bioethics put fort	h fou	r principles which	n form	the frame	ework for moral
reasoning						
a. 4	b. 3		c. 2			d. 1

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Explain different levels of biosafety.	(OR)
B) explain different types of sterilization methods.	
22. A) What is institutional committe and their roles?	(OR)
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	(OR)
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	(OR)
B) explain patentable and non-patentable biotechnological inventions?	
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)
B) Explain perspectives and methodology of bioethics?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain different types of bio-safety measures in laboratory?
27. Explain Cartagena protocol on biosafety.
28. What is IPR and explain their different types?
29. Patent - Definition, History and Law
30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{NMEC-I}$

BIOINFORMATICS

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN02	External	: 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence	K2, K3 & K4
	alignment	
CO4	To understand the concepts of gene prediction methods through	K4 & K5
	insilico approaches	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bioinformatics – Biological Databases- Nucleic acid sequence databases – GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	8
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays-Microarray data analysis, Proteomic data Analysis.	8
III	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence Alignment- Local alignment and Global alignments- Dynamic programming algorithm for sequence alignment, Scoring matrices, gap penalties.	8
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8

		Analysis- tree construction methods- Maximum likelihood and maximum		
		parsimony- distance methods- Database similarity search- Basic Local		
		Alignment search tool (BLAST).		
•		Gene prediction methods – ORF finder, Restriction site analysis. Protein		
	V	secondary structure prediction –Comparative Modeling -Drug Designing–	8	
		- Molecular Docking		

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2. Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- 7. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS	COURSE CODE: 17U5BTN02	DURATION: 3 Hrs
MAX MARKS: 75	1703011102	

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. A single p	1. A single piece of information in a database is called					
a. File	b. Fi	eld	c.	Record	d	. Data set
2. Which of	the following is a	nucleotide sequ	ence (database?	I	
a. EMBL	b. SV	VISPOT	c.	PROSITE	d	. TREMBL
3. BLAST P	rogramme is used	for				
a. DNA Sequence	b. Pro	otein sequence		c. DNA barcoding		d. Sequence analysis
4. The BLAS	ST program was d	eveloped on			· · · · · · · · · · · · · · · · · · ·	
a. 1992	b. 19	95	c.	1990	1	991
5. Phylogene	etic analysis is a	I				
a. Dendrogra	b. Ge	enbank		Data retrieval Tool	d	. Data Searching tool
6. Which of	the following is a	part of the statis	stical	test of sequence	es?	
a. An optimal alignment between two choss sequences is obtain at the end	en of the sa	a	of the are th throug	different length en generated gh a mization	ler thr	elated sequences of the same ngth are then generated rough a randomization occess
7. Clustal W	is a					
a. Multiple seque alignment tool		otein secondary acture prediction	ı tool	b. Data retrie	eval	c. ORF finder
	dure to align man		ultan			
a. Multiple sequence alignment		Pairwise alignment	c.	alignment		d. Local alignment
9. Which on	e is specially mad	e for protein dat	a base	e?		
a. DDBJ	b.	EMBL		c. PIR		d. Genbank
10. Genbank	naintained by					
a. DDBJ	b. EN	MBL		c. Swissport		d. NCBI
11. Submission	11. Submission of sequences to genbank through					

