Curriculum for M. Sc Biotechnology MASTER OF SCIENCE

M. Sc SYLLABUS

[For the Candidates admitted on 2023-2024 onwards under Autonomous, CBCS & OBE pattern] (I to IV SEMESTERS)

DEPARTMENT OF BIOTECHNOLOGY

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution | Affiliated to Periyar UniversityApproved by AICTE | Re-accredited with "A" Grade by NAAC| Recognized Under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

M.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small- medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME					
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation					
PO: 2	2 To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society					
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors					
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains					
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics					

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME						
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic Sectors						
PSO: 2	To provide technical products with high frequency of reproducibility to the society						
PSO: 3	To gain vertical mobility in career that will make students more competent to face national/international qualifying exams with practical knowledge acquaintance and in modern biotechnology field						
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social, ethical, legal and cultural aspects of the society						
PSO: 5	To understand the over-all theme/concepts of each specialization in biotechnology and analysing the frequency of its applicability in industry, research and for the goodness of Society						

DEPARTMENT OF BIOTECHNOLOGY

M.Sc. DEGREE COURSE IN BIOTECHNOLOGY Choice-Based Credit System REVISED REGULATIONS AND SYLLABUS (w.e.f. 2023-2024) (in compliance with TANSCHE)

The recent development in the field of biotechnology as rapid growth and the establishment of biotechnological industries. This has resulted in great demand for trained manpower in this field and has opened new career opportunities for the young generation of students to acquire skills, training and knowledge to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes. The academic research into innovations for practical use in society and economy, promoting efficient and transparent governance and management of the higher education system, enhancing the capacity of the higher education system to govern itself through coordinated regulatory reform and increasing both public and private sector investment in higher education, with special emphasis on targeted and effective equity-related initiatives.

Learning Outcomes based approach to Curriculum Planning:

The Learning Outcomes based approach to Curriculum planning aims to factor in on the aptitude, interests and strengths of the students during their progress through the coursework and at the same time focus on overall student attainment. The main objective of the learning outcomes based framework is to better equip the students in their pursuit of knowledge, with the required employability skills, innovation in research and entrepreneurship skills. The course is so designed with practical work that will help students to apply their theoretical knowledge in experimenting and exploring. The curriculum envisions that the student, once graduates as specialists in a discipline, have an important role to play in the newer developments and innovations in the future in the subject for the advancement of the discipline.

Graduate Attributes in Biotechnology:

Graduate attributes are the high-level qualities, skills and understandings that a student should gain as a result of the learning and experiences. They equip students and graduates for lifelong personal development, learning and to be successful in society. Students will be equipped to be active citizens both nationally and globally. The students graduating in biotechnology should also develop excellent communication skills both in the written as well as spoken language which are a must for them to pursue higher studies from some of the best and internationally acclaimed universities and research institutions spread across the globe. The graduate attributes reflect both disciplinary knowledge and understanding, generic skills, including global competitiveness all students in different academic fields of study should acquire/attain and demonstrate. Some of the characteristic attributes that a graduate should demonstrate are as follows

- Leadership Readiness
- Moral and ethical awareness/reasoning.

- Multicultural Competence.
- Life-long Learning.
- Communication Skills.
- Critical thinking.
- Problem-solvingng.
- Research-related skills.
- Scientific reasoning.
- Self-directed learning.
- Disciplinary knowledge.

Qualification Descriptors:

Upon successful completion of the course, the students receive an M.Sc. degree in Biotechnology. Biotechnology postgraduates of this department are expected to branch out into different paths of seeking advanced research-based knowledge, professional employment, or entrepreneurship that they find fulfilling. They will be able to demonstrate knowledge as well as skills in diverse fields of Biotechnology. This will provide a foundation, which shall help them to embark on research careers by attaining doctoral positions in coveted institutions, as well as securing employment in research projects in industry or institutes. Besides research, they can get suitable teachingpositions in Colleges and Universities as Assistant professors after qualifying National Eligibility Test (NET). It is expected that besides the skills specific to the discipline, the wider life skills of analysis, logical reasoning, scientific aptitude, communication skills, research and life ethics, and moral values will be inculcated in the students. The list below provides a synoptic overview of possible career paths provided by postgraduate training in Biotechnology:

- Biotechnology entrepreneurship
- Patents and Law
- Scientific Writing and Editing
- Document preparation and publication
- Research
- Industry
- Teaching
- Administration and Policy Making
- Scientific Communication

Teaching-learning process

The Learning Outcomes-Based Approach to curriculum planning and transaction requires that the teaching- learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome-based approach, particularly in the context of undergraduate studies, requires a significant shift from teacher-centric to learner-centric pedagogies, and from passive to active/participatory pedagogies. Planning for teaching therein becomes critical. Every programme of study lendsitself to a well-structured and sequenced acquisition of knowledge and skills. Practical skills, including an appreciation of the link between theory and experiment, will constitute an important aspect of the teaching- learning process. Teaching methods, guided by such a framework, may include:

- Classroom Teaching for intensely information-based topics. This is a very regular feature of all thecourses in Biotechnology.
- PowerPoint slides for topics that involve information and use of PowerPoint presentations are also made whenever the lectures are to be summarized in a crisp and point-wise manner to highlight salient/important conclusions from the topics.
- Classroom Discussions are a regular feature while teaching. The students are drawn into impromptudiscussions by the teacher during the process of teaching.
- ✓ Video Displaying, both real-time and animations, are used for topics that require 3D dimensional viewing of the biological mechanisms to drive the point home. These have proved to be very helpful while teaching concepts of molecular biology like DNA replication, transcription and translation.
- ✓ Model Making is also used especially for understanding and building a perception of the students.
- ✓ Laboratory Practical are an integral part of every course included in the PG programme in Biotechnology. The is also a daily affair for PG students of Biotechnology.
- ✓ **Problem Solving** is encouraged during the laboratory work.
- ✓ Group Activity as well as discussions with the laboratory supervisor/ among the students themselves/ Mentor is also encouraged during laboratory work.
- Project Work is included in the programme where students work individually or in groups to design experiments to solve/answer a problem suggested by the Mentor or identified by the students in consultation with the Mentor. The students are mentored regularly during the duration of the project.
- ✓ Presentations by the Students are regularly done. The students are mentored in the presentation of data, interpretation of data and articulation with the students/teachers/Research Scholars during their presentation.
- Presentations by Experts in different specialties of Biotechnology are arranged to broaden the horizons of the students.
- ✓ Interaction with Experts is also encouraged during/after presentations to satisfy/ignite the curiosities of the students related to developments in the different areas of Biotechnology.
- ✓ Visit to Industries/Laboratories related to Biotechnology like fermentation, food, pharmaceuticals; diagnostics etc. are organized to acquaint the students with real-life working environments of the professional biotechnologist with a view to broadening their perspective on the subject of Biotechnology.

Assessment methods

The students of PG Biotechnology program must achieve the desired results in terms of the learning outcomes to be professionally sound and competitive in a global society. Achieving the desired learning outcomes is also imperative in terms of job employment leading to a happy and prosperous individual further leading to a happy and prosperous family and thereby a happy and prosperous society or nation. The assessment tasks are pivotal to getting authentic feedback for the teaching-learning process and mid-course corrections and further improvements in the future. The assessment tasks are carried out at various stages of the duration of the PG Biotechnology programme like Mid-

term assessments, End-term assessments, Semester examinations, Regular assessments, viva-voce, etc. The assessment tasks are listed below:-

✓ Short-Answer Questions during term and semester examinations are used to assess the ability of the student to convey his thoughts in a coherent way where prioritization of the information in terms of their significance is tested.

Problem Solving questions are generally given during the laboratory work.

✓ **Surprise Quizzes** are regularly used during continuous assessment while the teachinglearning process is continuing which prepares the student to quickly recall information or quickly analyze a problem and come upwith proper solutions.

✓ **Impromptu Opinions** on biotechnological problems are sought from student during regular teaching- learning which help them to think quickly in a given context. This help build their ability to come up with solutions problems that the students might not have confronted previously.

✓ **Data Interpretation** is also another assessment task that is used to develop the analytical skills of the students. This assessment is used during laboratory work as well as during project work.

✓ Analytical Skills are assessed during work related to several experiments like enzyme kinetics, growth of bacteria and Bacteriophages, and mutation frequencies.

✓ Paper/ Project presentations are used to assess the articulation skills of the student. These are carried out both during the duration of the teaching-learning processes as well as during end-Semester examinations.

✓ Report Writing is used to assess the keenness of the students for details related to Biotechnology while visiting laboratories/industries as students invariably are required to submit a report after such visits.

Assignment Writing is used to assess the writing abilities of the students during midterm vacations.

✓ **Viva-voce** during the laboratory working hours and during laboratory, examinations are used to assess the overall knowledge and intelligence of the students.

Key Words:

Biotechnology, Teaching, Learning outcomes, Curriculum, Curriculum Framework, Programme outcomes, Course outcomes, PG Programme, Postgraduate programme, Teaching-learning processes, Assessment Tasks, Evaluation Tasks, Online Courses, MOOCS, SWAYAM, UGC, India, Higher Education Institutions.

1. CONDITIONS FOR ADMISSION:

A Candidate with a Bachelor's Degree in Science in the disciplines of Biotechnology, Biology, Botany, Zoology, Microbiology, Genetics, Chemistry, Biochemistry, Physics, Agriculture from this University or B.E/ B.TECH (Biotech), B.V.Sc, MBBS, BDS or any area of Biological Sciences / Agriculture and allied sciences; Veterinary and allied sciences or an examination of some other University accepted by the Syndicate as equivalent there to shallbe for the M.Sc Degree Examination of this University after a course of two academic years in an Affiliated Colleges of this University.

2 DURATION OF THE COURSE:

The duration of the course is for two academic years consisting of four semesters.

3. STRUCTURE OF THE COURSE

The course is organized on semester basis with a total off our semesters. In the first, second and third semesters, there are three (core) theory papers (9 hrs per week), one Core Practical (15 hrs per week) and Two elective/ optional papers(4 hrs per week), per semester and in the fourth semester, there are only one core theory paper(Research Methodology) (4 hrs per week), a core project/ dissertation work constituting a total of 20 hrs per week, two electives (4 hrs per week), and a Soft skill program (2 hrs perweek).

Elective paper: Each student shall opt for a comprehensive, interactive course with one of the faculty member. The topic of specialization and course content will be determined by the department/ course advisor.

Core Practical Laboratory: Independent practical shall be held under each component. It is recommended that the practical training be organized as an exercise rather than simple demonstration. The students must actually perform the experiments.

4. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed course of study in a college affiliated to the University for a period of not less than two academic years, passed the examination of all the four semesters prescribed earning minimum of 91 credits and fulfilled such conditions as have been prescribed therefore.

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed courses on Soft Skills and internship in addition to the courses prescribed by the respective Board of Studies for the subject of the Masters Degree. For two years Master's Degree Programme, a candidate shall undergo a minimum of 4 courses (4 x 2=8 credits) from the courses on Soft skills.

A two year Master's Degree student shall undergo 4-6 weeks (2 credits internship during the summer vacation of the First year and submit a report in the beginning of third semester. The report will be evaluated in third semester and the marks forwarded to the University along with third semester internal assessment (CIA)marks.

5. EXAMINATIONS:

There shall be four semester examinations: first semester examination sat the middle of the first academic year and the second semester examination at the end of the first academic year. Similarly, the third and fourth semester examinations shall be held at the middle and the end of the second academic year, respectively. Practical examination shall be conducted independently at the end of even semesters. For practical examination, a single comprehensive) (covering different courses offered during that semester) practical examination (6hrsperday) beheld for each component of the core practical at the end of even semesters.

Examinations for the courses on soft skills will be held along with the semester examinations of the core an delective courses. There is no written examination for internship. A student shall submit a report after completing the summer internship. The report will be evaluated by two examiners within the Department of the college/institution.

			FIROI SEIVIESIER						
		Course		<u> </u>			Exa	Max	k. Marks
S .No.	Paper Code	Components	Name of Course	Semester	Inst. Hours	Credits	m HRS	CIA	Externa I
1	23P1BT01	Core Paper-1	Biochemistry	Ι	3	4	3	25	75
2	23P1BT02	Core Paper-2	Molecular Genetics	I	3	4	3	25	75
3	23P1BT03	Core Paper-3	Molecular Cell Biology	I	3	4	3	25	75
4	23P1BTP01	Core Paper- 4Practical-I	Practical – I (A) Biochemistry (B) Molecular Genetics (C) Molecular Cellbiology	I	12	4	6	40	60
5	23P1BTE01	Elective Paper-1*	Bioinstrumentation	I	2	3	3	25	75
6	23P1BTE02	Elective Paper-2 *	Biostatistics	Ι	2	3	3	25	75
7	23P1BTE03	Paper-3 * Elective	Enzymology	I	2	3	3	25	75
8	23P1BTSSP01	Soft Skill - I	Statistics using R Program		2	2	3	40	60
			Total	Credits	5:24				

6. COURSE OF STUDY AND SCHEME OF EXAMINATIONS:

FIRST SEMESTER

*Candidates can opt for any two Electives (Practical examination shall be conducted independently at the end of even semesters.)

SECOND SEMESTER

	Deper Cr	odo	Course		iter	ú	S	Exa	Max. Marks	
S. No.	Paper Co	oue	Components	Name of Course	Semester	Inst. Hours	Credits	m HRS	CIA	Externa I
9	23P2BT04	4	Core Paper-5	Microbiology	II	3	4	3	25	75
10	23P2BT0	5		Plant and Animal Biotechnology	II	3	4	3	25	75
11	23P2BT06	6	Core Paper-7	Genetic Engineering	II	3	4	3	25	75
12	23P2BTP		Core Paper-8 Practical-II	Practical – II (A) Microbiology (B) Plant and Animal Biotechnology (C) Genetic Engineering	11	12	4	6	40	60
13	23P2BTE	04	Elective Paper- 4*	Regulatory affairs and Industrial standards	II	2	3	3	25	75
14	23P2BTE	05	Elective Paper- 5*	Pharmaceutical Biotechnology	II	2	3	3	25	75
15	23P2BTE	06	Elective Paper- 6*	Environmental Biotechnology	II	2	3	3	25	75
16	-		Extra* disciplinary elective	Any Elective offered by other Depts.	11	2	3	3	25	75
17	23P2BTS	S02	Soft skill - II	Genomics and proteomics	II	2	2	3	25	75
18	23P2BTE	D01	Elective offered toother Dept.	Extra disciplinary Tissue engineering	 crodite	2	2	3	25	75
	Total credits: 24									

* Candidates can opt for any one Elective and one extra disciplinary elective

THIRD SEMESTER

								Max	. Marks
S. No.	Paper Code	Course Components	Name of Course	Semester	Inst. Hours	Credits	Exa m HRS	CIA	Externa I
19	23P3BT07	Core Paper-9	Bioinformatics	===	3	4	3	25	75
20	23P3BT08	Core Paper-10	Immunology		3	4	3	25	75
21	23P3BT09	Core Paper-11	Bioprocess Technology		3	4	3	25	75
22	23P3BTP03	Core Paper-12 Practical-III	Practical – III (A) Bioinformatics (B) Immunology (C) Bioprocess Technology	111	12	4	6	40	60
23	23P3BTE07	Elective Paper-7*	Nano Biotechnology		2	3	3	25	75
24	23P3BTE08	Elective Paper-8*	Molecular Developmental Biology		2	3	3	25	75
25	-	Extra* disciplinary Elective	Any Elective offered by other Depts.	111	2	3	3	25	75
26	23P3BTSSP03	Soft skill – III	Omics Data analysis		2	2	3	40	60
27	23P3BTINT01	**Internship	Internship in Industries toBiotechnology Field (food / clinical trial/ dairy/ aqusciences, pharmaceutical)CSIR/DBT/DS T research laboratories	111	-	2	-	-	100
28		Elective offered to	Principles of Gene		2	2	3	25	75
20	23P3BTED02	other Dept.	ManipulationTechnology				5	20	13
		· ·	Total cree	dits: 2	26				

(Practical examination shall be conducted independently at the end of even semesters.)

*Candidates can opt for any one Elective and one extra disciplinary elective

** Internship will be carried out during the summer vacation of II Semester and the report will be evaluated by two examiners within the Department of the college/ institution. The marks should be sent to the University by the College and the same will be included in the Third Semester Marks Statement.

