Curriculum for M. Sc Biotechnology

For the Candidates admitted in 2022-2023 onwards Under Autonomous, CBCS & OBE pattern

DEPARTMENT OF BIOTECHNOLOGY

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution | Affiliated to Periyar University Approved by AICTE | Re-accredited with "A" Grade by NAAC| Recognized Under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

M.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developingcompetent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small-medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnologycontinuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects andits cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

stic
modern
cial,
1
of

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Elayampalayam – 637 205, Tiruchengode, Tamilnadu

DEPARTMENT OF BIOTECHNOLOGY M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

SCHEME OF EXAMINATION

(For the Candidates admitted during the academic year 2022-2023 onwards)

Correct Cords	Title of the Course	Crue l'Ar	Hours		Maximum Marks		
Course Code		Credits	Theory	Practical	Int	Ext	Total
	Seme	ester - I					
Core Courses							
22P1BT01	Cell and Molecular Biology	5	5	-	25	75	100
22P1BT02	Biological Chemistry	5	5	-	25	75	100
22P1BT03	Microbiology	5	5	-	25	75	100
22P1BT04	Genetics	5	5	-	25	75	100
Core Practical	-I	•				•	•
22P1BTP01	Basic Biotechnology (Practical - 1)	3	-	6	40	60	100
Elective course		·				•	•
22P1BTE01	Bioinstrumentation	3	4	_	25	75	100
22P1BTE02	E02 Evolution and Behavior		-	23	15	100	
Total		26	24	6	165	435	600
	Seme	ster - II					
Core Courses							
22P2BT05	Genetic Engineering	5	5	-	25	75	100
22P2BT06	Immunology	5	5	-	25	75	100
22P2BT07	Microbial Technology	5	5	-	25	75	100
22P2BT08	Developmental Biology	5	5	-	25	75	100
Core Practical	-I						
22P2BTP02	Applied biotechnology (Practical -II)	3	-	6	40	60	100
Elective course						•	•
22P2BTE03	Genomics and Proteomics	3	4	-	25	75	100
22P2BTE04	Diversity of Life Forms	S	4				100
Total		26	24	6	165	435	600
		52	48	12	330	870	1200

Course Code	Title of the Course	Credita	Н	Hours		Maximum Marks		
Course Code	The of the Course	Credits	Theory	Practical	Int	Ext	Total	
	Semeste	r – III						
Core Courses								
22P3BT09	Plant Biotechnology	5	5	-	25	75	100	
22P3BT10	Animal Biotechnology	5	5	-	25	75	100	
22P3BT11	Environmental Biotechnology	5	5	-	25	75	100	
22P3BT12	Bioinformatics	5	5		25	75	100	
Core Practical	-111							
22P3BTP03	Advanced Biotechnology (Practical -III)	3	-	6	40	60	100	
Elective course		1	L					
22P3BTE05	Nanotechnology	3	5		25	75	100	
22P3BTE06	Pharmaceutical Biotechnology		3 5 -		23	23 13		
Extra Disciplin	ary Course							
22P3BTED01	Nanotechnology	2	2	-	25	75	100	
22P3BTED02	Bioinformatics							
Mandatory Co	urse				-	-		
18P3HR01	Human Rights	1	1	-	25	75	100	
21P3BTEX01	Internship	1	1		40	60	100	
Total		28	24	6	190	570	800	
	Semeste	r - IV						
Core Courses				•				
22P4BT12	Research Methodology	5	5	-	25	75	100	
Project Work								
22P4BT13	Project work	5	-	21	25	75	100	
Total		10	9	21	75	225	300	
		90	81	39	595	1665	2300	

(For the Candidates admitted during the academic year 2022-2023)

M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2022-2023 onwards)

SEMESTER - I

Course Co	ode	22P1BT01	CORE – I		urs/ /K	M	arks	
Credits		5	CORE - I CELL AND MOLECULAR			.		
Total Hours		75	- BIOLOGY	T	Р	Int	Ext	
Max. Mar	k	100		5	-	25	75	
Course Ol	ojective	s:						
The main o	objectiv	es of this course	are:					
1. To f	amiliari	ze the student in	n various aspects of cell and molecular	biology	stream	ns inc	ludin	
cellu	lar orga	anization and th	eir interactions in DNA replication, and	l proteir	n bios	ynthes	is an	
trans	lational	l regulation						
2. To d	levelop	comprehensive	understanding on the complete cellular a	nd mole	ecular	functi	ons o	
cell	organell	les in terms of ce	ell to cell interaction, gene regulation, cel	lular sig	nalin	g.		
3. To ir	npart th	e molecular biol	ogy knowledge in applications of various	s human	healt	h care		
Course ou	tcomes							
On the su	cessful	completion of	the course, student will be able to:					
CO1		-	bly the principles and techniques of m	olecula	r	K1		
COI	biolo	ogy which prep	ares students for further education and	d/or		IX1		
CO2			ching, basic research, or the health pro			wa		
02			e base in cell and molecular biology, biomedical sciences	anatom	ly	K2		
CO3			y practices in cell and molecular biol	U .		K3		
			heir techniques in molecular biology p them to get job opportunities	researc	h			
CO4			ident work in a laboratory with basis of	of cell		K4		
CO5	biolo	01	ovuladas ssined from this paper will b	ale tha		17.5.0	W.C	
COS			owledge gained from this paper will has concepts in their future research	leip the		K5&	K0	
K1 - Reme		11 0	K3 - Apply; K4 - Analyze; K5 - Evaluat	ie; K6 -	Creat	e		
UNIT I	TH	E STRUCTURI	E AND FUNCTION			1.	3 Hrs	
Cell struct	ure and	function, cell	Membrane structure and function, struct	ture of	mode	l mem	brane	
lipid bilay	er and	membrane prote	in diffusion, osmosis, ion channels, act	ive tran	sport,	ion p	umps	
mechanism	n of sort	ing and regulation	on of intracellular transport electrical prop	perties c	of mei	nbrane	ès.	
UNIT II	CE	LL ORGANEL	LES, CELL DIVISION AND CELL C	YCLE		1.	3 Hrs	
Cell wall,	Nucleus	, Mitochondria,	Golgi bodies, Lysosomes, Endoplasmic	Reticul	um, F	Peroxis	omes	
			vtoskeleton and its role in motility. Cell					