a. Bankit	b. Sequin	b. A & b	c. None of the above	
-	2. The final step involves pairwise alignment by extending from the words in both directions while counting the using the same substitution matrix			
a. Dock score	a. Dock score b. Alignment score c. Both a & b d. None of the above			
13. Which of the fol	lowing is not a variant of	of BLAST?		
a. BLAST N	b. BLAST P	c. BLAST X	d. TBLAST X	
	s the study of the evo		ving organisms using treelike	
a. Distance matrix	b. Maximum li	kelihood c. Ped	igree d. Maximum parsimony	
	domains are located eir close have t	•	teins, to preserve the same	
a. Solubility and Polarity	b. Proximity and interaction	c. Bond length and Bond energy	d. 'N' and 'C' terminals	
16. Which of the fol	lowing is not true regard	ding the STRING?	,	
a. Search Tool for the Retrieval of Interacting Genes/Proteins	b. Functional association include only the direct protein-protein interactions		kage, predicts gene and protein functional	
similarity betwe	en the two sequences ha	milarity, it is extremely as been acquired random nmon evolutionary origi	that the extensive ly, meaning that the two	
a. Unlikely	b. Possible	c. Likely	d. Relevant	
a. Two sequences can homologous relationship even if have do not have common origin	b. It is an important concept in sequence analysis	when two sequences are descended from a common evolutionary origin, they are said to have a homologous relationship	d. When two sequences are descended from a common evolutionary origin, they are said to share homology	
		ect about Microarray (or	<u> </u>	
a. It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides	b. The oligonucleotide sequences cannot be synthesized directly on the slide	c. The oligonucleotides are collectively hybridized to a labeled cDNA library prepared by reverse-transcribing mRNA from cells	d. The amount of label binding to each oligonucleotide spot reflects the amount of mRNA in the cell	
I	vidence for a relationshi uence similarity. These	p between two genes ar include	e also given that are not	
a. Genes are closely linked on the same chromosomes	b. Genes are transcribed from the same DNA strand	c. Gene fusions are observed between otherwise separate	d. Phylogenetic profiles show the genes are not that commonly present in organisms	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write an short Biological Database	(OR)
B) Explain the NCBI data base	
22. A) Give an account on BLOCKS, PRINTS	(OR)
B) Explain the application of Pfam	
23. A) Write short note on sequence alignment	(OR)
B) Briefly define Scoring matrices	
24. A) Write short notes on Phylogenetic Analysis	(OR)
B) Write about database similarity search	
25. A) Explain ORF finder	(OR)
B) Explain the steps involved in Restriction site analysis	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on Biological databases
27. Explain elaborately about the types of Biological data bases
28. Give a detailed account on BLAST
29. List out the difference between Local alignment and Global alignments
30. Give a detailed account on Molecular Docking

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{NMEC - II}$

CONCEPTS OF BIOTECHNOLOGY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17 U3BTN03	External	: 75

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT		
I	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8	
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying enzymes	8	
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8	
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8	

V	Selection of recombinants, Markers – PCR, RFLP, RAPD and blotting	8
"	techniques	8

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

${\bf MODEL\ QUESTION\ PAPER\ (CONCEPTS\ OF\ BIOTECHNOLOGY)}$

NAME OF THE COURSE: CONCEPTS OF	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	17 U3BTN03	
MAX MARKS: 75		

SECTION	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS			
SECTION IT (11120 - 20 WINGS) THIS WENTED THE QUESTIONS				
1. The following is not a branch of Biotechnology				
a. Genetic	b. Tissue	c. Physiology	d. Microbiology	
engineering	culture			
2. Cell theory was j	proposed by			
a. Schleiden and	b. Robert	c. Leeuwen	d. Beetle and Tatum	
Schwann	Hooke	Hooke		
3. DNA recombina	nt technology is also call	ed as		
a. Gene manipulati	on b. Totipotency	c. Splicing	d. Gene cloning	
4. The PCR techn	ique was developed by_			
a. Karry mullis	b. Kohler	c. Milstein	d.Altman	
5. Gene cloning me	eans			
a. Production of	b. Production of	c. Production of	d. Production of large	
mutated genes	wild genes	dominant	population of desired	
		genes	DNA fragment	
6. A small circular	DNA present in bacterial	cells are called as		
a. Enzyme	b. Ribosomes	c. Plasmids	d. Vector	
	A samples are taken fron			
a. Same	b. Different	c. Different	d. None of the above	
individual	individual	species		
	Restriction enzyme is to	_		
a. Cut the DNA	b. Join the DNA	c. Amplify the	d. None of the above	
0 111 11 1		DNA		
9. Who discovered	the restriction enzymes?			
a. Natham & Arbei	b. Watson &	c. Boyer & Co	hen d. Paul & Berg	
and smith	Crick			
10. Which organism has the highest number of vectors?				
a. Yeast	b. Mammalian cell	s c. E.coli	d. Fungi	
	riguez constructed which			
a. P ^{uc8}	a. P ^{uc8} b. Y ^{ip7} c. P ^{BR322} d. M ¹³			
12. How many set of	f antibiotics resistance do	es the plasmids PBR32	22 carry?	
a. 1	b. 2	c.3	c. Nothing	
13. Cosmids vectors	are used for	<u> </u>		