FOURTH SEMESTER

a N				ster			_	Max. Marks		
S. No.	Paper Code	Course Components	Name of Course	Semeste	Inst. Hour	Credits	Exam HRS	CIA	External	
29	23P4BT10	Core Paper-13	Research Methodology	IV	4	4	3	25	75	
30	23P4BTE09	Elective Paper-9*	Stem CellBiology	IV	2	3	3	25	75	
31	23P4BTE10	10*	Bioethics, HumanRights and Social Issues	IV	2	3	3	25	75	
32	23P4BTPR01	Core Paper-14	Dissertation	IV	20	8		40	60	
33	23P4BTSSP04		Artificial intelligence/ML	IV	2	2	3	40	60	
	Total credits: 17									

*Candidates can opt for any one of the two Electives and the additional 2 hours shall be used for Dissertation work. However, additional elective paper can be opted for earning extra credits.

The following procedure is followed for Internal Marks:

Theory Papers: Internal Marks:

Best Two tests out of 3

Attendance

Seminar Assignment

Practical: Internal Marks:

Attendance Practical Best Test 2 out of 3

Record Viva

Break-up Details for Attendance

Below 60% - No marks 60% to 75% - 3 marks 76% to 90% - 4 marks 91% to 100% - 5 marks

25 marks

10 marks

5 marks 5 marks 5 marks

25 marks

40 5 marks

25 marks

.o mana

5 marks 5 marks

7. DISSERTATION EVALUATION:

Dissertation Work should be carried out as an individual Dissertation and actual bench work. The Dissertation work will begin from IIIrd Semester, and will continue through the IVth Semester. The Dissertation report (also work book shall be presented at the time of presentation and viva voce) will be submitted at the end of the IVth Semester and evaluated. For the conduct of the End Semester Examination and evaluation of Dissertation Work, the University will appoint External Examiners.

Since the dissertation is by research, dissertation work carries a total of 300 marks and evaluation will be carried out by both internal and external evaluators. The average marks awarded by them will be considered. Project work book consisting of daily research activities, methods adopted, results recorded and maintained by the candidate shall also be submitted along with dissertation for evaluation. The viva-voce examination is part of dissertation which carries marks as specified below.

The assignment of marks for Project is as follows: Continuous Internal Assessment

MarksBest 2 out of 3 presentations (Literature survey,

Methodology and Results of the project work) - 60 marks Project work book -	40 marks
Dissertation/ -	150marks
Viva-voce -	50marks

8. REQUIREMENTS FOR PROCEEDING TO SUBSEQUENT SEMESTERS:

(i) Candidates shall register their names for the First semester examination after the admission in the PG courses.

(ii) Candidates shall be permitted to proceed from the First Semester up to the Final Semester irrespective of their failure in any of the Semester Examination subject to the condition that the candidates should register for all the arrear subjects of earlier semesters along with current (subject) Semester subjects.

(iii) Candidates shall be eligible to proceed to the subsequent semester, only if they earn sufficient attendance as prescribed therefore by the Syndicate from time to time.

Provided in case of candidate earning less than 50% of attendance in any one of the semester due to any extraordinary circumstance such as medical grounds, such candidates who shall produce Medical Certificate issued by the Authorised Medical Attendant (AMA), duly certified by the Principal of the College, shall be permitted to proceed to the next semester and to complete the course of study. Such candidate shall have to repeat the missed semester by rejoining after completion offinal semester of the course, after paying the fee for the break of study as prescribed by the University from time to time.

9. PROCEDURE IN THE EVENT OF FAILURE

1. If a candidate fails in a particular subject (other than project work) he /she may appear for the University examination in that subject in the subsequent semester(s) and obtain pass marks.

2. In the event of failure in project work, the candidates will re-register for the project work and redo the project work in the subsequent semester and resubmit the dissertation a fresh for evaluation. The Continuous Internal Assessment marks will be allotted freshly in this case.

10. PASSING MINIMUM:

a) There shall be no Passing Minimum for Internal.

b) For External Examination, Passing Minimum shall be of 50 % (Fifty Percentage) of the maximum marks prescribed for the paper.

c) In the aggregate (External+Internal) the passing minimum shall be of 50% for each Paper/Practical/Project and Viva-voce.

d) Grading shall be based on over all marks obtained (internal + external).

11. CLASSIFICATION OF SUCCESSFULCANDIDATES:

Candidates who secured not less than 60% of aggregate marks (Internal + External) in the whole examination shall be declared to have passed the examination in the First Class. All other successful candidates shall be declared to have passed in Second Class. Candidates who obtain 75% of the marks in the aggregate(Internal+External) shall be deemed to have passed the examination in First Class with Distinction, provided they pass all the examinations (theory papers, practicals, project and viva-voce) prescribed for the course in the First appearance.

12. GRADING SYSTEM:

As per the existing TANSCHE Grading followed by all Post-graduate degree Courses under CBCS (w.e.f. 2009-10).

13. RANKING:

Candidates who pass all the examinations prescribed for the course in the first appearance itself alone are eligible for Ranking/Distinction.

Provided in the case of candidates who pass all the examinations prescribed for the course with a break in the First Appearance due to the reasons as furnished in the Regulations under "Requirements for Proceeding to subsequent Semester" are only eligible for Classification.

14. PATTERN OF QUESTIONPAPER:

Question paper pattern for M.Sc Biotechnology degree course for each semester will be given as follows. For Theory Paper subjects

Part A

10 Objective questions or definitions of 2 marks covering all units of the syllabus (No choice will be given) 10 x 2 = 20 marks

Part B

5 Paragraph questions of 5 marks to be answered choosing one each from each unit following either/orpattern

 $5 \times 5 = 25 \text{ marks}$

Part C

Two Essay type questions of 15 marks to be answered choosing one from each Unit following

either/or pattern2 x 15 = 30 marks

15. APPEARANCE FORIMPROVEMENT:

Candidates who have passed in a theory paper / papers are allowed to appear again for theory paper / papers only once in order to improve his/her marks, by paying the fee prescribed from time to time. Such candidates are allowed to improve within a maximum period of 10 semesters counting from his/her first semester of his/her admission. If candidate improve his/her marks, then improved marks will be taken into consideration for the award of Classification only. Such improved marks will not be counted for the award of Prizes/ Medals, Rank and Distinction. If the candidate does not show improvement in the marks, his previous marks will be taken into consideration.

No candidate will be allowed to improve marks in the Practical, Project, Viva-voce, Field work.

16. TRANSITORY PROVISION:

Candidates who have undergone the course of study prior to the academic year 2022-2023 will be permitted to appear for the examinations under those Regulations for a period of three years i.e., up to and inclusive of April/May 2025 Examinations. Thereafter, they will be permitted to appear for the examination only under the Regulations then in force.

Core Paper-1 BIOCHEMISTRY

Paper – 1								
Title of the paper	BIOCHEMISTRY	Y	Subject cod	le: 23P1BT01				
Category of the	Year	Semester		Credits				
course								
Core Paper	1 st	1	st	4				

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Biochemical concepts, Metabolic reactions and its regulation. The student will get to understand the core concepts of metabolism and physiological processes of the body in both healthy and disease state.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the basics of pH and related principles and carbohydrate metabolism.	K1&K2
CO-2	To provide basic knowledge about lipid metabolism and related significance.	K1,K2 & K3
CO-3	To enlighten the students on Bio-energetics and Biological oxidation pathways.	K1,K2 & K3
CO-4	To update the knowledge on Amino acids and Protein.	K1,K2 & K3
CO-5	To assess and appraise the role of Nucleic acids.	K1,K2 & K3

	SYLLABUS Core Paper-1 BIOCHEMISTRY									
Unit	Content									
	pH, pK . acid, base .Buffers- Henderson- Haselbach equation, biological buffer system -									
	Phosphate buffer system, protein buffer system, bicarbonate buffer system, amino acid									
1	buffer system and Hb buffer system. Water, Carbohydrates: Nomenclature,									
-	classification, structure, chemical and physical properties of carbohydrates.	10								
	Metabolisms: glycogenesis, glycogenolysis, gluconeogenesis, pentose phosphate									
	pathway.									
	Lipids: Nomenclature, classification, structure, chemical and physical properties of fatty									
	acids. Metabolisms: biosynthesis of fatty acids, triglycerols, phospholipids, glycol lipids.									
II	Cholesterol biosynthesis, bile acids and salt formation. Eicosanoids, sphingolipids and	10								
	steroid hormones.									
	Bioenergetics - Concept of energy, Principle of thermodynamics, Relationship between									
	standard free energy and Equilibrium constant, ATP ads universal unit of free energy in									
ш	Biological systems. Biological oxidation: Electron transport chain, oxidative									
	phosphorylation, glycolysis, citric acid cycle, cori.s cycle, glyoxalate pathway. Oxidation									
	of fatty acids- mitochondrial and peroxisomal ß-oxidation, alpha and beta oxidation,									
	oxidation of unsaturated and odd chainfatty acids, ketone bodies. Photosynthesis, urea	10								
	cycle, hormonal regulation of fatty acids and carbohydrates metabolisms, Mineral									
	metabolism									

Γ		Amino acids and Protein: Nomenclature, Classification, structure, chemical and physical	
		properties of amino acids and proteins. Metabolisms: Biosynthesis of amino acids.	
	IV	Degradation of proteins, nitrogen metabolisms and carbon skeleton of amino acids.	10
		Over all in born error metabolisms	
F		Nucleic acids: Nomenclature, Classification, structure, chemical and physical properties	
		of purine and pyrimidines. In de novo and salvage synthesis of purines, pyrimidine	
	v	bases, nucleosides and nucleotides. Catabolisms of purines and pyrimidines bases.	10
		Synthetic analogues of nitrogenous bases	

Reference books:

- Philip Kuchel, Simon Easterbrook-Smith, Vanessa Gysbers, Jacqui M. Matthews, 2011. Schaum.s Outline of Biochemistry, Third Edition (Schaum.s Outline Series), McGraw-Hill.
- Sathyanarayana.U and U.Chakrapani., 2011. Biochemistry. Books and Allied private limited, Kolkata.
- Jeremy M. Berg, John L. Tymoczko, Lubert Stryer, 2010. Biochemistry, Seventh Edition, W. H. Freeman.
- Albert Lehninger, David L. NelsonVoet Donald, Judith G.Voet and Charlotte W.Pratt., 2008. Principles of Biochemistry. John Wiley and sons, Inc., New Jersey.
- Michael M. Cox, 2008. Lehninger Principles of Biochemistry, Fifth Edition, W. H. Freeman publishers.

Useful web sites:

- mcdb-webarchive.mcdb.ucsb.edu/.../biochemistry/.../website-tourf.htm
- www.biochemweb.org/
- http://golgi.harvard.edu/biopages.html
- webarchive.mcdb.ucsb.edu/sears/biochemistry/info/website-

Core Paper-2

MOLECULAR GENETICS

Paper – 1				
Title of the paper	MOLECULAR GENE	TICS	Subject cod	e: 23P1BT02
Category of the	Year	Sem	ester	Credits
course				
Core Paper	1 st	1	st	4

Learning outcome:

The paper imparts a thorough knowledge on the basics of all the Genetics concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and genetics.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To acquire good knowledge about the molecular mechanisms of gene expression and understand the theories behind the organization and functions of genetic material in the living world.	K1,K2 & K3
CO-2	Identify and distinguish genetic regulatory mechanisms at different levels and explain the processes behind mutations and other genetic changes and study various chromosomal abnormalities.	K1,K2 &K3
CO-3-	Make the students understand different range of DNA damage and range of their tools for their detection an.	K1,K2 &K3
CO-4	Learn the concepts of the transposons and their applications.	K1 & K2
CO-5	Detects the Allele frequencies and genotype frequencies in populations and describe the concepts behind the theory of evolution	K1,K2 &K3

	SYLLABUS Core Paper-2 MOLECULAR GENETICS			
Unit	Content	Hours		
	Genes and chromosomes, Colinearity of Genes and Proteins, Genetic code,			
	Identification of DNA as the genetic material. The complexity of eukaryotic genome			
	(introns, exons, repetitive DNA sequence, gene duplication and pseudogenes). DNA			
I	markers -VNTR, STR, microsatellite, SNP and their detection Techniques.	10		
	Replication of DNA, Gene expression and regulation in prokaryotes and eukaryotes.			
	Mutation: Spontaneous and virus induced mutation, Radiation induced mutation.			
П	Ionizing radiation, UV radiation. Chromosomal Abnormalities and	10		
	associated genetic diseases, Techniques in the study of chromosomes and their			
	applications, Recombination – models.			
	DNA Damage and Repair-Internal and external agents causing DNA damages 3.2.			
	DNA damages (Oxidative damages, Depurinations, Depyrimidinations, O6-			
	methylguanines, Cytosine deamination, single and double strand breaks) 3.3.			
	Mechanisms of DNA damage (transition, transversion, frameshift, nonsense			
	mutations) 3.4. Repair mechanisms (Photo reactivation, excision repair, mismatch			
ш	repair, post replication repair, SOS repair) 3.5. Discovery: Early experiments of			
	McClintock in maize. Insertion sequences in prokaryotes. Complex transposons (ex.	10		
	Tn3, Tn5, Tn9 and Tn10). Mechanisms, control consequences and application of			
	transposition by simple and complex elements.			
	16			

	Allele frequencies and genotype frequencies, Random mating population, Hardy-	
	Weinberg principle, complications of dominance, special cases of random mating -	
	multiple alleles, different frequencies between sexes (autosomal and X-linked)	
	inbreeding, genetics and evolution, random genetic drift, Karyotyping and usefulness	
IV	of chromosomes in understanding Genetic variation, Genetics of eukaryotes gene	10
	linkage and chromosome mapping.	
	Extrachromosomal heredity: Biology of Plasmids, their discovery, types and structure	
	of F.RTH. colfactors and Ti - Replication and partitioning, Incompatibility and copy	
	number control-natural and artificial plasmid transfer and their applications-Human	
V	Genome Project, Genomics and Modern methodologies in understanding genome.	10

References:

- Principles of Genetics- 8th Edition, Gardner, Simmons and Snustad, 2002.
- The Cell- A Molecular Approach. 3rd Edition. Geoffrey M. Cooper, Robert E. Hausman, 2003.
- Genetics- Kavitha B. Ahluwalia, New Age International Pvt Ltd and Publishers, New Delhi, 2010
- Genetics P.S Verma and A.K Agarwal (Rack 3, Central Library)
- Robert Brooker.2011. Genetics- Analysis and Principles. 4th edition. McGraw Hill.
- Leland Hartwell,Leroy Hood, Michael Goldberg, Ann Reynolds, Lee Silver,2010.Genetics: From Genes to Genomes, 4th Edition, McGraw Hill.
- Rastogi Smita and Neelam Pathak.,2010. Genetic Engineering, Oxford University Press, New Delhi. (Rack 3, Central Library)
- Watson, Hopkins, Roberts, Steitz, Weiner, 2004. Molecular Biology of Genes, 4th Edition.
- DNA markers Protocols, applications and overviews Anolles G. C. & Gresshoff P. M. Wiley-Liss
- Molecular markers in Plant Genetics and Biotechnology Vienne De. D. Science Publishers
- Genetics of Population Hedrick P.W. Jones & Bartlett 4 Principle of Population Genetics Hartl D. L. and Clark A. G. Sinauer Associates

Core Paper-3

MOLECULAR CELL BIOLOGY

Paper – 3				
Title of the paper	MOLECULAR CELLBIOLOGY Sub		Subject coc	le: 23P1BT03
Category of the	Year	Semester		Credits
course				
Core Paper	1 st	1st		4

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Cell biology concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and cell biology.