Plastids, Chloroplast, Vacuoles, Cytoskeleton and its role in motility. Cell Cycle, Molecular mechanisms of Mitosis and Meiosis, Control of $_{cel}^{6}l$ cycle, Cancer and Cell Cycle. Bacterial Cell

division and Stress Response

14 Hrs

15 Hrs

Central dogma. DNA replication: Meselson & Stahl experiment. Bi-directional DNA replication. Okazaki fragments. Proteomics of DNA replication, fidelity of DNA replication, Inhibitors of DNA replication. Overview of differences in prokaryotic and eukaryotic DNA replication. Telomere replication in eukaryotes. D-loop and rolling circle mode of replication, mutagens.DNA mutation and their mechanisms. Various types and mechanisms of DNA repair models.

UNIT IV TRANSCRIPTION

Structure and function of mRNA, rRNA & tRNA. Characteristics of promoter and enhancer sequences, RNA synthesis. Initiation, Elongation and termination. Inhibitors of transcription. Difference between prokaryotic and eukaryotic transcription. Basic concepts of RNA world. Ribozymes, RNA processing: 5' capping, Splicing-alternative splicing, Poly A tail addition and base modification.

UNIT V	TRANSLATION AND REGULATION	15 Hrs

Introduction to genetic code: Elucidation of genetic code, codon degeneracy, Wobble hypothesis and its importance, prokaryotic and eukaryotic ribosomes. Steps involved in translation: Initiation, elongation and termination of protein synthesis. Inhibitors of protein synthesis. Post-translational modifications and its importance. Regulation of gene expression in prokaryotes: lac and trp operons. Regulation of gene expression in eukaryotes. Organization of genes in prokaryotic and eukaryotic chromosomes.

UNIT VI VIDEO LECTURES, SEMINARS AND WEBINARS

5 Hrs

REFERENCES:

- 1. Paul, A. 2007. Text book of cell and molecular biology, Books and Allied (P) Ltd. 2nd edition, Kolkata 700 009, pp-1310.
- 2. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 3. Alberts et al Molecular biology of the cell. 6th ed. Garland Sci. 2014.
- 4. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.
- 5. Genes and Genomes by M Singer, and P Berg, Blackwell Scientific Pub.
- 6. George M. Malacinski& David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 7. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 8. PragyaKhana. 2008. Cell and Molecular Biology. IK International Publishing House

Course Cod	e 22P1BT02		Hours/		Marks	
Credits	5	COME II	WK			
Total Hours	5 75	BIOLOGICAL CHEMISTRY T	P	Int	Ext	
Max. Mark	100	5	-	25	75	
			I			
Course Obj	ectives:					
The main ob	jectives of this cours	e are:				
1. To ga	in a basic working	knowledge of biochemical concepts and tech	niques	this v	vill be	
necess	ary for future scienti	fic endeavors.				
2. To giv	ve an idea on differen	nt biological molecules, their origin, biological	role ar	nd its		
degrad	lation according to th	e needs and demand of the system under various	; condi	tions.		
3. The in	terrelation of each of	f these metabolic pathways and their contribution	n in va	arious		
metab	olic disorders					
Course outo	comes					
On the succ	essful completion of	the course, student will be able to:				
CO1	-	ctures and functions of biomolecules such a		K1		
COI	U	form the basis of what we understand to be 1		KI		
CO3	organisms					
CO2		n foundation in the biochemical aspects of c erent proteins and proteomics	ellular	K2		
CO3	Get information pe	ertaining to role of enzymes, co-enzyme and		K3		
	cofactor in catalytic pathways regulation	c reaction as a properties of biochemical				
CO4		e base of metabolic pathways occurring inside	de	K4		
	living cells in resp	ect to lipids and fat.				
CO5		nitations of biomolecules in regulation of is in mammals especially in humans.		K58	&K6	
K1 - Remem		l; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6	- Crea	te		
UNIT I	BASIC PHYSICA	L AND CHEMICAL CONCEPTS IN BIOLO	OGY	1	2 Hrs	
Structure of	f Atom, molecules	and chemical bonds. Stabilizing interaction	is (Va	nder	waal'	
Electrostatic	force, Hydrogen E	sonding, Hydrophobic interaction, etc) princip	oles of	Biop	hysic	
chemistry (P	H, Buffer, Reaction	kinetics. Thermodynamics and Colligative prope	rties.			
UNIT II	CHEMISTRY OF	BIOMOLECULES		1	3 Hrs	
Composition	, structure and func	tions of Biomolecules: Carbohydrates, Lipids	, Prote	eins, N	luclei	

composition, structure and functions of Biomolecules: Carbonydrates, Lipids, Proteins, Nucleic acids and Vitamins. Conformation of proteins: Ramachandran plot, secondary, tertiary and quaternary structure of proteins. Conformation ofgNucleic acids: A DNA, B DNA, Z DNA and Types of RNA

UNIT III	BIOENERGETICS AND CATALYSIS	13 Hrs
Bioenergetic	s, Glycolysis, Oxidative phosphorylation, Coupled reaction, Group transfer,	Biological
energy trans	ducers. Principles of catalysis, Enzymes, Mechanism of enzyme action,	Isozymes,
Enzyme kine	etics, Enzyme Inhibition and Enzyme Regulation.	
UNIT IV	METABOLISM OF CARBOHYDRATES	16 Hrs
Carbohydrat	e Metabolism: Biosynthesis: Gluconeogenesis, Pyuvate oxidation, TC	CA Cycle,
Glyoxylate G	Cycle). Lipid Metabolism: Biosynthesis of fatty acids, Beta-oxidation of fatty	acids and
Cholesterol I	Biosynthesis	
UNIT V	METABOLISM OF BIOMOLEULES	16 Hrs
Amino acid	Metabolism: Amino acids classification, Overview of Amino acid cata	abolism in
Mammals. U	Jrea Biosynthesis. Pathways of Amino Acid degradation, Nucleic acid M	letabolism:
Nucleotide H	Biosynthesis and degradation, Salvage and <i>de novo</i> pathways. Vitamins: Wat	ter and Fat
soluble.		
UNIT VI	VIDEO LECTURES, SEMINARS AND WEBINARS	5 Hrs
REFEREN	CES:	
1. Prine	ciples of Biochemistry – Smith et al., McGraw Hill International book Comp	any 8th ed
1998	3.	
2. Prine	ciples of Biochemistry – Lehninger, Nelson, Cox, CBS publishers. 2005.	
3. Fund	lamentals of Biochemistry – Voet et al., Jhon Wiley and Sons Inc. 2000.	
4. Bioc	hemistry – Zubay, WCB Publishers. 4th edition, 1998.	