	a. Cloning a smal	· · · · · · · · · · · · · · · · · · ·		c. Clonii	_	d. Cloning
	iragments	fragments fragme		proka	ryotes	eukaryotes
	14. Single stranded	vectors are useful -				
	a. For sequencing			c. For	probe	d. All the above
	of cloned DNA	_	nutagenesi		paration	
				•	paration	
	15. Chemicals used	l for gene transfer n	nethod			
	a. Polyethylene	b. Dextra	n c.	Calcium chlor	ride	d. All the above
	16. Polymerase use	ed for PCR is extrac	ted from?			
	a. E.coli b	Bacillus sp	c. Therm	nos aquaticus	d. Sacc	charomyces cerevisiae
	17. At which temp	erature does the DN	A is denat	ured during PC	R?	
	a. 60°C	b. 54°C		c.74°C	(d.94°C
	18. Molecular mar	kers include				
	a.RAPD	b.AFLP		c.AFLP		d. All of these
	19. Western blottir	g is the techniques	for the det	ection of		
a.	Specific RNA in	b. Specific DNA	in c. S	pecific protein	d. S	pecific glycolipids in a
	a sample	a sample	in a sample		sam	
	20. What is probe?		1	1		1
a.	Chemically	b. Purified DNA		gmented DNA		ther purified or
	synthesized DNA		dup	olex	_	nthesized single single randed DNA

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

SE	CTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the	essay strategies of gene cloning
27. Explain th	e types and functions restriction enzymes
28. Write the	essay P ^{BR322} and uses of this vector
29. Write a es	say on gene transfer methods
30. Explain P	CR principle methodology and applications

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

$\underline{NMEC-II}$

BIOTECHNOLOGY FOR SOCIETY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U3BTN04	External	: 75

PREAMBLE

To make students on understanding the applied part of biotechnology to non-major and non-life science back ground students

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of silk worm, earth worm cultivation	K3, K5 & K6
	and its applications	
CO2	To understand the concepts of bio fertilizers, bio plastics and	K3, K5 & K6
	bioweapons	
CO3	To understand the basic concepts of biodegradation of xenobiotic	K3, K5 & K6
	compounds	
CO4	To understand the concepts of generating genetically	K3, K5 & K6
	modified/transgenic organisms	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS	
Ţ	Seri culture, Aquaculture, Apiculture, Vermi culture and Mushroom	Q	
1	technology	0	
п	Biofertilizers, Biopesticides, Bio repellents, Pest control and management,	Q	
11	Biomass (SCP), Bioplastics, Bioweapons.	8	
III	Bio dyes, Bio fuels – Biodiesel & Biogas, Bio indicators, Biodegradation –	Q	
111	Role of genetically modifies organisms	o	
IV	Production of penicillin, Recombinant Vaccines (HBV), Recombinant	Q	
1 V	Insulin, Plantibodies, Vaccines in animal cells, Gene therapy.	o	
V	Transgenic animals and their applications. Mice, Sheep and Fish. Transgenic	0	
v	plants and their applications – BT cotton, Flavr-Savr tomato and golden rice	o	

- 1. Animal Biotechnology, Ranga MM (2000). Agrobios
- 2. Introduction to Plant Biotechnology. Chawla (2003).2nd edition. Oxford and IBH publications.
- 3. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 4. Industrial Microbiology Patel AH (2005). Mac Millan Publishers.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Environmental Biotechnology, Chatterji AK, 3rd edition, PHI Learning Pvt Ltd, Newdelhi.