Course outcomes:

CO-1	To understanding of the molecular machinery of living cells and the principles that govern the structures of macromolecules and their participation in molecular recognition.	K1,K2 &K3
CO-2	Identify the structures and purposes of basic components in prokaryotic and eukaryotic cells and their molecular mechanism	K1,K2 & K3
CO-3-	Demonstrate knowledge and understanding of the principles and basic mechanisms ofnuclear envelope and its functions.	K1,K2 & K3
CO-4	Understand the metabolic pathways and the process of transmission of extracellularsignals	K1,K2 & K3
CO-5	Demonstrate the operation of various microscopes and microtomy in the laboratory	K1,K2 & K3

	SYLLABUS Core Paper-3 MOLECULAR CELL BIOLOGY			
Unit	Content	Hours		
1	Introduction to cell Biology- Basic properties of cells-Cellular dimension-Size of cells and their composition- Cell origin and Evolution (Endosymbiotic theory)– Microscopy- Light Microscopy, Electron Microscopy, Application of Electron Microscopy in cell biology, Phase Contrast Microscopy, Fluorescence Microscopy, Flow Cytometry and FRET .Organelles of the eukaryotic cell and its functions; Biomembranes - structural organization, transport across membrane (Passive, Active and Bulk transport); Cell-Cell adhesion- Cell junctions (Tight junctions, gap junctions, desmosomes, adherens); Extra cellular matrix (ECM)- components and role of ECM in growth.	10		

	Structure of Nucleic acids, Genome organization in Eukaryotes, DNA Replication,	
	Transcription, Translation and post translational Modification. Synthesis, sorting	
	and trafficking of proteins: site of synthesis of organelle and membrane proteins	
	- transport of secretary and membrane proteins across ER - post-translational	
	modification in RER - transport to mitochondria, nucleus, chloroplast and	
П	peroxisome - protein glycosylation - mechanism and regulation of vesicular	10
	transport – golgi and post-golgisorting and processing – receptor mediated	
	endocytosis; Synthesis of membrane lipids.	
	Nucleus: Nuclear envelope - Nuclear pore complexes- nuclear matrix -	
	organization of chromatin - supercoiling, linking number, twist - nucleosome and	
	high order of folding and organization of chromosome(Solenoid and Zigzag	
- 111	model)-Global structure of chromosome –(Lamp brush and polytene	10
	chromosomes).	
	Molecular basis of eukaryotic cell cycle, Regulation and cell cycle check points;	
	Programmed cell death (Apoptosis); Cell-Cell signaling-signaling molecules,	
IV	types of signaling, signal transduction pathways(GPCR-cAMP, IP3, RTK, MAP	10
	Kinase, JAK-STAT, Wnt Pathway).	
	Cancer Biology: Multistage cancer development Mitogens, carcinogens,	
v	oncogenes and proto- oncogenes, tumor suppressor genes-Rb, p 53,	10
v	Apoptosis and significance of apoptosis, Genome Editing – CRISPR/Cas 9.	10
	1	

References

- Karp, G., 2009, Cell and Molecular Biology, Sixth edition, John Wiley & Sons, New York.
- David E.Sadva., 2009. Cell biology organelles structure and function, CBS publishers and distributors, New Delhi.
- Prakash S. Lohar, 2009. Cell and Molecular Biology.
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, 2007., Molecular Biology of the Cell, Fifth edition. Garland Science.
- Lodish,H., Berk, A., Zipursky, S.L., Matsudaira, P., Kaiser, A., Krieger, Scott and Darnell, J. 2007. Molecular Cell Biology. Media Connected, sixth edition. W.H.Freeman and Company
- Geoffrey.M.Cooper, Robert.E.Hausman.2007.The Cell-A Molecular Approach, Fourth edition. Sinauer Associates. •
- Luiz Carlos Uchoa, Janqueira, Jose, Carneiro. 2005. Basic HistologyText and Atlas. McGraw-Hill Professional.
- Paul A, 2001, Text Book Of Cell And Molecular Biology 2edition Niyogi Books •
- T.Fleming. 2002. Cell interactions: A practical approach Second edition.
- Alberts B, Molecular Cell Biology. 8. Casimeris et al., Lewin's cells. Jones and Bartlett.
- Plopper, Principles of cell Biology. Jones and Bartlett.
- Gartner, Cell Biology and Histology. LWW.
- Pollard et al., Cell Biology. Sounders.
- Copper, The Cell a Molecular approach. Sinauer

Core Paper-4

PRACTICAL-I

(Biochemistry, Molecular Genetics & Molecular Cell biology)

Paper – 4				
Title of the paper	PRACTICAL-I		Subjec	t code: 23P1BTP01
	(Biochemistry, Molecular Genetics			
	& Molecular Cell biology)			
Category of the	Year	Semester		Credits
course				
Core Paper	1 st	1 st		4

Learning Outcome:

The practical will establish a basic study skills on the subject and will improve the student'sability to calculate and improve their practical skill and knowledge.

Course outcomes:

On successful completion of the course the students will be able to

CO 1	(K2) Illustrate basic biochemistry procedures	K3,K4 &K5
CO 2	(K3) study the methods of estimation of biomolecules	K3,K4 &K5
CO 3	(K4) isolate & Analyze DNA, RNA & protein	K3,K4 &K5
CO 4	(K5) critically analyze the isolated biomolecules	K3,K4 &K5
CO 5	(K5) evaluate the quality and purity of DNA, RNA & Protein	K3,K4 &K5

	SYLLABUS Core Paper-4 PRACTICAL-I			
Unit	Content	Hours		
	(A) Biochemistry – Practical			
	1. Basic calculations in Biochemistry - Normality, Molarity, Molality percent solutions $(v/v, w/v)$.			
	2. Calibration of pH meter			
	3. Transition interval of commonly used pH indicators			
Α	4. Preparation of biological buffer - phosphate buffer	15		
	5a. Extraction of Proteins from biological materials			
	5b Protein separation methods:-Ammonium sulphate Precipitation			
	5c. Membrane Dialysis,			
	5d. SDS PAGE			

		[]
	6. Urea-SDS PAGE for separation of low molecularweight proteins	
	7. Estimation of Proteins by Lowry's method	
	8. Estimation of Proteins by Biuret method	
	9. Estimation of Proteins by Bradford method	
	10. Estimation of RNA by orcinol method	
	11. Estimation of DNA by diphenylamine method	
	12. Estimation of Carbohydrate by Anthrone method 13 Purity check of DNA & RNA	
	by UV Spectrophotometry - A260/280	
	14. Separation of amino acids by PaperChromatography	
	15. Separation of sugars by Paper Chromatography	
	16. Separation of amino acids by Thin layerchromatography	
	17. Separation of sugars by Thin layerchromatography	
	18. Thermal Denaturation of DNA and UV absorptionstudies	
	Demo Experiments	
	1. Gel permeation chromatography,	
	2. Affinity chromatography,	
	3. Ion.exchange chromatography	
	4. Western blotting	
	5. PCR	
	(B) Molecular Genetics - Practical	
	1. Isolation of DNA from bacteria	
	2. Isolation of DNA from plants	
В	3. Isolation of DNA from animal tissue	
	4. Isolation of DNA from blood	
	5. Plasmid DNA isolation.	
	6. Agarose gel electrophoresis of DNA	
	 Transer of DNA from gel – Southern Blotting Isolation of RNA 	15
	9. Glyoxal denatured Agarose gel electrophoresis of RNA	
	10. Formaldehyde denatured Agarose gelelectrophoresis of RNA	
	11. Urea denatured Agarose gel electrophoresis of RNA	
	12. Transfer of RNA from gel – Northern Blotting	
	13. Restriction digestion of DNA	
	14. Radiation induced genetic damage assessment	
	15. Chemical induced genetic damage assessment.	
	15. Chemical induced genetic damage assessment.16. Preparation of metaphase chromosomes form blood	

	(C) Molecular Cell Biology -Practical	
	1. Introduction to Microtome and types	
	2. Microtomy-Fixationoftissue	
	3. Microtomy -Embedding	
	4. Microtomy-Sectioning of tissue	
	5. H&E Staining of tissues	
	6. Histochemical staining to localize proteins	
	7. Histochemical staining to localize carbohydrates	
С	8. Histochemical staining to localize lipids.	15
	9. Subcellular fractionation and marker enzymedetection (mitochondria).	
	10. Giant chromosome studies in Chironomous larvae	
	11. Meiotic study in flower bud sand cockroach orgrasshopper	
	12. Preparation of tissue culture medium andmembrane filtration	
	13. Preparation of single cell suspension from spleenand thymus;	
	14. Cell counting and cell viability;	
	15. Embryonic development and stem cells (serpulidpolychaete	
	Hydroideselegans/chick/ frog)	

Elective Paper-1 BIOINSTRUMENTATION

Paper – 1				
Title of the paper	BIOINSTRUMENTAT	ION	Subject cod	le: 23P1BTE01
Category of the course	Year	Sem	ester	Credits
Elective Paper	1 st	1 ⁵	st	3

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the instrumentation concepts, in biology. The student will get to understand the core concepts of biological instruments and their principles.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	Introduction and various types of Microscopic techniques	K1 & K2
CO-2	Impart understanding on centrifugation instruments and techniques	K1, K2,K3
CO-3-	Separation of Biomolecules	K1, K2 & K3
CO-4	Analytical methods on Spectroscopic Analysis	K1,K2 & K3
CO-5	Understand the application and Detection on Bioinstrumentation	K1,K2 & K3

SYLLABUS Elective Paper-1 BIOINSTRUMENTATION				
Unit	Content	Hours		
	Microscopic Techniques: Principles and Applications: Compound, Light, Stereo,			
	Phase Contrast, Fluorescent Microscopy, Scanning and Transmission Electron			
I	Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy, Confocal	7		
	Microscopy, FRET and Flow Cytometry.			
	Centrifugation: pH meter, Principle and Applications of various types of centrifugation,			
	Sedimentation Coefficient, Svedberg unit, RCF, Density Gradient Centrifugation.			
	Chromatography Techniques: Principle and Application of Paper Chromatography,			
П	TLC, Gel Filtration Chromatography, Ion Exchange Chromatography, Affinity	7		
	Chromatography, GC & HPLC.			
	Electrophoretic Techniques: Principle and Application of Agarose Gel			
	Electrophoresis, 2D-gelElectrophoresis, PAGE- NATIVE & SDS PAGE, Iso- electric			
	Focusing, High resolution Electrophoresis, Immuno Electrophoresis (Immunofixation			
ш	EP,), ELISA, RIA, Southern, Northern and Western Blotting. Electro blotting, PCR and	7		
	RT-PCR, Microarray (DNA, Proteins)			
	Spectroscopic Techniques: Theory and Application of UV and Visible Spectroscopy,			
IV	Fluorescence Spectroscopy, Mass Spectroscopy, IR Spectroscopy NMR, ESR,			
	Atomic Absorption Spectroscopy, X- ray Spectroscopy, Laser Spectroscopy and	7		
	Raman Spectroscopy			
	Radio-isotopic Techniques: Introduction to Radioisotopes, Uses and their Biological			
	Applications, Radioactive Decay - Types and Measurement , Principles and			
V	Applications of GM Counter, Solid and Liquid Scintillation Counter,	7		
	Autoradiography, RIA, Radiation Dosimetry, Health effects of Radiations.			

Reference books

- M.H. Fulekar and Bhawana Pandey Bioinstrumentation, Wiley
- Keith Wilson, John Walker, 2010. Principles and Techniques of Biochemistry and MolecularBiology (7th Edition), Cambridge University Press •
- David L. Nelson, Michael M. Cox. Menninger (2008). Principles of Biochemistry, Fifth edition W. H. Freeman, New York.
- Experiments in Biochemistry: A Hands-On Approach by Shawn O. Farrell, Ryan T. Ranallo, Paperback: 324 pages, Publisher: Brooks Cole. 20 •
- Metzler D.E. 2001, the chemical reactions of living cells –Academic Press. 2nd edition.
- Stryer L,1999, Biochemistry-W.H. Freeman & Company, New York. 1. 4th edition
- L.Veerakumari (2006) Bioinstrumentation MJP Publisher Kindle edition
- Jefrey. M., Backer el al., 1996. Biotechnology- A Laboratory Course. Academic Press, NewYork.
- Holcapek, M., Byrdwell, Wm. C. 2017. Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Elsevier

Elective Paper-2 BIOSTATISTICS

Paper – 2					
Title of the paper BIOSTATISTICS Subject code: 23P1BTE02					
Category of the	Year	Semester	Credits		
course					
Elective Paper	1 st	1 st	3		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the statistical concepts, in biology. The student will get to understand the core concepts of computation principles for the data analysis.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the major Methods of collection & presentation of data	K1,K2,K3 & K4
CO-2	To provide basic knowledge about methods of analysis of variance	K1,K2,K3 & K4
CO-3	To enlighten the students about the methods of setting hypothesis and calculation of errors.	fK1,K2,K3 & K4
CO-4	To update the knowledge on Tests of significance for large and small samples.	K1,K2,K3 & K4
CO-5	To assess and appraise the role of novel microbes in environment and integrate themin specific innovative approaches.	K1,K2,K3 & K4

	SYLLABUS Elective Paper-2 BIOSTATISTICS				
Unit	Content	Hours			
I	Statistics – Scope –collection, classification, tabulation of Statistical Data – Diagrammatic representation – graphs – graph drawing – graph paper – plotted curve – Sampling method and standard errors –random sampling – use of random numbers –expectation of sample estimates – means – confidence limits – standard errors – variance. Measures of central tendency – measures of dispersion – skew ness,	7			
II	Correlation and regression – correlation table – coefficient of correlation – Z transformation – regression – relation between regression and correlation. Probability – Markov chains applications – Probability distributions – Binomial (Gaussiandistribution) and negative binomial, compound and multinomial distributions – Poisson distribution	7			
	Normal distribution – graphic representation.– frequency curve and its				
ш	characteristics –measures of central value, dispersion, coefficient of variation and methods of computation – Basis of Statistical Inference – Sampling Distribution – Standard error – Testing of hypothesis – Null Hypothesis –Type I and Type II errors	7			

	Tests of significance for large and small samples basedon Normal, t, z distributions	
	with regard to mean, variance, proportions and correlation coefficient - chi-square	
	test of goodness of fit - contingency tables - c2 test for independence of two	
IV	attributes – Fisher and Behrens 'd' test – $2x2$ table – testing heterogeneity – rX c	7
	table - chi-square test in genetic experiments - partition X 2 - Emerson's method	Ĩ
	Tests of significance - t tests - F tests - Analysis of variance - one way	
	classification – Two way classification, CRD, RBD, LSD. Spreadsheets – Data entry	
	-mathematical functions - statistical function - Graphics display - printing	
V	spreadsheets - use as a database word processes - databases - statistical	7
	analysis packages graphics/presentation packages	
Referen	as Books.	

References Books:

- Veer bala Rastogi. 2011. Fundamentals of Biostatistics. Ane books Pvt Ltd, Chennai.
- Rosner, B (2005), "Fundamentals of Biostatistics", Duxbury Press.
- Warren, J; Gregory, E; Grant, R (2004), "Statistical Methods in Bioinformatics", 1st edition, Springer
- Milton, J.S. (1992),. "Statistical methods in the Biological and Health Sciences", 2nd edition ,Mc Graw Hill,
- Sundar Rao P. S.S., Jesudian G. & Richard J. (1987), "An Introduction to
- Biostatistics", 2nd edition,. Prestographik, Vellore, India,.
- Zar, J.H. (1984) "Bio Statistical Methods", Prentice Hall, International Edition

Useful Websites:

- www.statsoft.com/textbook/ biosun1.harvard.edu/
- www.bettycjung.net/Statsites.htm
- <u>www.ucl.ac.uk/statistics/biostatistics</u>

Elective Paper-3 ENZYMOLOGY

Paper – 3				
Title of the paper	Title of the paperENZYMOLOGYSubject code: 23P1BTE03			
Category of the	Year	Semo	ester	Credits
course				
Elective Paper	1 st	15	st	3

Learning Outcome:

The subject imparts knowledge on the fundamentals of enzyme structure and its kinetics. Thestudent will be provided with a basic knowledge and understanding about the functions of enzyme as well as the industrial application of enzymes.