5. Harpers Biochemistry, R.K. Murray, D.K.Granner, P.A Mayes and V.W. Rodwell, Practise Halt International. 1993.

	Marks							
Max. Mark 100 5 - 2	Int Ext							
	25 75							
Course Objectives:								
The main objectives of this course are:								
1. To impart knowledge on Microbial diversity and Molecular taxonomy with special refe	erence to							
Bacteria, besides fungi and viruses.								
2. To introduce the concept polyphonic taxonomy which eventually lead to report a novo organism.	el							
3. To enlighten on culture independent techniques and anaerobic cultivation.								
4. To obtain overall holistic knowledge on Agricultural, Food, Medical Microbiology w	vith							
introduction to Molecular Diagnostics								
Course outcomes								
On the successful completion of the course, student will be able to:								
CO1 Learn the importance of microbiology at basic level with laboratory H level understanding	K1							
CO2 Get introduced to terms related to Polyphasic taxonomy and apply them during reporting them as a novel species.	K2							
CO3 Obtain knowledge on NGS and culture independent techniques	K3							
CO4 Understand on cultivation of Anaerobic organisms H	K4							
CO5 Apply the knowledge towards Molecular Diagnostics H	K5&K6							
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create								
UNIT I INTRODUCTION TO MICROBIOLOGY AND MICROBES	13 Hrs							
History & scope of microbiology, microbial characteristics, morphology, growth and nu	trition of							
bacteria, bacterial growth curve, bacterial culture methods; bacterial genetics: muta	ation and							
recombination in bacteria, plasmids, transformation, transduction and conjugation. Ster	rilization,							
disinfection and antisepsis: physical and chemical methods for control of microorganisms,								
antibiotics, antiviral and antifungal drugs, antimicrobial resistance								
UNIT II MICROBIAL TAXONOMY AND EVOLUTION OF DIVERSITY 12 H								

Criteria for classification; classification of microbes - bacteria, fungi, algae and viruses; Current methods of microbial identification, Microbial Iden¹¹⁰ ication through physiological and biochemical

methods (BIOLOG, Vitex); MALDI TOF- Polyphasic approach –16S rRNA gene sequencing, Phylogenetic grouping.

UNIT III MEDICAL MICROBIOLOGY

15 Hrs

Host-pathogen interaction, epidemiology, pathogenesis, prevention and treatment – (*Staphylococcus, Streptococcus, Mycobacterium, Salmonella and Yersinia*). Infections caused by yeast: Candida. Filamentous Fungi: Aspergillus sp. and protozoal diseases (Malaria, Leishmaniasis and Ascaris infection). Virus and bacteriophages, general properties of viruses, viral structure, taxonomy of virus, viral replication, cultivation and identification of viruses; sub-viral particles – viroids and prions; Viral diseases (H1N1, Corona, Polio, Rabies and AIDS).

UNIT IV INDUSTRIAL MICROBIOLOGY

15 Hrs

Biology of microbes of commercial importance: Escherichia coli, Bacillus subtilis, Rhizobium species, Agrobacterium tumefaciens and Saccharomyces cerevisiae. Cyanobacteria, acetic acid bacteria, Pseudomonas, lactic and propionic acid bacteria, endospore forming bacteria, Mycobacteria and Mycoplasma. Archaea: Halophiles, Methanogens, Hyper-thermophilic archae, Thermoplasm; eukaryote: algae, fungi, slime molds and protozoa; extremophiles and un-culturable microbes

UNIT V	Environmental Microbiology	15 Hrs
Ecological i	mpact of microbes; environment-nutrient cycles-carbon, nitrogen, sul	phur and
phosphorus c	ycles. Bacterial photosynthesis, symbiotic and non-symbiotic nitrogen fixat	ion. Plant
microbe inter	actions. microbial communication system; bacterial quorum sensing; micro	obial fuel

cells; prebiotics and probiotics

UNIT VI

VIDEO LECTURES, SEMINARS AND WEBINARS

5 Hrs

REFERENCES:

- Lansing M. Prescott, John P Harley, Donald A. Klein; Microbiology, McGraw Hill. Ed. 6; 2005.
- Ananthanarayanan R & CK Jeyaram Paniker; Textbook of Microbiology; Orient Longman. Ed. 7; 2005.
- 3. Michael T, Madigan, John M Martinko; Brock's Biology of Microorganisms, Pearson Prentice Hall, Ed, 11; 2006.
- Roger Y, Stainer, John L. Ingraham, Mark L. Wheelis. Page R. Painter. General Microbiology, MacMillan Press. Ed. 5; 2004.
- Topley & Wilson's: Principles of Bacteriology, Virology & Immunology, Edward Arnold. Ed.9; 2002.
 11