${\bf MODEL\ QUESTION\ PAPER\ (BIOTECHNOLOGY\ FOR\ SOCIETY)}$

NAME OF THE COURSE: BIOTECHNOLOGY	COURSE CODE:	DURATION: 3 Hrs
FOR SOCIETY	17U3BTN04	
MAX MARKS: 75		

SECTION	$I - A (1 \times 20 = 20 \text{ MA})$	RKS) ANSWER ALL T	HE QUESTIONS	
1. Sericulture is a	rearing of			
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish	
2. Aquaculture is a	rearing of			
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish	
3. Which of the following	llowing is used as food	to feed <i>Bombyx mori?</i>		
a. Hibiscus leaves	b. Mulberry lea		d. Nome of the above	
4. The seeds used:	for mushroom cultivation	on is called as		
a. Callus	b. Bed	c. Spawn	d. Altman	
5. Which of the fo	llowing can be used as	bioweapons?		
a. <i>Bacillus</i>	b. Escherichia	c. Streptococcus	d. Clostridium	
6. Which of the fo	llowing is used as SCP	to feed cattle?		
a. Azolla	b. Spirullina	c. Mushroom	d. Yeast	
	owing is an example fo			
a. PBH	b. PVC	c. PCC	d. PCV	
8. Bacillus thuring	iensis is used as			
a. Biofertilizer	b. Biopesticide	c. Bioplastic	d. Biorepellent	
9. The chemical fu	nctional group that giv	es color to the substance	is called as	
a. Iodophore	b. Basophore	c. Chromophore	d. None of the above	
10. Which organism	produces biodiesel?			
a. Chrococcus	b. Botrycoccus	c. Scenedesi	d. Both b & c	
11. Biogas is produc	ced by certain bacteria	by the process of	-	
a. Acetogenesis	b. Chlorogensis	c. Methanogenes	is d. Nitrification	
12. Petroleum hydro	ocarbons are greatly de	graded by		
a. <i>Serratia</i>	b. Bacillus	c. Proteus	d. <i>Pseudomonas</i>	
13. Recombinant va	ccines are produced by	·		
a. Cutting	b. Grafting	c. Harvestin	g d. Cloning	
14. Hepatitis is commonly caused by				
	U			
15. Penicillin is produced by				
	a. Bacteria b. Fungi c. Virus d. Protozoa			
16. Insulin is pancreatic hormone composed of peptide chains				
a. 1 b. 2 c. 3 d. 4				
17. Which of the following product is produced from animals systems through transgenic technology?				

	a. Fibrin	b. Antithrombin	c.	Insulin	d.	Interferon	
18. Recombinant proteins (RPs) are extensively produced by using one of the following cell line							
	a. MCF	b. CHO	(e. HeLa	d.	MG-63	
19. BT cotton is generated for the purpose of							
a.	Controlling cotton production	b. Controlling Honey I population	oee	c. Controlling butter propagation	erfly	d. Controlling cotton pests	
	20. Transgenic tomato was produced by recombinant DNA technology for the purpose of						
	a. Increasing CHO content	b. Increasing vitamin content	c.	Increasing lipid content	d	l. Increasing protein content	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Write shot notes on the rearing of silkworm	(OR)			
B) Write a short note on the applications of vermin compost				
22. A) Explain the uses of SCP.	(OR)			
B) List out the hazardous consequences of bioweapons				
23. A) List out the composition of biogas	(OR)			
B) Write short notes on pest control management				
24. A) Write short notes on plantibodies	(OR)			
B) Write short notes on gene therapy				
25. A) How will you produce golden rice?	(OR)			
B) Briefly write about uses of Flavr-Savr Tomato				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on mushroom cultivation technology
27. Give a detailed account on biopesticide production
28. Give a detailed account on bio diesel production
29. Give a detailed account on penicillin production
30. Give a detailed account on the production of transgenic mice

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	