Course outcomes:

CO-1	(K2) Explain the basics of enzyme nomenclature and properties	K3 & K5
CO-2	(K3) Classify and Cognize the native and immobilized enzyme	K3 & K5
CO-3	(K4) Examine the equations of steady state kinetics	K3 & K4
CO-4	(K5) Assess extraction and downstream processing of enzymes	K3, K4 & K6
CO-5	(K6) Compile the uses of enzymes and design enzymes for Industrialand	K3,K4, K5 & K6
	Clinical application	

SYLLABUS Elective Paper-3 ENZYMOLOGY				
Unit	Content	Hours		
I	Introduction to enzymes, Classification, nomenclature and general properties like effects of pH, substrate and temperature on enzyme catalysed reactions. Extraction Isolation and purification of enzymes by precipitation, centrifugation, chromatography and electrophoresis and liquid-liquid extraction methods	7		
I	Kinetics of catalysed reaction : Single substrate reactions, bisubstrate reactions, concept of Michaelis - Menten, Briggs Haldane relationship, Determination and significance of kinetic constants, Limitations of Michaelis-Menten Kinetics, line weaver burk plot, Hanes wolf equation, Eadie hoofstee equation ,Inhibition of enzyme activity	7		
III	Enzyme catalysis: enzyme specificity and the concept of active site, determination of active site. Stereospecificity of enzymes. Mechanism of catalysis: Proximity and orientation effects, general acid-base catalysis, concerted acid - base catalysis, nucleophilic and electrophilic attacks, catalysis by distortion, metal ion catalysis	7		
IV	Theories on mechanism of catalysisMechanism of enzymes action: mechanism of action of lysozyme, chymotrypsin, carboxypeptidase and DNA polymerase. Multienzymes system, Mechanism of action and regulation of pyruvate dehydrogenase and fatty acid synthetase complex	7		

v	Coenzyme action. Enzyme regulation: General mechanisms of enzyme regulation, Allosteric enzymes, sigmoidal kinetics and their physiological significance, Symmetric	7			
, v	and sequential modes for action of allosteric enzymes. Reversible and irreversible covalent modification of enzymes, Immobilized enzymes and their industrial applications.Clinical and industrial applications of enzymes, Enzyme Engineering	7			
Referen	Reference Books				

- Nicholas C.Price and Lewis Stevens., 2010. Fundamentals of Enzymology. Oxford UniversityPress, New Delhi
- Lehninger, Nelson and Cox, 2005, Principles of Biochemistry 4th edition, WH Freeman and Company, New York, USA
- Principles of Biochemistry with human focus Garrett and Grisham, 2002, Harcourt College Publishers, Orlando, Florida, USA.
- Geoffrey L, Zubay, Biochemistry -, 1998, 4th edition. 23
- Donald Voet, Judith Voet and Pratt, 1995, Fundamentals of Biochemistry, 2nd edition.
- Harper.s Biochemistry Murray et al, 2000, 25th edition, Appleton and Lange Publishers.
- Enzymes Trevor Palmer 2002.

Useful Websites

- www.lsbu.ac.uk/biology/enztech/
- www. lsbu.ac.uk/biology/enzyme/
- <u>http://www.aetIted.com/tech/applications.html</u>

SOFT SKILL - I

STATISTICS USING R PROGRAM

Paper – 1						
Title of the paper STATISTICS USING R PROGRAM Subject code: 23P1BTSSP01						
Category of the	Year Sem		ester	Credits		
course	course					
SOFT SKILL	1 st	1	st	2		

Learning Outcome:

The subject imparts knowledge on the fundamentals of statistics. The student will be provided with a basic knowledge and understanding about the usage of R programming.

Course outcomes:

CO-1	To install the R and its packages and its basic applications	K3
CO-2	To understand the data import and manipulation	K3 & K5
CO-3	To impart the knowledge on presenting the data	K3 & K4
CO-4	To assess the data and implement the statistics	K3, K4 & K6
CO-5	To apply the statistics on the research data	K3,K4, K5 & K6

	SYLLABUS SOFT SKILL - I STATISTICS USING R PROGRAM	
Unit	Content	Hours
	Introduction to R - Installing R and R studio - Getting R help - Installing R	
	packages – R Built-in Datasets; R programming basics – Basic arithmetic	
I	operations - functions - Assigning values to variables - Data types - Vectors -	7
	Matrices – Factors – Data Frames – Lists	
	Importing data -from text/csv/excel files - Exporting data - from R to text/csv/excel	
II	files – saving data - RDATA – Reshaping and Manipulating the data	7
	Data Visualization – creating and saving graphs – Density plots - histograms – Box	
III	plots - violin plots - scatter plots - Bar plots - Deviation graphs - line plots -	7
	Lollipop charts – Error bars – Pie charts – Heatmaps - Volcano plots	
N7	Basic statistics - Measure of central tendency: mean, median, mode; Measure of	7
IV	variability - Range: minimum & maximum, Interquartile range, Variance and	7
	Standard deviation; Normality test	
	Research Statistics - Correlation test - Correlation matrix - Comparing means of	
	two groups - Student's t-test, Wilcoxon rank test; Comparing the means of more	
V	than two groups - ANOVA test, Kruskal-Wallis rank sum test; Comparing the	7
	variances- F-test, Bartlett's test and Fligner-Killeen test; Comparing proportions -	
	Chi-square goodness of fit - Chi-Square test of independence.	
Reference	ce Books:	
• Ar	ndrie de Vries, R For Dummies (2nd Edition) John Wiley & Sons,	

• Hadley Wickham, R for Data Science (1st Edition) O'Reilly

Core Paper-5 MICROBIOLOGY

Paper – 5						
Title of the paper MICROBIOLOGY Subject code: 23P2BT04						
Category of the	tegory of the Year Sem		ester	Credits		
course						
Core Paper	1 st		2 nd	4		

Learning Outcome:

To provide a comprehensive knowledge on taxonomy and microbial diversity, growth, theirharmful effects and beneficial role of microorganisms in agriculture and environment

Course outcomes:

CO-1	To understand the major discoveries of microbiology and describe microbialdiversity,	
	Microbial growth and metabolism.	K1,K2 &K3
CO-2	To provide basic knowledge about microbial culture, identification of microbes,	
	principle and working of microscopes and sterilization techniques	K2,K3 &K5
CO-3	To enlighten the students on host microbe interaction and Epidemiology of microbialdisease	K1,K2,K3
CO-4	To update the knowledge on epidemic and pandemic diseases.	K4 &K5
CO-5	To assess and appraise the role of novel microbes in environment and integrate themin	
	specific innovative approaches.	K4 & K5

SYLLABUS Core Paper-5 MICROBIOLOGY					
Unit	Content	Hours			
	History and microbial taxonomy: Major discoveries related to the field of microbiology:				
	Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch and Edward Jenner. Microbial				
	taxonomy: Bacteria, viruses, fungi, algae and protozoa, Microbial diversity: Biovars,				
	Serovars and Prions, Microbial growth and metabolism: Microbial growth: Growth				
I	curve, factors affecting growth, Microbial metabolism - Methanogenesis, acetogenesis	10			
	and auxotrophs				
	Microbial culture, identification, and control: Nutritional requirements for growth -				
п	Growth media and types, Pure culture techniques: Serial dilution and plating methods,	10			
	Staining methods - Principles and types of staining (simple and differential),				
	Identification of bacteria – Biochemical – IMViC, 16s rRNA sequencing. Microscopy:				
	principles and applications of Bright field, florescent and Scanning electron				
	microscopes, Microbial growth control: Physical Methods - Heat, Filtration, Low				
	Temperatures, High Pressure, Desiccation, Osmotic Pressure, Radiation; Chemical				
	Methods				

	Host microbe interaction and Epidemiology: Human microbiome; Skin, Gastrointestinal tract, Oral cavity, Lung. Symbiotic relationship of microbes: Symbiosis, Mutualism,	
III	Parasitism, Commensalism and endophyte. Epidemiology of microbes: causes, types and transmission of epidemic, endemic and pandemic Diseases.	10
IV	Microbial Diseases: Microbial diseases - General characteristics, pathogenesis, laboratory diagnosis and control measures of Pandemic and Epidemic diseases: Tuberculosis, Leprosy, Cholera, Typhoid, COVID-19, Yellow Fever, Flu, AIDS, Ebola, Zika Virus, Small Pox, Dengue, Chickungunya, Malaria, filariasis, Candidiasis, superficial mycosis.	10
v	Agricultural and Environmental Microbiology: Biological nitrogen fixation, free living, symbiotic nitrogen fixation, mechanism of Nitrogen, Biofertilizers- types and applications; Rhizosphere effect. Biogeochemical cycles-Carbon, Nitrogen, Sulphur and Phosphorous; Methanogenic bacteria Extremphiles- Thermophiles Acidophiles, Halophiles and alkalophiles; Biotechnological application of Extremophiles.	10

References

- Joanne Willey, Linda Sherwood, Christopher J. Woolverton, (2017). Prescott's Microbiology, (10th edition), McGraw-Hill Education, ISBN: 978-1259281594.
- Maheshwari D K, Dubey R C 2013. A Textbook of Microbiology.4th Edn S Chand Publishing India.
- Ananthanarayan and Paniker's (2017) Textbook of Microbiology, (10th edition), The Orient Blackswan, ISBN: 978-9386235251.
- Benson HJ. (1999). Microbiological Applications: A Laboratory manual in General Microbiology, 7th Edition, McGraw Hill. 5
- Managing epidemics- Key facts about major deadly diseases, World Health Organization (WHO) 2018. 9. O'Flaherty, Vincent & Collins, Gavin & Mahony, Thérèse. (2010). Environmental Microbiology, Second Edition. 10.1002/9780470495117.ch11.
- Agriculture Microbiology, 2016. E-Course Developed By TNAU (ICAR)

Web Sources

- https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf ISBN 978-92-4-156553-0. https://doi.org/10.3389/fmicb.2020.631736
- https://www.agrimoon.com/wp-content/uploads/AGRICULTURAL-Microbiology.pdf.

Core Paper-6

PLANT AND ANIMAL BIOTECHNOLOGY

Paper – 6					
Title of the paper	le: 23P2BT05				
	BIOTECHNOLOG	6Y			
Category of the	Year	Year Seme		Credits	
course					
Core Paper	1 st		2 nd	4	

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application plant and animals. The student will get to understand the core concepts of biotechnology.

Course outcomes:

CO-1	To impart theoretical knowledge on various techniques of plant biotechnology like	
	tissue culture, plant genetic transformation and their application in industries.	K1,K2 &K3
CO-2	Importance of secondary metabolites and production in plants.	K1,K2 & K5
CO-3	To develop concepts, principles and processes in animal biotechnology.	K4 & K5
CO-4	Concept and different types in Animal Cell Culture and animal cell lines.	K2,K3,K4 & K5
CO-5	Use of molecular biology techniques genetically engineer the animals to improve sustainability, productivity and suitability for pharmaceutical and industrial applications.	K3,K4 & K6

	SYLLABUS Core Paper-6 PLANT AND ANIMAL BIOTECHNOLOGY				
Unit	Content	Hours			
	Introduction of plant tissue culture, composition of media, Micropropagation,				
	organogenesis, somatic embryogenesis, haploid and triploid production, protoplast				
	isolation and fusion, hybrid and cybrid, synthetic seed production. Secondary				
	metabolites in plants - Phytochemicals- Glycosides and Flavonoids; Anthocyanins				
I	and Coumarins - Lignans, Terpenes, Volatile oils and Saponins; Carotenoids and	10			
	Alkaloids: biogenesis, therapeutic applications.				
	Plant Transformation Direct transformation by electroporation and particle gun				
	bombardment. Agrobacterium, Ti plasmid vector. Theory and techniques for the				
П	development of new genetic traits, conferring resistance to biotic and abiotic.	10			
	Plant engineering towards the development of enriched foodproducts, plant growth				
	regulators; Molecular Marker aided breeding: RFLP maps, Linkage analysis, RAPD				
	markers, STS Mirco satellite, SCAR, SSCP, QTL, Map				
	based cloning and Molecular marker assisted selection.				
	Animal health disease diagnosis, hybridoma technique, monoclonal antibodies,				
	application of probes for disease diagnosis of existing and emerging animal				
III	diseases. Prophylaxis - Vaccines, Oral vaccines DNA Vaccines in animal disease.	10			
	Cell culture: primary and established culture; organ culture; tissue culture				

	Disaggregation of tissue and primary culture; cell separation, Slide and coverslip				
	cultures, flask culture, test tube culture techniques, cell synchronization, cryo				
	preservation. Scaling up of animal cell culture, cell line and cloning				
IV	micromanipulation and cloning, somatic cell cloning. Karyotyping; measuring	10			
IV	parameters for growth, measurement of cell death, apoptosis and its	10			
	determination, cytotoxicity assays.				
	Nuclear magnetic resonance methods of monitoring cell metabolism culturing				
	animal cells in fluidised bed reactors. Application of animal cell culture for in vitro				
	testing of drugs, in production of human and animal viral vaccines and				
	pharmaceutical proteins. Culture Scale up and mass production of biologically				
	important compounds. Harvesting of products, purification and assays. Transgenic				
V	animals: Production and application; transgenic animals in livestock improvement,	10			
	transgenic animals as model for human diseases; Stem Cells- Properties, Types,				
	Therapy, Prospects and Ethics in stem cell research.				
•	Razdan. M. K., 2011. Plant tissue culture. Oxford and IBH publishing Company Pvt. Ltd, Chawla. H. S., 2010. Introduction to plant biotechnology. Oxford and IBH publish				
	pvt. Ltd, New delhi.				
٠	Ian Freshney, 2010. Culture of animal cells. 6th edition, Wiley-Blackwell publis				
•	Slater, 2008. Plant Biotechnology: The Genetic manipulation of plants, Sec	cond Editio			
_	Oxford University Press, USA.	لمه			
•	J.D.Watson, Gillman, J.Witknowski and M.Zoller, 2006. Recombinant DNA. 3r W.H.Freeman. 26 K. Dass. 2005, Text book of Biotechnology, Second Edition,				
•	Dreamtech, India (P) Ltd.	whey			
•	H.Kreuzer & A.Massey. 2001. Recombinant DNA and Biotechnology: A guide	e for teache			
	Second Edition. ASM press, Washington.				
•	M.Sudhir. 2000. Applied Biotechnology & Plant Genetics. Dominant publishers	&			
	Distributors.				
٠	Genetic Engineering of Animals by (Ed) A.Puhler, VCH Publishers, Weinheim,	FRG, 1993			
•	Animal Call culture Practical approach Ed John P.W. Masters, Oxford 2004				
	Animal Cell culture Practical approach. Ed. John R.W.Masters, Oxford.2004.	Ŧ			

 Concepts in Biotechnology D. Balasubramaniam, Bryce, Dharmalingam, Green, Jayaraman Univ. Press, 1996

Core Paper-7

GENETIC ENGINEERING

Paper – 7						
Title of the paper GENETIC ENGINEERING Subject code: 23P2BT06						
Category of the	Year	ar Sem		Credits		
course						
Core Paper	1 st		2 nd	4		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application plant and animals. The student will get to understand the core concepts of biotechnology.

Course outcomes:

CO-1	Understanding the basic steps of gene cloning and the role of enzymes and vectors	K1,K2, K5
	responsible for gene manipulation, transformation and genetic engineering.	
CO-2	Getting detailed knowledge of gene transfer methods and identifying suitablehosts	
	for cloning.	
CO-3	Acquiring theoretical knowledge in the techniques, tools, and application and	K3,K4 &K6
	safety	
	measures of genetic engineering.	
CO-4	Describes the genome mapping and sequencing and methods for gene therapy.	K3,K4,K5 & K6
CO-5	Elucidate different techniques involved in genetic engineering	K3,K4,K5 & K6

SYLLABUS Core Paper-7 GENETIC ENGINEERING			
Unit	Content		
	Gene cloning. Genetic engineering tools. Nucleic acid manipulating enzymes.		
	Promoters, Selectable markers and reporters used in rDNA technology. Restriction		
I	digestion, Ligation, Transformation, Selection of Recombinants. Construction of gene	10	
	libraries		
	E.Coli vectors - pBR322 and its derivatives; Cloning vectors for gram negative bacteria		
	- ColE1, p15A, R1, IncPa, pSC101; Lambda bacteriophage vectors, filamentous		
П	phages, Cosmids, Phasmids, Phagemids. Cloning in gram-positive bacteria (Bacillus	10	
	subtilis).		
	Cloning in yeast Saccharomyces cerevisae. Life cycle and types of vectors; Eukaryotic		
ш	vectors. SV40 (molecular genetics and expression); Specialized cloning vector for cDNA; Synthesis of specific RNA in vitro; Vectors for cloning promotersand terminators;	10	
	vectors with adjustable copy number.		
	Nucleic acid hybridization techniques; Molecular probes (Types of probes and its		
	construction); probe labeling. Nick translation, End labeling and Random primer		
IV	labeling. Polymerase chain reaction and its variants; DNA fingerprinting; DNA		
	sequencing first generation sequencing methods (Maxam and Gilbert sequencing,	10	
	Sangers Dideoxy sequencing, Pyrosequencing, PCR based sequencing and		
	hybridization sequencing). Second generation sequencing methods.		