Course Cod	le 22P1BT04 5	CORE – IV		urs/ VK	Ma	arks				
Total Hour		GENETICS		WK T P 5 -						Ext
Max. Mark	-	_				75				
					25					
Course Obj	ectives:									
The main of	jectives of this cour	se are:								
1. The c	ourse offers basic kn	owledge of genetics encompassing prok	karyotic/pha	ige ge	netics,	and				
higher	eukaryotic domains	and over all concepts of Mendelian ger	netics.							
2. It mal	kes the students und	erstand the relationship between pheno	type and g	enotyp	be in h	umar				
geneti	c traits									
3. It also	imparts knowledge	of basics of human genetics and disease	e gene mapp	oing.						
4. Stude	nts gain knowledge o	of the various techniques on cytogenetic	s, Epigenet	ics						
Course out	comes									
		f the course, student will be able to:								
	-		1	1						
CO1	phage genetics	n knowledge about the genetics of p	rokaryotic	and	K1					
CO2	Gain knowledge	on Mendelian and Non Mendelian g	enetics		K2					
CO3	The students wil diseases in the H	l understand the inheritance of genes	and the		K3					
CO4		n various techniques related to cytog nunogenetics for disease diagnosis		nd	K4					
CO5	Students underst	and the concept of genetic variation, tional epigenetics		cs	K58	kK6				
K1 - Reme	mber; K2 - Unders	stand; K3 - Apply; K4 - Analyze; K5	5 - Evaluat	e; K6	6 – Cre	eate				
UNIT I	BASIC PRINCI	PLES OF GENETICS			13	Hrs				
Mendelian j	principles- Concept	of gene, Co-dominance, Gene interac	tions, Pleic	otropy,	, Pene	trance				
and Express	ivity, Linkage & Cr	ossing over, Sex linkage. Gene mappin	g methods,	Linka	ige ma	pping				
by using sor	natic cell hybrids an	d Cytoplasmic and Maternal inheritance	2.							
UNIT II	QUANTITATIV	/E GENETICS & GENETIC VARIA	NTS		12	Hrs				
Heritability	C	nalysis- Karyotypes- Genetic disord ts- QTL mapping. Mutation - types, cat omes.								
UNIT III	MOLECULAR	GENETICS 12			15	Hrs				
Origin of M	lolecular Genetics-S	tructure of DNA-Mutations-Luria and I	Delbruck''s	Fluct	uation	Test				

Spontaneous mutations-nonsense, missense, frame-shift mutations-Induced mutagenesis-Physical agents-UV,X-Rays-Chemical agents-NTG, Base Analogues etc., Reversion-AMES Test-DNA Replication-Messelson and Stahl"s Experiment-Okazaki"s fragment-DNA polymerases-DNA damage-SOS response-DNA repair

UNIT IV GENE TRANSFER METHODS

15 Hrs

Gene transfer in bacteria-Transformation-discovery and its significance-competence and factors involved-joint transformation and its uses-Conjugation-F+ and F- nature of E.coli-Origin of Hfr and F" strains-Zygotic induction -Chromosome transfer by Hfr - circular nature of E.coli DNA -Use of Hfr strains in genetic mapping-Transduction - λ phage and specialized transduction - Generalised transduction-P1 phage-origin of transducing particlespre zygotic and post zygotic exclusion-Co-transduction-fine structure mapping of genes by P1 transduction-Wu"s Formula-Ratio Test, C-value paradox

UNIT V

REGULATION OF GENE EXPRESSION

15 Hrs

Elucidation of genetic code- Benzer, Khorana and Crick's contributions-Triplet nature of the Genetic code and Adaptor hypothesis-Wobble hypothesis- Bacterial translation, Suppression of nonsense, missense and frame-shift mutations-Intragenic and extragenic suppressions of mutations-modern aspects-structure and function relationship-Gene expression-RNA polymerase- σ factors-other accessory transcription factors-small RNAs- Concept of Gene and operon-Regulation of gene expression- well studied operon models-lac, trp and ara operon.

UNIT VI

VIDEO LECTURES, SEMINARS AND WEBINARS

5 Hrs

REFERENCES:

- 1. Molecular Genetics: An introductory narrative, Second Edition Gunther.S.Stent and Richard Calendar, 2002. CBS Publishers and distributors
- 2. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria- Jeffrey. H. Miller, 1992.CSHL Press
- 3. Fundamental Bacterial Genetics Nancy Trun and Janine Trempy, 2004. Blackwell publishing
- From Genes to Genomes: Concepts and Applications of DNA Technology, Second Edition-Jeremy.W.Dale and Malcolm Von Schantz, 2007. John Wiley & Sons Ltd.

	urse Code edits	22P1BTP01 5	CORE PRACTICAL- I		urs/ /K	M	arks
Ма	x. Mark	100	BASIC BIOTECHNOLOGY	Т	Р	Int	Ext
wia	X. IVIAFK	100		-	6	40	60
Co	urse Objective	s:					
The	e main objective	es of this course	are to:				
	1. Train the s	students on basic	tools and techniques required to underst	and biot	echno	ology.	
	2. Provide th	em a base on d	iverse areas like microbiology, plant a	nd anim	al sci	ence 1	elate
	advanced	biology.					
	3. Ascertain	them that subse	equent practical would be understanda	ble base	ed on	these	
	experimen	ts.					
Lis	t of Practicals						
1.	Preparation of	Solution (Norn	nal, Molar, Percentage solution and cal	culation) and	Micro	oscor
	•		nd stage micrometers).				1
2.	Analysis of su	gars (Glucose, F	ructose, Galactose, Pentose, Sucrose, M	altose, L	actos	e and	Starc
	tests) and Ami	no acids (Histidi	ne, Tyrosine, Tryptophan, Methionine, G	Cysteine	and A	Argini	ne)
3.	Estimation of	glucose, protein,	, cholesterol, DNA and RNA by ortho to	oluidine	meth	od, Lo	wry
	method, Zak's	method, Diphen	ylamine method and Oricinal method re	spective	ly.		
4.	Enumeration of	of cells (cell cour	nting by Neubauer chamber) & buccal sn	near pre	parati	on.	
5.	Preparation of	mitotic cells st	tages from onion root tip squash and 1	neiosis	from	grassł	oppe
	testis cells.						
6.	Purification of	bacteria by pour	r plate, spread plate and streak plate metl	hods.			
7.	Differential sta	aining (Gram's, .	Acid fast, Capsule & Spore), Fungal Sta	aining (I	LCB)	and ha	ngin
	drop method.						
8.	Biochemical c	haracterization of	of microorganisms: TSI test, Carbohydra	ate ferm	entati	on tes	t,
	Urease test and	d Catalase test ar	nd (IMViC) test				
9.	Antibiotic sens	sitivity test using	bacteria culture (Kirby-Bauer method).				
	Separation of a	amina agida(nan	er chromatography) and protein(Colum	n chrom	otoor	n h)	

Course Cod	e	22P1BTE01			ours/	Ma	arks
Credits		5	ELECTIVE – I	WK			1
Total Hours	5	62	BIOINSTRUMENTATION	Т	Р	Int	Ext
Max. Mark		100		5	-	25	75
Course Obje	ectiv	es:					
The main ob	jectiv	ves of this course	are:				
1. Enrich th	ne stu	ident intelligentsi	ia in all the biological observations which	are ex	plainal	ble in t	terms
of physic	cal pr	inciples.					
2. Emphasi	ze th	e working skill ir	n basic and advanced analytical instrument	ts			
3. Enhance	the a	bility of understa	ating and working methods of various inst	rument	S		
Course outc	omes	5					
On the succ	essfu	l completion of t	the course, student will be able to:				
CO1		lerstand the ana d in different fie	lytical techniques and the principles o	f equip	oment	K1	
CO2			ght in these techniques for the possible ous research areas	e		K2	
CO3	Har		dvanced instruments with trouble shoc	oting ir	n the	K3	
CO4	Inci	rease the knowle	edge on result output analysis and inte	rpretat	tions.	K4	
CO5	Con	nprehend the imp	act of hazardous material and handling of	the ma	aterials	K5	&K6
K1 - Remer	nber	; K2 - Understa	nd; K3 - Apply; K4 - Analyze; K5 - E	Evaluat	e; K6	– Cre	eate
UNIT I	PH	YSICAL TECH	NIQUES IN SEPARATION OF BIOM	OLEC	ULES	12	Hrs
Centrifugatio	on: B	asic principles o	f sedimentation, types of centrifuges and	d rotor	s. Prep	oarativ	e and
Analytical C	Centri	fuges, Differenti	al and, Density Gradient Centrifugation	and ul	tra cei	ntrifug	ation.
Chromatogra	aphy	Techniques: Th	neory and Application of Paper Chro	matogr	aphy,	TLC,	Gel
Filtration Ch	roma	tography, Ion Ex	change Chromatography, Affinity Chrom	atogra	phy, G	LC, H	IPLC,
Nano LC and	1 HP	TLC.					
UNIT II	EL	ECTROPHORE	TIC TECHNIQUES AND CELL ANA	LYSIS		12	Hrs
Theory and	App	lication of PAG	E, SDS PAGE, Agarose Gel Electroph	oresis	2DE,	Iso-el	ectric
Focusing, pu	ılse f	ield gel electropl	noresis, Immuno diffusion, Immuno Elec	tropho	esis. I	ELISA	. Cell
0 1		• •	ons of Light, Phase Contrast, Fluorescenc	•			
Electron Mi	crosc	copy, Transmissi	ion Electron Microscopy, Confocal Mi	croscoj	py, At	tomic	force
microscopy a	and E	Electron Cryo mic	croscopy. 15				

UNIT I	II STRUCTURAL ANALYSIS OF BIOMOLECULES	12 Hrs
UV- v	sible, IR, NMR, LASER Raman Spectroscopy, Mass Spectroscopy, Fl	uorescence
Spectros	copy, Surface Plasmon Resonance (SPR) and Electron Paramagnetic Resonance	nce (EPR).
Differer	tial colorimetry, X ray crystallography, X ray computer tomography and patch cla	mping.
UNIT I	V MOLECULAR TECHNIQUES	12 Hrs
PCR, R	eal Time PCR, Cytophotometry, Flow Cytometry, FACS, MACS and Microarra	y. Circular
dichrois	m and optical rotatory dispersion, Polarography and Manometry - theory and a	application,
Biosens	Drs.	
UNIT V	TRACER AND RADIOACTIVE METHODS	12 Hrs
Tracer a	nd other techniques – Radioactive decay, units of radioactivity, detection – Gei	iger Mulle
counter,	Scintillation counter, Autoradiography. Applications of radio isotopes in biol	logical and
medical	sciences - RIA. Safety aspects in handling radioactive isotope.	
UNIT V	VIDEO LECTURES, SEMINARS AND WEBINARS	2 Hrs
		_
REFER	ENCES:	
1.	Instrumental methods of chemical analysis – P.K. Sharma	
2.	Biophysical chemistry – Upadhyay and Nath (2009)	
3.	Handbook of Biomedical Instrumentation – R.S. Khandpur, Tata (2003). McGraw	Hill
4.	A Biologist's guide to principle and techniques of practical biochemistry – Brigar	n L.
	Williams.	
5.	Experimental methods in Biophysical chemistry- Nicolau, C.	
6.	PCR - The Basics (Garland Science, 2nd Edition). McPherson. M. J. & Moller S.	G. (2006).
	Taylor & Francis	
7	Introduction to Spectroscopy, Donald Pavia Cary M Lipman, Coorgo S Kriz	