	Site directed mutagenesis; DNA microarray; chromosome walking and jumping.			
	Proteomics – Protein-Protein Interaction, 2D gel and MALDI-TOF. Molecular			
v	techniques in prenatal diagnosis gene therapy, Transgenic animals (knockout mice)			
	and plants (Flavrsavr tomato), Pharmaceutical products (Vaccine, Humulin, etc), Crop			
	improvement. Pesticide resistance, herbicide resistance, transgenic animals and GM			
	foods; Modern Concepts in Genetic Analysis.			

Reference Books:

- T.A. Brown, 2010. Gene cloning and DNA analysis: An introduction, 6th edition, Wiley-Blackwell.
- Sandy B.Primrose and Richard Twyman, 2006. Principles of Gene Manipulation and genomics, 7th edition, Wiley-Blackwell.
- Lewin, 2009. Genes X, 10th edition, Jones & Barlett Publishers
- Raymond Rodriguez and David T.Denhart 2003.Vectors, A survey of molecular cloningvectors and their uses
- Errst-L. Winnacker 1987. From genes to clones. Introduction to Gene Technology,
- Ed. David V. Geoddel 2002. Gene Expression technologies. Methods in enzymology (Vol. 185)
- William Wu, Michael J.Welsh, Peter B.Kaufrmar, Helen H.Zhang 2001. Methods in Gene Biotechnology

Core Paper-8

PRACTICAL-II

(Microbiology, Plant and Animal Biotechnology & Genetic Engineering)

Paper – 8				
Title of the paper	PRACTICAL-II (Microbiology, Plant and Animal Biotechnology & Genetic Engineering)		Subject code: 23P2BTP02	
Category of the	Year	Semester		Credits
course				
Core Paper	1 st	2 nd		4

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student'sability to have a hands on experience on the above core subjects.

Course outcomes:

CO-1	(K2) Isolate and identify microbes from various sources.	K1,K2,K3,K4,K5 &K6
CO-2	(K3) Characterize microbes.	K3,K4 & K5
CO-3	(K4) Examine Plant and Animal cells and their functions	K3,K4 &K5
CO-4	(K5) Assess extracted DNA, RNA and protein for rDNA technology	K3,K4 &K5
CO-5	(K6) to study cloning tools	K3,K4 &K5

SYLLABUS Core Paper-8 PRACTICAL-II			
Unit	Content	Hours	
	(A) Microbiology-Practical		
	1. Sterilization of glassware using dry heat- hot airoven		
	2. Sterilization of media using moist heat – autoclave		
	3. Filter sterilization		
	4. Liquid media preparation – nutrient broth		
A	5. Solid media preparation – SDA plates	15	
	6. Preparation of Agar slants		
	7. Streak plate method		
	8. Pour plate method		
	9. Spread plate method		
	10. Enumeration of total count of the bacteria		
	10. 11. Isolation of microbes from soil		

	12. Isolation of microbes from water	
	13. Isolation of microbes from air	
	14. Isolation of microbes from plant surface.	
	15. Isolation of pure culture of E.coli,	
	16. Isolation of pure culture of Aspergillus niger,	
	17. Isolation of pure culture of Streptomyces.	
	18. Gram staining and morphological characterization of microbes.	
	19. Negative staining of bacteria	
	20. Determination of growth curve of bacteria – E.coli	
	21. IMViC test of enteric bacteria	
	Demonstration	
	16srRNA sequencing	
	(B) Plant and Animal Biotechnology - Practical:	
	1. Plant tissue culture media preparation	
	2. Plant tissue culture sterilization techniques.	
	3. Generation of Callus from leaf	
	4. Generation of Callus from root	
	5. Generation of Callus from bud	
	6. Generation of Callus from shoot apex	
В	7. Maintenance of callus culture.	15
	8. Cell suspension culture	
	9. Anther culture	
	10. Pollen culture	
	11. Embryo culture.	
	12. Isolation of plant protoplast	
	13. Culture of plant protoplast.	
	14. Protoplast viability test.	
	15. Localization of nucleus using nuclear stain.	
	16. Agrobacterium culture maintenance and isolationof plasmid DNA.	
	17. Mass culture of Chlorella /Spirulina	

	18. Introduction to Animal Cell culture: Procedure forhandling cells and	
	medium.	
	19. Cleaning and sterilization of glassware and plastictissue culture flasks	
	20. Preparation of tissue culture media	
	21. Preparation of sera for animal cell culture	
	22. Preparation of single cell suspension from chickenliver (Primary cell culture).	
	23. Trypsinization of established cell culture.	
	24. Cell counting and viability - staining of cells (a) Vital Staining (Trypan blue, Erythrosin (b) Giemsastaining.	
	25. MTT Assay	
	(C) Genetic Engineering - Practical	
	1. Preparation of plasmid DNA by alkaline lysismethod.	
	2. Agarose gel electrophoresis	
	3. Silver staining of gels	
	4. Methylene blue DNA staining	
	5. Elution of DNA from agarose gel.	
	6. Restriction enzyme digestion.	
с	7. Restriction mapping of plasmid DNA.	15
	8. Ligation.	
	9. Competent cell preparation	
	10. Transformation and selection of recombinants.	
	11. Cloning of fragments in PBR322	
	12. Insertional inactivation/Blue white screening	
	13. RAPD	
	14. RFLP	
	15. Amplification of DNA - PCR	
	16. Determination of molecular weight of DNA	
	Demonstration:	
	RT-PCR for COVID-19	

Elective Paper-4 REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

Paper – 4						
Title of the paper	REGULATORY AFFAIR		Subject	code: 23P2BTE04		
Category of the course	Year	Semeste	er	Credits		
Elective Paper	1 st	2 nd		3		

Learning Outcome:

The subject imparts knowledge on the fundamentals of regulatory requirement in industries. The student will be provided with a basic knowledge and understanding about the regulatory affairs based on biotechnological industry requirements.

CO-1	Elucidate the basic requirements of establish laboratory for testing samples as per the regulatory body's requirements	K2,K3,K4
CO-2	Describe the Scientific, technical knowledge about various food preservation techniques	K2 & K3
CO-3	Describe the basic concepts of packing of food materials, various parameters observed during packaging	K2,K3 & K4
CO-4	Describe the testing of food materials and identifying of microbial food contaminant	K2,K3,K4
CO-5	Explain the basic of food safety management system, good manufacturing practice and good hygienic practices	K2,K3 & K6

	SYLLABUS Elective Paper-4 REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS				
Unit	Content	Hours			
I	Planning, Organisation and setting of Food testinglaboratory and laboratory safety	7			
	Understand the requirements for setting up a laboratory for the legal defensibility of analytical data. The ideal structure design, environment, layout for microbiological testing and Air handling etc., Introduction about accreditation, Different accreditation bodies (NABL, APLAC, ILAC), Requirements for ISO/IEC 17025:2017, documentation, pre-requisites for accreditation, management requirements, technical requirements, measurement of traceability, Laboratory safety: Personnel and laboratory hygiene, emergency planning, general hazards in a food laboratory, safety equipment, storage of chemicals, acids, flammables etc, handling and biological spills and waste disposal.				

	Principles of Food Preservation technology	
	Heat: Principles of Heat transfer, Blanching, Pasteurization, Heat sterilization,	
	thermal extrusion, cooking. Water Removal: Forms of Water in Foods, Sorption of	
	water in foods, Water activity, drying and evaporation technology. Temperature	
	reduction: Chilling, Freezing, Radiation: Ionizing Radiation, Microwave, Use of	
П	chemicals: Class-I & Class-II preservatives, smoke other chemical additives, New	10
	non-thermal methods: High hydrostatic pressure, modified atmosphere, high intensity	10
	pulsed electric fields, intense pulsed light, oscillating magnetic fields, hurdle	
	technology, ultrasonic and ohmic heating etc.	
	Principles of Food Packaging technology	
	Effect of environment on food stability: light, oxygen, water, temperature, sensitivity to	
	mechanical damage and attack by biological agents, Different packaging materials	
III	used for food packaging and their properties including barrier properties, strength	10
	properties, optical properties: Glass, metals, paper, plastics, biodegradable and	
	edible films and coatings aseptic packaging and combinations, Selection of	
	packaging material and design for various food commodities including fresh produce	
	(Fruits and vegetables), milk and milk products (dairy), cereal, pulses, oil, meat, fish,	
	poultry, water and processed foods, Evaluation of quality and safety of packaging	
	materials- different testing procedures, Function of packaging: Protective packaging	
	and active packaging smart and intelligent packaging, Newer packaging	
	technologies-CAP/MAP packaging aseptic processing and packaging, irradiated	
	packaging, retort pouch and microwaveable packaging.	
	Food Microbiology and testing Introduction of Food microbiology: Classification and nomenclature of	
	microorganisms. Morphology and structure of microorganisms in foods (yeast and	
	Molds, Bacterial cells viruses), Important genera of mold, yeast, bacteria (Gram	
	positive and Gram negative, facultative aerobic and anaerobic, endospore forming	
	bacteria and non-sporulating bacteria), Bacterial groups (lactic acid, acetic acid,	
	butyric acid etc.,), thermophilic, proteolytic, saccharomyticetc, coliforms, faecal	
	coliforms, enteric pathogens and emerging microbes, Sources of microorganisms in	
	food chain (raw materials, water, air, equipment etc) and microbiological quality of	
IV	foods, Microbial growth characteristics: Reproduction and growth (fission, generation	
	time optimum growth, growth curve etc). Microbial growth in foods: intrinsic (pH,	10
	Moisture content, oxidation-reduction potential, nutrient content, antimicrobial	
	constituents and extrinsic parameters (temperature of storage, relative humidity of	
	environment, presence and concentration of gases in the environment, Thermal	
	destruction of microorganisms: Thermal death time, D Value, Z-Value, F-Value,	
	thermal death time curve, 12 D Concept, Microbial food spoilage and food borne	
	thermal death time curve, 12 D Concept, Microbial food spoilage and food borne	
	thermal death time curve, 12 D Concept, Microbial food spoilage and food borne diseases, food pathogens, bacillus <i>cereus and other bacillus species, campylobacter,</i>	

	sampling plan, pure culture isolation: streaking, serial dilution and plating, cultivation,					
	maintenance and preservation/stocking of pure culture, Observation of Indicator					
	organisms: Direct examination, enumeration methods, plate count, MPN, biochemical					
	test, Rapid methods detection of specific organisms.					
	HACCP and Food safety management systems: ISO 22000: Importance of					
	implementing a HACCP system and how it can be applied to various products.					
	Prerequisite programs, HACCP principles, some limitation of HACCP food					
	safety objective (FSO).Foodsafety audits: Management review, audit certification					
	and importance. Good manufacturing practices (GMP), Good hygienic practices					
V	(GHP),Food safety plan, food safety management riskanalysis. Traceability food	7				
	products recal and sanitation.					
Referen	ces:					

- ISO 9001, Quality management systems Requirements
- ISO 17034 General requirements for the competence of reference material producers
- ISO/IEC 17043 Conformity assessment General requirements for proficiency testing.
- Food safety standards authority regulation 2011.

Elective Paper-5

PHARMACEUTICAL BIOTECHNOLOGY

Paper – 5						
Title of the paper	PHARMACEUTICAL		Subject code: 23P2BTE05			
	BIOTECHNOLOG	9Y				
Category of the	Year	Sem	ester	Credits		
course						
Elective Paper	1 st	2 nd		3		

Learning Outcome:

The subject imparts knowledge on the fundamentals of pharmaceutical biotechnology. The student will be provided with a basic knowledge and understanding about the pharmaceutical products produced based on biotechnological methods and its biomedical applications.

CO-1	Explain the basic components of pharmaceutical and biotechnology industry and	
	methods and applications of biosensor	K1
CO-2	Describe the Scientific, technical and economic aspects of vaccine & rDNA	K3 & K4
	technology	
CO-3	Describe the basic concepts of protein Engineering, therapeutic proteins and enzyme	
	immobilization techniques	K2
CO-4	Describe the concepts of hybridoma technology, microbial biotransformation and	K2 & K4
	microbial bio-transformed products	
CO-5	Explain the basic components of somatic gene therapy, Xeno-transplantation and	K1,K2 &K5
	fermenter and bio safety methods	

	SYLLABUS Elective Paper-5 PHARMACEUTICAL BIOTECHNOLOGY				
Unit	Content	Hours			
	Introduction to concepts and technologies in pharmaceutical biotechnology and				
I	industrial applications, Biosensors- Working and applications of biosensors in				
	pharmaceutical Industries; Pharmacology and Ethnopharmacology: Scope,	7			
	applications and Importance.				
	Scientific, technical and economic aspects of vaccine research and development,				
	Preparation of bacterial vaccines, toxoids, viral vaccine and antitoxins, Storage				
П	conditions and stability of vaccines, Recombinant DNA technology, Application	7			
	of rDNA technology and genetic engineering in the production of: (i) Interferon (ii)				
	Vaccines - hepatitis- B (iii) Hormones - Insulin, Brief introduction to Protein				
	Engineering, Therapeutic proteins, Production of Enzymes- General consideration -				
	Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase, Methods of enzyme				
	immobilization and applications				

	Hybridoma technology - Production, Purification and Applications, Formulation of	
	biotech products - Rituximab, Introduction to Microbial biotransformation and	
Ш	applications, Study of theproduction of - penicillins, citric acid, Vitamin B12, Glutamic	
	acid and Griseofulvin Somatic gene therapy, Xenotransplantation in pharmaceutical	7
	biotechnology, Large scale production fermenter design and its various controls, Bio	
	safety in pharmaceutical industry.	
	Pharmacological activity of Plant drugs, Plant Chemicals in modern pharmacology;	
	biochemistry and pharmacology of atropine, caffeine, ephedrine, opioids, taxol, vinca	
IV	alkaloids, synthetic substitutes for therapeutically active plant constituents; drug	7
	improvement by structure modification and bio- transformation. Criteria for	
	pharmacological evaluation of drugs.	
	Clinical Pharmacology, Drug therapy, therapeutic situation, benefits and risk of use of	
	drugs, Mechanism of drug action, Therapeutic efficacy, Therapeutic index, tolerance,	
	dosage forms and routes of drug action, factors affecting drug action; Adverse Drug	
	reactions and drug poisoning-classification and causes of ADR; principle clinical	
V	manifestations and treatment of ADR, General principles of management of drug	7
	poiosoning; antidotes, classisfication of drugs.	
Refere	nce Books:	
	Harbans Ial, 2011. Pharmaceuticals biochemistry. CBS Publishers and distributors Pvt. I	_td,
	Chennai.	
	Carlos A. Guzmán and Giora Z. Feuerstein, 2009. Pharmaceutical Biotechnology, 1st editi Springer.	on,
	Daniel Figeys (Ed.). 2005. Industrial Proteomics: Applications for Biotechnology and	
	Pharmaceuticals. Wiley, John & Sons, Incorporated. Kayser, O and Muller R.H. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinica	al
	Applications. WILEY-VCH	
	Leon Shargel, Andrew B. C. Yu, Susanna Wu-Pong, and Yu Andrew B. C. 2004. Appli Biopharmaceutics & Pharmacokinetics. McGraw-Hill Companies	ea
	Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical	
	Gary Walsh. 2003. Biopharmaceutical, Biochemistry & Biotechnology.	
	Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology. Thomas Lengauer (Ed.). 2002. Bioinformatics – from Genomes to Drugs. Volume I&	II.Wilev-
	VCH.	
	John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.	on I neory
	D.I.A. Crommelin, et al., 2002. Pharmaceutical Biology. Amazon prime publications.	
	Werner Kalow, Urs A Meyer and Rachel F. Tyndale. 2001. Pharmacogenomics. CPL press.	
	Websites:	
	https://tugasakhirsttifbogor.files.wordpress.com/2018/08/pharmaceutical-biotechnology.pdf	:
	http://library.nuft.edu.ua/ebook/file/Gad2007.pdf	
	https://oasis.iik.ac.id:9443/library/repository/a932eb462c49885a2c72755977036b81.pdf	

Elective Paper-6 ENVIRONMENTAL BIOTECHNOLOGY

Paper – 6					
Title of the paper	ENVIRONMENTAL		Subject code: 23P2BTE06		
	BIOTECHNOLOG	θY			
Category of the	Year Seme		ester	Credits	
course					
Elective Paper	1 st	2	2nd	3	