7. Introduction to Spectroscopy- DonaldL.Pavia Gary M.Lipman, George S Kriz

Course Code	22P1BTE02	ELECTIVE – 2		Hours/		Hours/ WK				arks
Credits Total Hours	5 62	ELECTIVE - 2 EVOLUTION AND BEHAVIOR	T		T4	E4				
Max. Mark	100		5	P	Int 25	Ext 75				
	100		5		23	15				
Course Obies	4:									
Course Objec										
The main obje	ctives of this course	are:								
1, The course	objective of this pap	per is to impart students an in-depth knowle	edge a	nd ma	ake the	m				
competent in t	he field of biodivers	ity and bioprospecting.								
2. To impart s	ufficient information	n and scientific knowledge about natural p	roducts	s fron	n plant	and				
microbes										
3. To facilitate	e the students to und	erstand about the bioprospecting aspects re	elated t	o pro	duct					
production and	d their regulation									
Course outco	mes									
On the succes	stul completion of	the course, student will be able to:								
	Familiarize the stud	ents in major areas of bioprospecting and b	biodive	rsity.	K	l				
	Obtain a comprehensive knowledge about natural products from plants K2									
	Gain information's tools involved in dr	on drug discovery, product development, ug discovery	, and r	noder	m Kä	3				
	** *	rospecting aspects related to microorganish		•		1				
	Familiar with regul commercialization.	atory legislation and convention in biopre-	ospect	ing fo	or K	5&K6				
		and; K3 - Apply; K4 - Analyze; K5 - E	valuat	te; K	6 – Cr	eate				
UNIT I	EMERGENCE O	F EVOLUTIONARY THOUGHTS			1	2 Hrs				
Lamarck; Dar	win-concepts of v	ariation, adaptation, struggle, fitness and	natur	al se	lection	;				
Mendelism; S	pontaneity of mutati	ons; The evolutionary synthesis.								
UNIT II	ORIGIN OF CEL	LS AND UNICELLULAR EVOLUTIO	N		12	2 Hrs				
Origin of basic	c biological molecul	les; Abiotic synthesis of organic monomer	s and p	olym	ners; C	oncept				
of Oparin and	d Haldane; Experies	ment of Miller (1953); The first cell; E	volutic	on of	proka	ryotes;				
Origin of e	ukaryotic cells; I	Evolution of unicellular eukaryotes;	Anaero	obic	metab	olism,				
photosynthesis	s and aerobic metab	olism.								
UNIT III	PALEONTOLOG	GY AND EVOLUTIONARY HISTORY	AND		1	2 Hrs				
	MOLECULAR EVOLUTION 17					12 1115				
The evolution	ary time scale; Eras	, periods and epoch; Major events in the	evolut	ionar	y time	scale;				

Origins of unicellular and multi cellular organisms; Major groups of plants and animals; Stages in primate evolution including Homo. Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; origin of new genes and proteins; Gene duplication and divergence.

UNIT IV THE MECHANISMS OF EVOLUTION

12 Hrs

Population genetics – Populations, Gene pool, Gene frequency; Hardy-Weinberg Law; concepts and rate of change in gene frequency through natural selection, migration and random genetic drift; Adaptive radiation; Isolating mechanisms; Speciation; Allopatricity and Sympatricity; Convergent evolution; Sexual selection; Co-evolution

UNIT V BRAIN, BEHAVIOR AND EVOLUTION

12 Hrs

Approaches and methods in study of behavior; Proximate and ultimate causation; Altruism and evolution-Group selection, Kin selection, Reciprocal altruism; Neural basis of learning, memory, cognition, sleep and arousal; Biological clocks; Development of behavior; Social communication; Social dominance; Use of space and territoriality; Mating systems, Parental investment and Reproductive success; Parental care; Aggressive behavior; Habitat selection and optimality in foraging; Migration, orientation and navigation; Domestication and behavioral changes

UNIT VI

VIDEO LECTURES, SEMINARS AND WEBINARS

2 Hrs

REFERENCES:

1. Biology by Campbell and Reece, 7th Edition

M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2022-2023 onwards)

SEMESTER – II

Course C	ode	22P2BT05	CODE		urs/	M	arks
Credits		5	CORE – V GENETIC ENGINEERING				
Total Hou		75	GENETIC ENGINEERING			Int	Ext
Max. Ma	rk	100		5	-	25	75
Course O	bjective	s:					
The main	objectiv	es of this course	are:				
3. T	o illustra	ate creative use	of modern tools and techniques for man	ipulatic	on and	l analy	sis of
ge	enomic s	equences.					
4. T	o expos	e students to aj	oplication of recombinant DNA techno	logy in	biote	echnol	ogical
re	search.						
5. T	o train s	students in strat	tegizing research methodologies employ	ying ge	netic	engin	eering
te	chniques	5.					
Course of	utcomes						
On the su	ccessful	completion of	the course, student will be able to:				
CO1		-	manipulating enzymes and its role in	rDNΔ		K	
COI		ology	manipulating enzymes and its role in		L		
CO2	To ga	in knowledge o	on different types plasmid vectors and	theirU	sage	K2	2
CO3	To ac	quire knowledg	ge on basic gene cloning strategies			K	3
CO4		aluate the usag	e and applications of gene cloning for dded products	the		K4	ł
CO5		1	tile techniques in recombinant DNA tech	nology		K5	5&K6
K1 -	Remem	ıber; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Ev	valuate;	K6 -	Create	•
UNIT I	INT	RODUCTION	AND TOOLS FOR GENETIC ENGIN	IEERIN	NG	1.	3 Hrs
Impact o	f genet	ic engineering	in modern society; general requiren	nents f	for p	erform	ing a
genetic e	engineeri	ng experiment;	restriction endonucleases and methy	ylases;	DN	JA	ligase,
Klenow e	enzyme,	T4 DNA j	polymerase, polynucleotide kinase,	alkali	ne	phospl	hatase;
cohesive	and b	lunt end liga	ation; linkers; adaptors; homopolyn	neric	tailing	g; lal	belling
of DNA:	nick	translation, 1	andom priming, radioactive and	non-rac	lioacti	ive p	probes,
hybridizat	ion tech	iniques: norther	n, southern, south-western and far-west	ern and	l colo	ny	
hybridizat	tion, fluc	prescence in situ	hybridization.				
-			-				

UNIT II	DIFFERENT TYPES OF VECTORS	13 Hrs
	20	
Plasmids; E	acteriophages; M13 mp vectors; PUC19 and Bluescript vectors, hagemids	; Lambda

vectors; Insertion and Replacement vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Principles for maximizing gene expression expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag *etc.*; Inteinbased vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and *Pichia* vectors system, plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors.

UNIT III DIFFERENT TYPES OF PCR TECHNIQUES

14 Hrs

Principles of PCR: primer design; fidelity of thermostable enzymes; DNA polymerases; types of PCR – multiplex, nested; reverse-transcription PCR, real time PCR, touchdown PCR, hot start PCR, colony PCR, asymmetric PCR, cloning of PCR products; T-vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; sequencing methods; enzymatic DNA sequencing; chemical sequencing of DNA; automated DNA sequencing; RNA sequencing; chemical synthesis of oligonucleotides; mutation detection: SSCP, DGGE, RFLP.