Learning Outcome:

The subject imparts knowledge on the fundamentals of ecology and pollution. The student will be provided with a basic knowledge and understanding about the functions of ecosystem and reduction of pollution by biotechnological tools.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) explain various waste management methods	K2
CO-2	(K3) classify potential methods of biodegrading organic pollutants.	K3
CO-3	(K4) examine the techniques involved in remediation of polluted environments	K4
CO-4	(K5) assess types of pollution & its control	K5
CO-5	(K6) compile biotechnological approaches to degrade xenobiotic compounds	K6

	SYLLABUS Elective Paper-6 ENVIRONMENTAL BIOTECHNOLOGY	
Unit	Content	Hours
I	Environment: Basic concepts and issues; Environmental management and Conservation, Environmental Laws & Agencies involved in conservation. Environmental Pollution: Types of pollution & its control strategies -Air pollution, Soil pollution, Water pollution, Oil pollution & Radioactive pollution.	7
II	Biofilm Kinetics: Completely mixed biofilm reactor- Soluble microbial products and inert biomass-Special- case biofilm solution. Reactor types:- batch reactor - continuous-flow stirred-tank reactor- Plug-flow reactor. Engineering design of reactors- Reactors in series.	7
III	Waste water management, source of waste water, Waste water treatment- physical, chemical and biological treatment. Microbiology of Waste water; Aerobic and anaerobic process, BOD and COD.	7
IV	Toxicity: Types and Test for evaluating Toxicity.Biosensors, Biomonitoring of toxic materials .Biomagnification, Biomining and Biofuels.	7
v	Bioremediation; <i>In-situ and Ex-situ</i> Bioremediation of contaminated soils and waste land; Microbiology of degradation of Xenobiotics in environment; Pesticides, Surfactants, Degradative plasmids. Solid waste: Composting, Vermiculture and methane production.	7

- Gareth M. Evans, Gareth G. Evans, Judy Furlong 2011
- Environmental biotechnology: theory and application John Wiley & Sons, Ltd. West Sussex,UK
- M. Moo-Young, W.A. Anderson, A.M. Chakrabarty, 2010. Environmental Biotechnology: Principles and Applications. Springer.
- M. H. Fulekar, 2010 Environmental Biotechnology, by Science Publishers Department of LifeSciences, University of Mumbai, India,
- Stanley E. Manahan, 2009. Environmental Chemistry, Ninth Edition, CRC Press.
- Environmental chemistry 5th edition by A.K.De. 1997.
- Bruce E. Rittmann and Perry L. McCarty. 2001. Environmental Biotechnology : Principles and applications. McGraw Hill, Newyork.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology.Horizon Press.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology.Horizon Press.

Useful Websites:

- Ibewww.epfl.ch/LBE/Default_E.htm
- http://lbe.epfl.ch

SOFT SKILL - II

GENOMICS AND PROTEOMICS

Paper – 1					
Title of the paper	Title of the paper GENOMICS AND PROTEOMICS Subject code: 23P2BTSS02				
Category of the	Year	Sem	ester	Credits	
course					
SOFT SKILL	1st	2r	nd	2	

Learning Outcome:

To understand the basic concepts in genomics and proteomics of various techniques applied to enumerate genome sequences and its functions.

CO-1	To know about DNA manipulating enzymes and its role in rDNATechnology	K3 & K5
CO-2	To gain knowledge on different types of plasmid vectors and their Usage	K3 & K5
CO-3	To acquire knowledge on basic gene cloning strategies	K3 & K4
CO-4	To evaluate the usage and applications of gene cloning for the development of value added products	K3, K4 & K6
CO-5	To know-how on versatile techniques in recombinant DNA technology.	K3,K4, K5 & K6

SYLLABUS SOFT SKILL – II GENOMICS AND PROTEOMICS				
Unit	Content	Hours		
	Genomics-Overview of Genome anatomies. Prokaryotic	_		
I	Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and	7		
	gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem			
	repeats, Transposons and transposable elements.			
	DNA sequencing methods: Shot gun sequencing – Contig assembly. Techniques	_		
II	for gene location: ORF findings, Northern Hybridization, RT- PCR, RACE, S1	7		
	nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray			
	technology			
	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical Mapping,			
- 111	Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene	7		
	therapy for inherited disorders and infectious diseases and ethics.			
	Tools of Proteomics: The proteome - the life cycle of protein-analytical	_		
IV	techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion	7		
	techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide			
	Mass finger printing.			
v	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific	7		
•	features. Protein expression profiling. Identifying protein - protein interactions.	,		
	Mapping of protein modifications.			

- Joaquim Jaumot, Carmen Bedia, Roma Tauler, Data Analysis for Omic Sciences: Methods and Applications (1st Edition) Elsevier, 2018
- Azuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010
- Tseng, George C., Debashis Ghosh, and Xianghong Jasmine Zhou. Integrating Omics Data. Cambridge University Press, 2015.

Extra disciplinary subject for other department students TISSUE ENGINEERING

	Pa	per		
Title of the paper	TISSUE ENGINEER	RING	Subject coc	le: 23P2BTED01
Category of the course	Year	Sem	ester	Credits
Extra disciplinary subject	2 nd	3	rd	3

Learning Outcome:

The subject imparts knowledge on the fundamentals of tissue and its function. The student will be provided with a basic knowledge and understanding about the functions of tissue and its biomedical applications.

CO-1	Understand the basics of Basics of Tissue Engineering	K4 & K5
CO-2	Apply the knowledge to create tissue culture methods	K3 & K5
CO-3	Acquire adequate knowledge in the use of tissue in medical application	K1,K2,K3 & K4
CO-4	Evaluate the benefits of Tissue Engineering & Pharmaceutical Products	K2,K3,K4,K5
CO-5	Analyze the importance of applications of tissue engineering	K2,K3,K4 & K6

SYLLABUS Extra disciplinary subject TISSUE ENGINEERING			
Unit	Content	Hours	
I	Basic biology of tissue engineering: The basis of growth and differentiation- morphogenesis and tissue engineering	7	
	In vitro control of tissue development-Growth factors-Tissue engineering bioreactors- In vitro synthesis of Tissue and organs- Organotypic and histotypic engineered tissues.		
П	3D cell culture-Tissue assembly in microgravity	7	
ш	Biomaterials in tissue engineering-Scaffolds, extracellular matrix, polymers and nanocomposites. Approaches to transplanting engineered cells.	7	
IV	Bioartificial pancrease, Hepatassist liver support system, Artificial Womb, Heamatopoietic system: Red blood cell substitutes, Renal replacement devices.	7	
v	Structural tissue engineering-Bone regeneration through cellular engineering, Skin tissue engineering, Brain implants-Neural stem cells, Periodontal applications	7	

- Sylvia, S. Mader, 2011, Human Biology, Twelfth edition, Mc Graw Hill, USA.
- Robert P. Lanaza, Robert Langer and Joseph Vacanti, 2007. Principles of Tissue Engineering. Third edition Academic Press.
- Micklem.H.S., Loutit John.F., 2004, Tissue grafting and radiation, Academic Press, NewYork..
- Penso.G., Balducci.D., 2004.Tissue cultures in biological research, Elsevier, Amsterdam
- Cecie Starr, 1996, Biology, Third edition , Wordsworth, America.

Useful Websites:

• <u>www.nuigalway.ie/anatomy/tissue_engineering.htm</u>

Core Paper-9 BIOINFORMATICS

Paper – 9					
Title of the paper	Title of the paper BIOINFORMATICS Subject code: 23P3BT07				
Category of the	Year	Sem	ester	Credits	
course					
Core Paper	2 nd	3 ^I	rd	4	

Learning Outcome:

The paper imparts a thorough knowledge of the basics of bioinformatics tools. The student willget to understand the core concepts of in Silico biological research.

CO-1	To get introduced to the basic concepts of Bioinformatics and itssignificance	K1 & K2
	in Biological data analysis.	
CO-2	Describe the history, scope and importance of Bioinformatics and role ofinternet	K2,K3 & K5
	in Bioinformatics.	
CO-3	Explain about the methods to characterize and manage the different types of	K2 & K5
	Biological data.	
CO-4	Classify different types of Biological Databases.	K4 & K5
CO-5	Introduction to the basics of sequence alignment and analysis	K3,K4 & K6

SYLLABUS Core Paper-9 BIOINFORMATICS				
Unit	Content	Hours		
1	Database concepts, Introduction to internet and its application, Introduction to bioinformatics, Protein and nucleotide databases, Information retrieval from biological databases, Sequence alignment and database searching-similarity searches using BLAST and FASTA. Artificial Intelligence: Introduction tobiological neural network, motivation for artificial neural network (ANN), Big data analysis - DNA/RNA/protein sequence or structure data, gene expression data, protein-	10		
11	protein interaction (PPI) data, pathway data and gene ontology (GO) dataSequencealignmentbasics, match, mismatch, similarity, scoring analignment, gap penalty, protein vsDNA alignments, Dot-matrix alignment,	10		
	pairwise alignment. Global and local alignment algorithms, multiple sequence alignment-progressive alignment and Iterative alignment algorithms, consensus sequence, patterns and profiles, Database searching: Pairwise alignment based rigorous algorithm (Smith and Waterman) and Heuristic algorithms (FASTA and Blast). Multiple sequence alignment based database searching. PSI- Blast, PAM and Blosum matrices			

	Bioinformatics for genome sequencing, EST Clustering and analyses, Finding			
	genes in prokaryotic and eukaryotic genomes, Regulatory sequence analysis,			
	Bioinformatics for Genome maps and markers, Bioinformatics for understanding			
- 111	Genomevariation, Protein structure-X-ray crystallography, Theprotein databank and	10		
	the PDBSum-SCOP, CATH, DALI and HSSP ;Visualization of molecularstructures-			
	RasMol and Pymol; Protein secondary structure prediction, Fold Recognition;			
	Transmembrane topology prediction.			
	Molecular visualization tools. Rasmol, Chime and Spdb viewer. Structure analysis			
	tools. VAST and DALI, Structural biology - Homology modeling, Bioinformatics for			
IV	micro array designing and transcriptional profiling, Bioinformatics for metabolic	10		
	reconstruction, Bioinformatics for phylogenetic analysis.			
	Medical application of Bioinformatics. Disease genes, Drug Discovery. History.			
	Steps in drug discovery. Target Identification. Target Validation. QSAR. Lead			
v	Identification. Preclinical pharmacology and toxicology. ADME. Drug designing.	10		
	Rational drug design. Computer aided drug design. Ligand based approach.			
	Target based approach.			
Refere	nce Books:			
	DassanayakeS.Ranil, Y.I.N. Silva Gunawardene, 2011. Genomic and Proteomic Narosa Publishing House Pvt. Ltd, New Delhi.	c Techniques,		
 Thiagarajan B, Rajalakshmi.P.A., 2009. Computational Biology, MJP publishers, Chennai. 				
 BosuOrpita, SimminderKaurThukral, 2007. Bioinformatics Databases, Tools and Algorithms, 				
Oxford University press, New Delhi.				
• Rastogi.S.C, Mendiratta.N, Rastogi.P, 2004. Bioinformatics methods and applications,				

- Prentice-Hall of India private limited, New Delhi.
- Lohar s. Prakash, 2009. Bioinformatics, MJP Publishers, Chennai.
- Stephen misener and Stephen A. Krawetz., 2000. Bioinformatics methods and protocols, Humana press Inc, New Jersey.
- Durbin.R, S.Eddy, A.Krogh and G.Mitchison, 1998. Biological sequence analysis, Cambridge university press, Cambridge.

Core Paper-10 IMMUNOLOGY

Paper – 10						
Title of the paper IMMUNOLOGY Subject code: 23P3BT08						
Category of the	Year	Sem	ester	Credits		
course						
Core Paper	2 nd	3 ^I	rd	4		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of immunology. The student will get to understand the core concepts of immune systems and their non-specific and specific mechanisms, vaccine, etc.

Course outcomes:

At the end of the course the students will be able to

CO-1	(K2) Illustrate various mechanisms that regulate immune responses andmaintain	K1 & K2
	tolerance	
CO-2	(K3) describe key events and cellular players in antigen presentation, and	
	how the nature of the antigen will shape resulting effector responses	K2,K3 & K5
CO-3	(K4) learn the concepts of cellular and molecular processes that represents the	K2 & K5
	human immune system.	
CO-4	(K5) elucidate the role of immunological regulation and tolerance at acellular and	K4 & K5
	molecular level	
CO-5	(K6) compile concepts on immunological principles and diagnosis	K3,K4 & K6

SYLLABUS Core Paper-10 IMMUNOLOGY				
Unit	Content	Hours		
	History and overview of the immune system. Types of immunity - innate, acquired,			
1	passive and active, self vsnon-self-discrimination. Physiology of immune response: HI	10		
and CMI specificity and memory. Cells and organs of the immune system .Lymphoid				
	tissue, origin and development. Hematopoiesis and differentiation of lymphocytes.			
	Lymphocyte-sub-populations of mouse and man. APCcells, lymphokines, Phagocytic			
1	cells, macrophage, dendritic cells, K and NK Cells. Nature and biology of antigens,			
	epitopes, haptens, adjuvents. Immunoglobulins- structure, distribution and function.			
	Immunoglobulin super family Isotypic, Allotypic and Idiotypic variants, generation of			
	antibody diversity			
	Monoclonal antibody production and its applications. Types of vaccine and vaccination			
	schedule. Role of MHC antigens in immune responses, Structure and function of class I			
m	and class II MHC molecules. MHC antigens in transplantation and HLA tissue typing.	10		
	Transplantation immunology- immunological basis of graft rejection, cinical	10		
	transplantation and Immunosuppressive therapy. Tumour Immunology - Tumour			
	antigen, Immune response to tumours.			

IV	Effector mechanisms in immunity - macrophage activation, cell mediated cytotoxicity, cytotoxicity assay. Hypersensitivity reactions and types. The complement system, mode of activation, classical and alternate pathway, biological functions of C proteins.	10
V	Immunotechniques- Principle and Applications: Immuno diffusion,Immuno fluorescence, Insitu localization technique - FISH and GISH. RIA and ELISA, FACS, Western blot, ELISPOT assay. Agglutination tests. VDRL test.Purification of antibodies, Quantitation of immunoglobulin by RID,EID and nephelometry, CMI techniques and Immunotherapy.	10
Referer	ice Books:	

- Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, 2011.
- Roitt.s Essential Immunology, 12 edition, Wiley-Blackwell. USA.
- Kannan. I., 2010. Immunology. MJP Publishers, Chennai.
- Abbas, A.K., A.H.L. Lichtman and S.Pillai, 2010. Cellular and MolecularImmunology. 6thEdition. Saunders Elsevier Publications, Philadelphia.
- SeemiGarhat Bashir, 2009. Text Book of Immunology, PHI LearningPvt. Ltd. New Delhi.
- Thomas J. Kindt, Barbara A. Osborne and Richard A. Goldsby, 2006.Kuby Immunology, 6thedition, W. H. Freeman & Company.
- Nandini Shetty, 1996, Immunology: introductory textbook I. NewAge International, NewDelhi.

Useful Websites:

- www.library.csusm.edu/course guides/biology
- www.immunologylink.com
- <u>http://www.wiley.com/college/bio/karp12791/weblinks.html</u>

Core Paper-11 BIOPROCESS TECHNOLOGY

Paper – 11					
Title of the paper BIOPROCESS TECHNOLOGY Subject code: 23P3BT09					
Category of the	Year Semester	Semester		Credits	
course					
Core Paper	2 nd	3	rd	4	

Learning Outcome:

The paper imparts a thorough knowledge on the basics of bioprocess and industrial fermentation. The student will get to understand the core concepts of fermentation and its commercial application.