UNIT IV	GENE MANIPULATION AND PROTEIN-DNA INTERACTION	15 Hrs

Insertion of foreign DNA into host cells; transformation, electroporation, transfection; construction of libraries; isolation of mRNA and total RNA; reverse transcriptase and cDNA synthesis; cDNA and genomic libraries; construction of microarrays – genomic arrays, cDNA arrays and oligo arrays; study of protein-DNA interactions: electrophoretic mobility shift assay; DNase footprinting; methyl interference assay, chromatin immune precipitation; protein-protein interactions using yeast two-hybrid system; phage display.

UNIT V GENE SILENCING AND GENOME EDITING TECHNOLOGIES

15 Hrs

Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems *e.g.*, fruit flies.(*Drosophila*), worms (*C. elegans*), frogs (*Xenopus*), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting; creation of transgenic and knock-out mice; disease model; introduction to genome editing by CRISPR-CAS with specific emphasis on Chinese and American clinical trials.

UNIT VI

VIDEO LECTURES, SEMINARS AND WEBINARS

5 Hrs

REFERENCES:

9. Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). Principles of Gene Manipulation: an

Introduction to Genetic Engineering. Oxford: Blackwell Scientific Publications.

- Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: a Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 11. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub.
- 12. Selected papers from scientific journals, particularly Nature & Science.
- Technical Literature from Stratagene, Promega, Novagen, New England Biolab *etc.*.
 Biotechnology-Fundamentals and ApplicationsS.S. Purohit & .KMathurAgrobotanica India.
- 14. AgriculturalBiotechnologyS.S. Purohit Agrobotanica, India.
- Biotechnology-Fundamentals andApplicationsS.S. Purohit &S.KMathurS.S. Purohit & S.K Mathur.
- 16. Molecular Biotechnology S.B. Primrose PanimaPublishingCorporation, New Delhi.
- 17. Text Book of BiotechnologyC.R. Chhatwal Anmol Publications pvtLtd, New Delhi.
- 18. Applied MolecularGeneticsR .L. Miesfeld, Wiley Liss, New York.

Course Credits	Code	22P2BT06 5	CORE – VI	_	urs/ 'K	Μ	arks
Total Ho	1189	75	IMMUNOLOGY				Ext
Max. Ma		100				Int 25	75
1 114A. 111	#I K	100		5		23	15
Course (Objective	s:					
		es of this course	are:				
			impart the students the importance of	immunol	OGV :	and its	
		-	the principles of immunology and immu				
		•	blogy in medicines is also dealt with.		0105)		
			s antigen-antibody reactions involved i	n disease	s. stei	n cell	
		y and vaccine de			,		
	outcomes	,	•				
		00mm1045					
	1	_	the course, student will be able to:				
CO1			of immunology in different pharmaceut	-	panies		I,K2
CO2	-	•	antibodies and their commercial importation of human diseases.	ance in		K	I,K2
CO3	-		and design immunological experiments	to domor	atrota	V	I,K2
005		•	oxic T lymphocyte responses and figure				I,K2
		-	the setting of infection (viral or bacteri	al) by loc	king		
<u></u>	•	ine profile.					
CO4		-	nce of vaccine development and identify the area of vaccine production.	y the prop	er	K	l,K4
CO5			erize the CD4+ and other T helper cell l	ineages i	n the	K	I,K2
000	Ũ	ory T cell.		inteages i		IX.	1,112
K1	- Remem	ber; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 -	Evaluate;	K6 -	Create	e
UNIT I	IM	MINOLOGY	FUNDAMENTAL CONCEPTS ANI) OVER	VIEV	v	
		THE IMMUNE) O VER	VIL V	1	3 Hrs
0				1 (1 .		
•		-	uired immunity; phagocytosis; comp				
•		e e	receptors (PRR) and pathogen asso				•
		-	se; mucosal immunity; antigens: imi	-	-		wiajo
		•	C genes, MHC and immune responsive system, primary and secondary lymphoi		uisea	50	
				-	<u>,</u>	Γ	
UNIT II		MUNE RESI	PONSES GE ATED BY	B AN	U	Ⅰ 1	3 Hrs

LYMPHOCYTES

Immunoglobulins - basic structure, classes & subclasses of immunoglobulins, antigenic determinants; multigene organization of immunoglobulin genes; B-cell receptor; Immunoglobulin superfamily; principles of cell signaling; basis of self & non-self-discrimination; kinetics of immune response, memory; B cell maturation, activation and differentiation; generation of antibody diversity; T-cell maturation, activation and differentiation and T-cell receptors; functional T Cell subsets; cell-mediated immune responses, ADCC; cytokines: properties, receptors and therapeutic uses; antigen processing and presentation- endogenous antigens, exogenous antigens, non-peptide bacterial antigens and super-antigens; cell-cell co-operation, Hapten-carrier system.

UNIT III ANTIGEN-ANTIBODY INTERACTIONS

14 Hrs

Precipitation, agglutination and complement mediated immune reactions; advanced immunological techniques: RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence microscopy, flow cytometry and immunoelectron microscopy; surface plasmon resonance, biosensor assays for assessing ligand – receptor interaction; CMI techniques: lympho proliferation assay, mixed lymphocyte reaction, cell cytotoxicity assays, apoptosis, microarrays, transgenic mice, gene knock outs.

UNIT IV

CLINICAL IMMUNOLOGY

Immunity to infection: bacteria, viral, fungal and parasitic infections (with examples from each group); hypersensitivity: Type I-IV; autoimmunity; types of autoimmune diseases; mechanism and role of CD4+ T cells; MHC and TCR in autoimmunity; treatment of autoimmune diseases; transplantation: iimmunological basis of graft rejection; clinical transplantation and immunosuppressive therapy; tumor immunology: autoimmune disorder, anaphylactic shock.

UNIT V

VACCINOLOGY

15 Hrs

15 Hrs

Active and passive immunization; live, killed, attenuated, subunit vaccines; vaccine technology: role and properties of adjuvants, recombinant DNA and protein-based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines; antibody genes and antibody engineering: chimeric, generation of monoclonal antibodies, idiotypic vaccines and marker vaccines, viral-like particles (VLPs), dendritic cell-based vaccines, vaccine against cancer and therapeutic vaccine.