Course outcomes:

The student will learn about the:

CO-1	(K2) Outline the basis of Bioprocess Engineering	K1 & K2
CO-2	(K3) Relate reactors in fermentation	K2,K3 & K5
CO-3	(K4) Differentiate fermentation processes	K2 & K5
CO-4	(K5) Assess Scale up and Scale down	K4 & K5
CO-5	(K6) Compile the output of fermentation processes	K3,K4 & K6

SYLLABUS Core Paper-11 BIOPROCESS TECHNOLOGY			
Unit	Content	Hours	
	Introduction to fermentation. General requirements of fermentation. Microbial growth		
	kinetics of batch and continuous culture. Solid substrate, slurry fermentation and its		
_	application. Microbial cell culture. Immobilization of cells and enzymes. Food Safety:		
I	Introduction to food safety aspects and food related, hazards - HACCP and ISO.	10	
	Types of bioreactors: Submerged reactors, surface reactors, mechanically agitated		
	reactors, non- mechanically agitated reactors. Design of fermenters, body construction.		
П	Production of citric acid, penicillin and insulin. Isolation and improvement of Industrially	10	
	important Micro-organisms, Media for Industrial fermentation and Sterilization.		
	Introduction to bioproducts and bioseparation. Primaryrecovery process: Cell disruption		
	methods. Cell lysis and Flocculation: Osmotic and mechanical methods of lysis.		
111	Flocculation by electrolysis; polymorphic flocculation. Precipitation methods. Filtration:	10	
	Principles, Conventional, Crossflow filtration. Sedimentation: Principles, Sedimentation		
	coefficients. Extraction Principles, Liquid liquid extraction, aqueous two phase		
	extraction, supercritical fluid extraction.		
	Down Stream Processing: Chromatography Techniques, Membrane separation,		
IV	ultrafiltration. Drying .Principles and operation of vacuum dryer, shelf dryer, rotary dryer,	10	
	freezer and spray dryer. Crystallization and Whole broth processing.		
	Aerobic and anaerobic fermentation processes and their application in the field of		
v	biotechnology industry. Production of commercially important primary and secondary	10	
	metabolites, Effluent Treatment and Fermentation Economics.		

- Min-tzeLiong, 2011. Bioprocess Sciences and Technology. NovaScience Pub Inc.
- Michael L.Shuler, FikretKargi. 2003. Bioprocess Engineering. PHIpublishers.
- P.A.Belter, E.L.Cursler, and W.S.Hu. 1988.Bioseparation: Downstream processing for Biotechnology. John Wiley and sons.
- R.G. Harrison, P.Todd, SR.Rudge and D.P. Petrides. 2003.Bioseparation science and engineering. Oxford Press.

Useful Websites:

- www.wildfermentation.com/John Schollar and BenedikteWatmore, Practical Fermentation-a technicalguide
- web.mit.edu/professional/short.../fermentation_technology.html

Core Paper-12

PRACTICAL-III

(Bioinformatics, Immunology & Bioprocess Technology)

Paper – 12					
Title of the paper	le of the paper (Bioinformatics, Immunology & Bioprocess Technology)		Subject code: 23P3BTP03		
Category of the	Year Seme		ester	Credits	
course					
Core Paper	2 nd	3	rd	4	

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student'sability to calculate and improve their practical skill and knowledge.

CO-1	(K2) to learn the Bioinformatics tools for sequence retrieval andalignment	K1,K2,K3,K4&K5
CO-2	(K3) to apply the learned tools for various applications	K1,K2,K3,K4&K5
CO-3	(K4) to isolate, identify & enumerate immune cells	K1,K2,K3,K4&K5
CO-4	(K5) to learn the technique of immunodiagnostics	K2,K3,K4
CO-5	(K6) to study upstream & downstream techniques	K2,K3,K4 & K5

SYLLABUS Core Paper-12 PRACTICAL-III			
Unit	Content	Hours	
	(A) Bioinformatics-practical		
A	 Sequence retrieval from Genbank Sequence retrieval from Uniprot. Sequence identity search- Sequence similaritysearch using BLAST Sequence similarity search using FASTA Sequence similarity search using PSI BLAST Sequence similarity search using PHI- BLAST. Prediction of signal sequence using SignalP onlinetool Pattern Search (Domains & Motifs) using Pfam ORF gene Search - Genscan Sequence translation using ExPASy translate tool Characterization of retrieved protein sequence byProtParam tool. Pair-wise global sequence alignment using EBI-EMBOSS Needleman 	15	
	 Wunsch tool 13. Pair-wise local sequence alignment using EBI-EMBOSS Smith Waterman tool. 14. Multiple sequence alignment using EBI-CLUSTALW2. 15. PHYLOGENY- Phylogenetic tree using PHYLIP. 16. Prediction of secondary protein structure usingGOR (Garnier Osguthorpe-Robson) server. 17. Prediction of tertiary protein structure usingSWISS-MODEL Server 18. Validation of the predicted structure usingPROCHECK server 19. Molecular visualization of proteins usingRASMOL. 20. Docking of small molecule with protein structureusing Hex software. 21. Docking of two proteins using PatchDock (Protein-Protein docking) tool. 22. Retrieval of E.Coli glycolytic pathway from KEGG 		

	(B) Immunology - practical	
В	 Identification of various immune cells from humanperipheral blood. Lymphocyte separation and identification Determination of lymphocyte viability by trypanblue method WBC counting Preparation of serum and plasma Electrophoretic profile of human serum in nativePAGE Preparation of cellular antigen – human RBC Preparation of antigen-adjuvent mixture forproduction of polyclonal antibody Isolation of IgG molecule from serum Immunodiagnostics: CRP Immunodiagnostics: Widal Immunodiagnostics: Blood grouping and typing Immunodiagnostics: hCG ELISA Radial Immunodiffusion Ouchterlony Immunodiffusion Immunoelectrophoresis Rocket electrophoresis Counter current immunoelectrophoresis. Bioassays for cytokines Radioimmunoassays (Demonstration) 	15
	(C) Bioprocess Technology - Practical	
С	 Parts and design of fermenter Solid state fermentation Submerged fermentation Foaming and antifoaming agents Media preparation and sterilization Isolation of industrially important microorganismsfor microbial processes. Conservation of Bacteria by Lyophilization. Production and estimation of protease Production and estimation of amylase. Production of vine using grapes Production of penicillin Determination of penicillin activity Citric acid production Use of alginate for cell immobilization. Media standardization (C:N ratio) for maximum biomass production of an industrially importantmicroorganism. Cell disruption (Sonication) Aqueous Two Phase Extraction of enzymes 	15

Elective Paper-7

NANO BIOTECHNOLOGY

Paper – 7					
Title of the paper NANO BIOTECHNOLOGY Subject code: 23P3BTE07					
Category of the	Year	Sem	ester	Credits	
course					
Elective Paper	2 nd	3	rd	3	

Learning Outcome:

The subject imparts knowledge on the fundamentals of nanoparticles. The student will be provided with a basic knowledge and understanding about the role of nanoparticles in biotechnology.

CO-1	Understand the bases for Introduction to Nanotechnology	K1
CO-2	To impart understanding on Nanoparticle based Drug Delivery.	K4
CO-3	Fabrication of nanomaterials for bone tissue grafting	K1 & K5
CO-4	Methods of Nanofabrication	K2
CO-5	Understand the application of Nanotechnology	K5

SYLLABUS Elective Paper-7 NANO BIOTECHNOLOGY				
Unit	Content	Hours		
	Introduction to Nanotechnology- Scientific revolution, Feynman's vision, Classification			
	of nanobiomaterials -Types of nanomaterials - nanoparticles, nanotubes, nanowires,			
I	Nanofibers, Size decendent variation in theproperties of Nanomaterials,	7		
	Nature's Nanophenomena.			
	Preparation of Nanomaterials, Top down and bottom up approaches, Biosynthesis,			
	Nanobiomaterials- Polymer, Ceramic, Metal based Nanobiomaterials, Carbon based			
П	Nanomaterials, DNA basedNanostructures, Protein based Nanostructures, Quantum	7		
	dots, Magnetic Nanoparticles, Nanofibres, Hydrogels, Films and Scaffolds.			
	Application of Nanomaterials in Bone substitutes and Dentistry, Food and Cosmetic	-		
	applications, Bio-sensors and Lab-on-a-chip, Bio-devices and implantable devices,	7		
	Bioremediation, Nanomaterials for anti-microbial coating - medical implants and			
	paints, Application of Nanotechnology in textile industry.			
	Nanomaterials for diagnosis and therapy, Implications of drug delivery, Nano-carriers			
	for application in medicine, polymeric nanoparticles as drug carriers, Drug release			
N/	mechanism, Targeted Drug Delivery using nanocarriers, Nanoparticle technologies	7		
IV	forcancer therapy and diagnosis, Point of Care and Personalized medicine, Magnetic	7		
	nanoparticles for imaging and Hyperthermia.			
	Nanotoxicology, Portals of Entry of the nanoparticles into the Human Body, Bio-			
	toxicity of Nanoparticles, Nanoparticles in Mammalian systems and Health threats,			
v	Biological response and cellular interaction of implant materials and scaffolds, Risk	7		
	assessment and Safety Regulation of nanoparticles.			

- Nanotechnology, S.Shanmugam, Mjp publication. 2011.
- Advanced nanomaterials, kurt E. geckeler, Hiroyuki Nishide, Wiley VHC.2010.
- Nanotechnology and tissue engineering. T.Laurencin, Lakshmi S. Nair, CRC press. 2012.
- Handbook of carbon nanomaterials. Francis D souza, Karl M. Kadish.
- World scientific publishing co. pte. ltd. 2011.
- Oded Shoseyov (Editor), Ilan Levy, 2010. NanoBioTechnology: BioInspired Devices andMaterials of the Future, Humana Press.
- Chad A. Mirkin and Christof M. Niemeyer, 2007. Nanobiotechnology II: More Concepts and Applications, Wiley-VCH.
- Challa S.S.R.Kumar (Ed). 2006. Biologicals and pharmaceutical nanomaterials, Wiley-VCHVerlag Gmbh & Co, KgaA.
- K.K.K.Jain 2006. Nanobiotechnology in Molecualr Diagnostics: Current Techniques and Applications Horizon Bioscience
- Niemeyer, C.M., Mirkin, C.A. (Eds). 2004. Nanobiotechnology Concepts, Applications and Perspectives, Wiley-VCH, Weinheim.
- Andrze w. Miziolek, Shashi P.Karna, J malthew Mauro and Richard A.Vaia. 2005 Defense Applications of Nanomaterials :
- Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer-Verlag (2004)
- The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C.N.R. Rao, A.Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)
- Nanomaterials for medical diagnosis and therapy, Challa Kumar, Wiley-VCH, 2007.
- Nanotechnology for cancer therapy, Mansoor M. Amiji, CRC Press, 2007.
- K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
- Nanomaterials: An introduction to synthesis, properties and application, Dieter Vollath, Wiley VCH, 2008
- Cato T. Laurencin and Lakshmi S. Nair, Nanotechnology and Tissue Engineering The
- Scaffold, CRC Press taylor & Francis Group.
- Introduction to Nanoscience and Nanotechnology, Gabor .L et al, Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.
- Assessing Nanoparticle Risks to Human Health, Gurumurthy Ramachandran, Elesvier, 2011.
- Nanotechnology: Environmental Health and safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010.
- Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, CRC Press, 2013

Useful Websites:

http://www.zyvex.com/nano www.fda.gov/nanotechnology/ www.nature.com/nnano/

•

Elective Paper-8

MOLECULAR DEVELOPMENTAL BIOLOGY

Paper – 8					
Title of the paper	MOLECULAR		Subject code: 23P3BTE08		
	DEVELOPMENTAL BI	OLOGY			
Category of the	Year	Semester		Credits	
course					
Elective Paper	2 nd	3rc	1	3	

Learning Outcome:

The subject imparts knowledge on the fundamentals of developmental biology. The student will be provided with a basic knowledge and understanding about the molecular aspects of developmental biology.

Course outcomes:

CO-1	Illustrate the structure and function of developmental biology, Gametogenesis	K1,K2 & K5
CO-2	Discuss basic fertilization process of animals	K4
CO-3	Demonstrate the functions of embryonic development process	K3
CO-4	Illustrate the organ development of vertebrate animals	K2
CO-5	Demonstrate the impact of gene in developmental biology and developmental	K1 & K4
	disorders	

SYLLABUS | Elective Paper-8 | MOLECULAR DEVELOPMENTAL BIOLOGY

Content	Hours
ooment	nours
Definition and scope of developmental biology. Gametogenesis - Spermatogenesis	
and Oogenesis. Structure of Sperm and oocyte. Instructive and permissive	
interactions, competence, epithelial - mesenchymal interactions. Important signaling	7
pathways in vertebrate development.	
Fertilization - Definition, mechanism of fertilizatiom in mammal & sea urchin.	_
Types of fertilization. Nieuw koop center, Molecular role of organizer.	7
Cleavage in Xenopus, Chick and mammals, Regulation of cleavage cycle.	
Morphogenetic movements, Gastrulation in Xenopus, Chick and mammals. Fate	7
Maps	,
Vertebrate Development: Formation of the neural tube, myogenesis, and	
hematopoiesis. Mechanism of vertebrate eye development.	7
Drosophila Maternal effect genes, induction at single cell level - differentiation of	
photoreceptors in ommatidia. Developmental disorders Spina bifida, Anenecephaly,	7
and craniorachischis, Cyclopia, Thanotrophic dysplasia.	•
	and Oogenesis. Structure of Sperm and oocyte. Instructive and permissive interactions, competence, epithelial - mesenchymal interactions. Important signaling pathways in vertebrate development. Fertilization - Definition, mechanism of fertilizatiom in mammal & sea urchin. Types of fertilization.Nieuw koop center, Molecular role of organizer. Cleavage in Xenopus, Chick and mammals, Regulation of cleavage cycle. Morphogenetic movements, Gastrulation in Xenopus, Chick and mammals. Fate Maps Vertebrate Development: Formation of the neural tube, myogenesis, and hematopoiesis. Mechanism of vertebrate eye development. Drosophila Maternal effect genes, induction at single cell level - differentiation of photoreceptors in ommatidia. Developmental disorders Spina bifida, Anenecephaly,

- Scott F.Gilbert, 2010. Developmental Biology, 9th edition, Sinauer Associates Inc.
- Subramoniam, T. 2002. Developmental Biology. 1st edition. Narosa publications.
- Richard M.Twynman, 2001 Developmental Biology. (2 nd edition), Viva Publications, NewDelhi.

Useful Websites:

sackler.tufts.edu/.../Cell-Molecular-and-Developmental-Biology www.devbio.com/

SOFT SKILL - III

OMICS DATA ANALYSIS

Paper – 1						
Title of the paper	Title of the paper OMICS DATA ANALYSIS Subject code: 23P3BTSSP03					
Category of the	Year	Sem	ester	Credits		
course						
SOFT SKILL	2 nd	3r	ď	2		

Learning Outcome:

contributes to the interdisciplinary techniques required to generate, analyze, and interpret complex biologically derived datasets as part of genomics by providing students the skills and knowledge they need to use bioinformatics tools in research.

Course outcomes:

CO-1	Explain the various sequencing technologies	K3 & K5
CO-2	Understand the pre-processing of High through sequencing data	K3 & K5
CO-3	Analyze and interpret the RNA-Seq data	K3 & K4
CO-4	Analyze and understand the Transcriptome data	K3, K4 & K6
CO-5	Understand the metagenomics and analyse the data	K3,K4, K5 & K6

SYLLABUS SOFT SKILL - III OMICS DATA ANALYSIS					
Unit	Unit Content				
I	Sequencing technologies – Sanger sequencing – Second generation sequencing – Third generation sequencing – Fourth generation sequencing	7			
II	Quality control, basic alignment and pre-processing of Illumina sequencing data- Short read formats - Alignment of reads to a reference genome	7			
Ш	RNA-seq experiments for differential gene expression - ChIP-Seq analysis of DNA regions of interest	7			
IV	Transcriptomics - Experiments with DNA microarrays - Data preprocessing: Exploration, normalization, filtering - Classification and prediction from microarray data - Functional analysis and biological interpretation.	7			
v	Metagenomics – Quality Control- Sequence Clustering - Taxonomic classification - Alpha Diversity - Beta Diversity - Differential Abundance – Function Predictions	7			

Reference Books

- Joaquim Jaumot, Carmen Bedia, Roma Tauler, Data Analysis for Omic Sciences: Methods and Applications (1st Edition) Elsevier, 2018
- Azuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010
- Tseng, George C., Debashis Ghosh, and Xianghong Jasmine Zhou. Integrating Omics Data. Cambridge University Press, 2015.

INTERNSHIP

Paper –					
Title of the paper INTERNSHIP Subject code: 23P3BTINT01					
Category of the	Year	Sem	ester	Credits	
course					
Paper	1 st		2 nd	2	

Learning Outcome:

To gain hands on training and expertise in handling sophisticated instruments and acquirein depth knowledge in their applications.

Course outcomes:

The student will learn to

CO-1	(K2) understand working principles and the techniques of various processes
CO-2	(K3) apply standard operating procedures followed in industries
CO-3	(K3) prepare to face challenges & gain confidence in the field of study.
CO-4	(K5) critically assess the utilization of sophisticated instruments and expensive consumables
CO-5	(K6) develop work ethics to be followed in a scientific laboratory

Extra disciplinary subject for other department students

GENE MANIPULATION TECHNOLOGY

Paper –					
Title of the paper GENE MANIPULA TECHNOLOG			Subject cod	le: 23P3BTED02	
Category of the course	Year	Sem	ester	Credits	
Extra disciplinary subject	1 st	2 ⁿ d		3	

Learning Outcome:

After studying this course, students will be able to:

Gel Electrophoresis- Western Blotting.

- To understand more about the science that underlies the development of genetically modified organisms and in particular how gene transfer is brought about
- To know something of the potential benefits and uncertainties associated with gene transfer and the high levels of technical ingenuity involved
- To understand more the science that underpins the development of Golden Rice and understand why the usefulness of this product has proved so contentious.

CO-1	Understand the basics of Basics of Gene Manipulation Technology	K2,K4 &K5
CO-2	Apply the knowledge to create Constructions of DNA Libraries Constructions of DNA Libraries.	K1,K3,K5
CO-3	Acquire adequate knowledge in the use of Genome Sequencing and	
	Transcriptomics	K1,K2,K3 &K4
CO-4	Evaluate the benefits of Protein Engineering & Pharmaceutical Products	K2,K3 &K4
CO-5	Analyse the importance of Gene Cloning & Applications of Gene Cloning	K2,K3 &K4

SYI	LLABUS Extra disciplinary subject GENE MANIPULATION TECHNOLOGY	
Unit	Content	Hours
	Basics of Gene Manipulation Technology-Restriction Enzymes-Cutting and Joining	_
I	Reactions-Vectors-Selection of Recombinants - Agarose Gel Electrophoresis -	1
	outhern Blotting- Hybridization-Autoradiography-PCR- Native Page- SDS-Page-2D	
		I Basics of Gene Manipulation Technology-Restriction Enzymes-Cutting and Joining Reactions-Vectors-Selection of Recombinants - Agarose Gel Electrophoresis –

II	Constructions of DNA Libraries- Vectors Used In the Construction of CDNA and Genomic DNA Libraries- Chromosome Walking- Positive Selection and Subtractive Hybridization- Preparation Of (BAC/YAC Library).	7
ш	Genome Sequencing and Transcriptomics- Sanger's Sequencing, Whole Genome Shot gun Sequencing-Comparative Genome Sequencing- Transcriptome Analysis- DNA Microarray- Expression of Recombinant Proteins.	7
IV	Protein Engineering & Pharmaceutical Products- SiteDirected Mutagenesis- Protein Analysis- Therapeutic Protein- Vaccines.	7
v	Applications of Gene Cloning- creating TransgenicmAnimals and Plants- Reporter Genes- Animal Cloning, Gene expression in plants- Biosafety and Bioethics.	7
Referen	Ces:	

- An Introduction Gene Cloning And Manipulation- Howe.C
- Molecular Cloning: A Laboratory Manua I (3- Volume Set)- Sambrook J. et al.
- T.A. Brown 1995. Gene Cloning and Introduction.
- Thiel 2002. Biotechnology Nucleic Acids to Protein: A Laboratory Project. Tatamcgraw.Hill
- Desmond S. T. Nicholl, an Introduction To Genetic Engineering 3rd Edition.
- R. W. Old & S.B. Primrose, Principles Of Gene Manipulation, Fifth Edition, BlackwellScience
- Genetic Engineering Principles And Methods By Setlow, Jane K. (VOLUME 24)
- Bernard R Glick and Jack .J. Pasternack, 1994, Molecular Biotechnology, ASM Press.

Core Paper-13 RESEARCH METHODOLOGY

Paper – 13						
Title of the paper	Title of the paper RESEARCH		Subject code: 23P4BT10			
	METHODOLOG	Y				
Category of the	Year	Sem	ester	Credits		
course						
Core Paper	2 nd	4	th	4		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student willget to understand the core concepts of methodologies & ethics to pursue research.

CO-1	Understand the bases for research	K1
CO-2	To know about research proposal and dissertation writing.	K2 &K6
CO-3	To know about Statistical application in research	K3
CO-4	To know about office tools used in research	K1 & K4
CO-5	To know about search engines.	K1 & K2

SYLLABUS Core Paper-13 RESEARCH METHODOLOGY						
Unit	Content	Hours				
	Research Methodology - An Introduction: Meaning of Research, Objectives of					
	Research, Types of Research, Research Approaches, Importance of knowing how					
I	research is done, Research Process, Criteria of good research. Defining the	10				
	Research Problem; Research Design; Sampling Design; Methods of Data Collection;					
	Processing and Analysis of Data; Sampling Fundamentals.					
	Review of literature, Writing the Research Report (Thesis and publications):					
Ш	Components of research report - Title, Authors, Addresses, Abstract, Keywords,	10				
	Introduction, Materials and Methods, Results, Discussion, Summary,					
	Acknowledgements and Bibliography.					
	Standard Deviation- T test. Analysis of Variance components (ANOVA) for fixed					
	effect model; Total, treatment and error of squares, Degrees of freedom, Confidence					
ш	interval; ANOVA for random effects model, Estimation of variance components,	10				
	Model adequacy checking. Two factor Factorial Design, Basic definitions and					
	principles, main effect and interaction, response surface and contour plots, General					
	arrangement for a two factor factorial design.					
	Spreadsheet Tool: Introduction to spreadsheet application, features and functions,					
	Using formulas and functions, Data storing, Features for Statistical data analysis,					
	Generating charts/ graph and other features. Presentation Tool: Introduction to					
	presentation tool, features and functions, Creating presentation, Customizing	10				
IV	presentation, Showing presentation. Tools used may be Microsoft Power Point,	10				
	Open Office or similar tool.					

	Web Search: Introduction to Internet, Use of Internet and WWW, Using search	
v	engine like Google, Yahoo, Pubmed, Science direct, Scopus etc, and Using	10
	advanced search techniques	

- Montgomery, Douglas C. (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- Montgomery, Douglas C. & Runger, George C. (2007), 3/e, Applied Statistics & Probability for Engineers (Wiley India).
- Kothari C.K. (2004), 2/e, Research Methodology- Methods and Techniques (New Age International, New Delhi).
- Krishnaswamy, K.N., Sivakumar, Appa Iyer and Mathiranjan M. (2006), Management Research Methodology; Integration of Principles, Methods and Techniques (Pearson Education, New Delhi).
- The complete reference Office Xp Stephan L. Nelson, Gujulia Kelly (TMH).
- Basic Computer Science and Communication Engineering R. Rajaram (SCITECH).

Useful Websites

- www.ask.com/Methodology+Research
- www.qmethod.org/

Elective Paper-9 STEM CELL BIOLOGY

Paper – 9						
Title of the paper	Title of the paper STEM CELL BIOLOGY Subject code: 23P4BTE09					
Category of the	Year	Sem	ester	Credits		
course						
Elective Paper	2 nd	4	th	3		

Learning Outcome:

The subject imparts knowledge on the fundamentals of stem cells. The student will be provided with a basic knowledge and understanding about the application of stem cell biology.

Course Outcomes:

At the end of the Course, the Student will be able to:

CO1	To understand the major discoveries of stem cell biology	K1
CO2	To provide basic knowledge about stem cell niche and functions	K1 & K2
CO3	To enlighten the students on Stem cell isolation and culture techniques	K3, K4
CO4	To update the knowledge on Stem cell cycle	K3,K3 & K5
CO5	To assess and appraise Applications of Embryonic stem cells.	K3,K4 & K5

SYLLABUS Elective Paper-9 STEM CELL BIOLOGY				
Unit	Content	Hours		
I	Stem cells - Definition, Characterization, Pluripotency, Self-renewal and differentiation. Types of stem cells- Embryonic stem cells, Adult stem cells and mesenchymal stem Cells, Adipose stem cells.	7		
II	Stem cell niche, Niche specification - Drosophila germ line stem cells. Receptors, enes and markers of stemcells.	7		
ш	Stem cell isolation and culture techniques. Characterization of stem cells	7		
IV	Stem cell cycle. Chromatin modification and transcriptional regulation, chromatin modifying factors, Chromosomal inactivation. JAK -STAT pathway, Ras\Raf pathway, PI3K cell signaling, p53 check points, Role of LIF pathway in cell cycle control	7		
v	Applications of Embryonic stem cells, Bone marrow stem cells, Adipose derived stem cells and Hematopoietic stem cells. Ethics in human stem cell research.	7		

- Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold SpringHarbour Laboratory Press
- Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer, STEM CELL TECHNOLOGY Syllabus Semester First References:
- Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- Progress in gene therapy, Volume 2, Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers
- Stem Cells Handbook: Stewart Sell, Humana Press; Totowa NJ, USA; Oct. 2003,
- Human Embryonic Stem Cells: The Practical Handbook by Stephen Sullivan and Chad ACowan

Elective Paper-10

Paper – 10						
Title of the paper	BIOETHICS, BIOSAFETY,		Subject code: 23P4BTE10			
	CLINICAL TRIALS, IPR &					
	ENTREPRENEURSHIP					
Category of the	Year	Sem	ester	Credits		
course						
Elective Paper	2 nd	4	th	3		

BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

Learning Outcome:

This course provides the guidelines and regulations governing research; evaluate ethical conduct and social responsibilities; to adhere to safe working practices; to appreciate the need for protection of human subjects; to recognize the potential harms in research and show sensitivity to cultural and ethical issues; to create a general awareness about IPR.

Course Outcome:

CO-1	Understand the basics of biosafety and bioethics and its impact on biological	K2,K3 & K4
	sciences and the importance of human life.	
CO-2	Apply the knowledge to recognize the importance of biosafety guidelines and good clinical practices.	K3, K4 & K5
CO-3	Acquire adequate knowledge in the use of genetically modified organisms and its effect on human health.	K3,K4 & K5
CO-4	Evaluate the benefits of GM technology and importance of IPR	K4, K5 & K6
CO-5	Analyse the importance of protection of new knowledge and innovations andits role in business and entrepreneurship	K4,K5 & K6

SYLLABUS | Elective Paper-10 | BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

Unit	Content		
	Introduction to Bioethics Need for bioethics in social and cultural issues. Bioethics &		
	GMO's Issues and concerns pertaining to Genetically modified foods & food crops,		
	Organisms and their possible health implications and mixing up with the gene-pool.		
	Bioethics in Medicine Protocols of ethical concerns related to prenatal diagnosis,	10	
•	gene therapy, Organ transplantation, Xenotransplantation, Containment facilities	10	
	for genetic engineeringexperiments, regulations on field experiments and release of		
	GMO`s blabeling of GM foods.		

П	Clinical trials –Regulations. Bioethics & Cloning Permissions and Procedures in Animal Cloning, Human cloning, Risks and hopes. Bioethics in Research Stem cell	10		
	research, Human Genome Project, Use of animals in research, human volunteers for	10		
	Clinical research, Studies on Ethnic races. Ethics in patient care, Informed consent.			
	Biosafety – Biological risk assessment. Biological agents and Hazard groups. Criteria			
	in biological risk assessment. Guidelines for categorization of genetically modified			
III	plants for field test. Regulation, national and international guidelines of Biosafety,	10		
	rDNA guidelines, Regulatory requirements for drugs and Biologics GLP. Biosafety			
	levels. Safety mequipments and Biological Safety cabinets.			
	IPR: Introduction to Intellectual Property rights, Patenting – Factors for patentability –			
	Novelty, Non- obviousness, Marketability. Procedures for registration of Patents.			
	Copyright works, ownership, transfer and duration of Copyright. Renewal and			
IV	Termination of Copyright. Industrial Designs - Need for Protection of Industrial	10		
	Designs. Procedure for obtaining Design Protection. Infringement, Right of Goodwill,			
	Passing Off. Trademarks - Introduction to Trademarks. Need for Protection of			
	Trademarks. Classification of Trademarks. Indian Trademarks Law. Procedural			
	Requirements of Protection of Trademarks.			
	Geographical Indications - Indication of Source and Geographical Indication.			
	Procedure for Registration, Duration of Protection and Renewal. Infringement,			
	Penalties and Remedies. Layout- Designs of Integrated Circuits: Conditions and			
v	Procedure for Registration. Duration and Effect of Registration Protection of Plant	10		
v	variety and Plant breeders' rights in India. Protection of traditional knowledge,	10		
	Bioprospecting and biopiracy. India's new IP Policy (2016), Govt of India's steps to			
	promote IPR. Career opportunities in IP. Entrepreneurship: Definition and importance,			
	Characteristics and functions of an entrepreneur.			
Refere	nce Books:			
•	"Bioethics & Biosafety" by Sateesh MK, IK International publications, 2008			
٠	USPTO Web Patent Databases at: www.uspto.gov/patft			
•	Government of India's Patents Website: patinfo.nic.in			
•	Intellectual property India: www.ipindia.nic.in			
•	"Indian Patent Law : Legal and Business Implications" by Ajit Parulekar, Sarita D'Souz Macmillan India publication, 2006			
•	"Agriculture and Intellectual Property Rights", edited by: Santaniello,V., Evenson, R.E Zilberman, D. and Carlson, G.A. University Press publication, 2003	.,		
٠	Research papers and Reports provided from time to time			
•	Ganguli P, (2001), Intellectual Property Rights, Tata Mcgraw Hill. Ramesh Chandra, (2004), Issues Of Intellectual Property Rights, Isha Books.			
•	Erbisch F.h., Maredia K.M, (2000), Intellectual Property Rights In Agricultural Biotechnology,			
	Universities Press.			
•	Shiv Sahai Singh, (2004), Law Of Intellectual Property Rights, Deep & Deep Publications (, ,		
•	Subbian A, Bhaskaran S, (2007), Intellectual Property Rights: Heritage, Science And Socie Treaties, Deep & Deep Publications.			
•	Elad Harison (2008). Intellectual Property Rights, Innovation and Software Technologie Elgar Publishing Limited, UK.	es.Edward		

Core Paper-14 DISSERTATION

Paper – 14				
Title of the paper	DISSERTATION		Subject code: 23P4BTPR01	
Category of the	Year	Semester		Credits
course				
Core Paper	2 nd	4 th		8

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student willget to understand the core concepts of pursuing research.

SOFT SKILL - IV

ARTIFICIAL INTELLIGENCE/ML

Paper – 1					
Title of the paper	ARTIFICIAL INTELLIGENCE/ML		Subject cod	ode: 23P4BTSSP04	
Category of the	Year	Semester		Credits	
course					
SOFT SKILL	2 nd	4th		2	

Learning Outcome:

To impart the insight into the optimal AI tools for this industry and explore how they can be leveraged for early drug discovery.

Course outcomes:

CO-1	Understand the handling of big data	K3 & K5
CO-2	Classify the algorithms and its applications in cancer classifications	K3 & K5
CO-3	Applying the regression to predict the CVD	K3 & K4
CO-4	Using decision trees and Random Forest algorithms to study drug combination	K3, K4 & K6
CO-5	Implying the machine learning to diagnose the breast cancer	K3,K4, K5 & K6

SYLLABUS SOFT SKILL - IV ARTIFICIAL INTELLIGENCE/ML				
Unit	Content	Hours		
I	Introduction to AI & Machine-learning (ML) - Exploratory data analysis - Plotting and data visualization - Handling big-data sets	7		
II	Hypothesis testing - Unsupervised learning and clustering - Classifying cancer sub- types using clustering	7		
III	Regression (Linear, Logistic, Lasso, Stepwise, PLS) - Predicting cardiovascular risk using regression - Model validation.	7		
IV	Decision trees - Predicting diabetic retinopathy using decision trees; Random Forests (RF), Identifying synergistic drug combinations using RF.	7		
V	Neural Networks (NN)/ Deep Learning - Diagnosing breast cancer from biopsy images using NN & Transfer Learning	7		

Reference Books

- John Paul Mueller, Artificial Intelligence For Dummies 1st Edition, For Dummies
- Stuart Russell, Artificial Intelligence: A Modern Approach, (3rd Edition), Pearson