UNIT VI **VIDEO LECTURES, SEMINARS AND WEBINARS** 5 Hrs **REFERENCES:** 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., &Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman. 2. Brostoff, J., Seaddin, J. K., Male, D., &Roitt, I. M. (2002). Clinical Immunology.London: Gower Medical Pub. 3. Murphy, K., Travers, P., Walport, M., &Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science. 4. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press. 5. Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press. 6. Parham, P. (2005). The Immune System. New York: Garland Science. 7. Immunology Joshi. OsmaAgro Botanica New Delhi 8. Instant notes inImmunologyLydyard, helean,FangerViva Books N.Delhi 9. An introduction toImmunologyCV Rao NarosaN.Delhi 10. Immunology Janus Kuby Freeman NY 11. Principles of cellular andmolecularImmunologyJonathanAustin,KathyrynWoodOxford NY 12. Immunology Goldsby, Kindt, Osborne, Janus KubyFreeman NY 13. Medical Immunology Parslow, Stites, Tera, ImbodenMc Graw Hill NY

14. Cellular and molecularImmunologyAbbas, Lichman, Pobea, Harcourt& Brace Co.

Course Credits		22P2BT07 5	CORE – VII		Hours/ WK		arks
Total H		75	MICROBIAL TECHNOLOGY			Int	Ext
Max. M	lark	100		5	-	25	75
Course	Objective	es:					
The mai	in objectiv	es of this course	are:				
1. 7	The objecti	ives of this cour	se are to introduce students to developm	ents/ a	dvanc	es ma	de in
	field of m	icrobial technolo	bgy for use in human welfare and solving	problen	ns of t	he soc	iety.
Course	outcomes	;					
On the	successful	l completion of t	the course, student will be able to:				
CO1		now about DNA nology	a manipulating enzymes and its role in	rDNA		K1	-
CO2	To ga	in knowledge o	on different types plasmid vectors and	theirU	sage	K2	2
CO3	To ac	quire knowledg	ge on basic gene cloning strategies			K3	}
CO4		aluate the usag	e and applications of gene cloning for dded products	the		K4	Ļ
CO5	To kn	ow-how on versa	atile techniques in recombinant DNA tech	nology	•	K5	6&K6
K	1 - Remen	ıber; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Ev	valuate;	K6 -	Create	<u>,</u>
	[

UNIT I

INTRODUCTION TO MICROBIAL TECHNOLOGY

13 Hrs

Microbial technology in human welfare; Isolation and screening of microbes important for industry – advances in methodology and its application; Advanced genome and epigenome editing tools (*e.g.*, engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging tools) for manipulation of useful microbes/strains and their applications; Strain improvement to increase yield of selected molecules, *e.g.*, antibiotics, enzymes, biofuels.

UNIT II

ENVIRONMENTAL APPLICATIONS OF MICROBIAL TECHNOLOGY

13 Hrs

Environmental application of microbes; Ore leaching; Biodegradation - biomass recycle and removal; Bioremediation - toxic waste removal and soil remediation; Global Biogeochemical cycles; Environment sensing (sensor organisms/ biological sensors); International and National guidelines regarding use of genetically modified organisms in e²n⁶vironment, food and pharmaceuticals.

UNIT III PHARMACEUTICAL APPLICATIONS OF MICROBIAL TECHNOLOGY 14 Hrs

Recombinant protein and pharmaceuticals production in microbes – common bottlenecks and issues (technical/operational, commercial and ethical); Attributes required in industrial microbes (*Streptomyces* sp., Yeast) to be used as efficient cloning and expression hosts (biologicals production); Generating diversity and introduction of desirable properties in industrially important microbes (*Streptomyces*/Yeast); Microbial cell factories; Downstream processing approaches used in industrial production process (*Streptomyces* sp., Yeast).

UNIT IV	FOOD APPLICATIONS OF MICROBIAL TECHNOLOGY	1
---------	---	---

Application of microbes and microbial processes in food and healthcare industries – food processing and food preservation, antibiotics and enzymes production, microbes in targeted delivery application – drugs and vaccines (bacterial and viral vectors); Nonrecombinant ways of introducing desirable properties in Generally recognized as safe (GRAS) microbes to be used in food (*e.g.*, Yeast) - exploiting the existing natural diversity or the artificially introduced diversity through conventional acceptable techniques (mutagenesis, protoplast fusion, breeding, genome shuffling, directed evolution).

UNIT V ADVANCES IN MICROBIAL TECHNOLOGY 15 HFs	UNIT V	ADVANCES IN MICROBIAL TECHNOLOGY	15 Hrs
--	--------	----------------------------------	--------

Microbial genomics for discovery of novel enzymes, drugs/ antibiotics; Limits of microbial genomics with respect to use in human welfare; Metagenomics and metatranscriptomics – their potential, methods to study and applications/use (animal and plant health, environmental clean-up, global nutrient cycles & global sustainability, understanding evolution), Global metagenomics initiative - surveys/projects and outcome, metagenomic library construction and functional screening in suitable hosts –tools and techniques for discovery/identification of novel enzymes, drugs (*e.g.*, protease, antibiotic).

UNIT VI VIDEO LECTURES, SEMINARS AND WEBINARS

5 Hrs

5 Hrs

REFERENCES:

- 1. Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications. Hackensack, NJ: World Scientific.
- 2. Moo-Young, M. (2011). Comprehensive Biotechnology. Amsterdam: Elsevier.
- 3. Nelson, K. E. (2015). Encyclopedia of Metagenomics. Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools. Boston, MA: Springer US.
- 4. The New Science of Metagenomics Revealing the Secrets of Our Microbial Planet.(2007). Washington, D.C.: National Academies Press.
- Journals: (a) Nature, (b) Nature Biotechnology, (c) Applied microbiology andbiotechnology, (d) Trends in Biotechnology, (e) Trends in Microbiology,(f) Current opinion in Microbiology, (g) Biotechnology Advances,(h) Genome Research).
- 6. Websites: <u>http://jgi.doe.gov/our-science/</u> 27

Course (Code	22P2BT08			urs/	M	Marks	
Credits		5	CORE – VIII	W	K			
Total Ho	urs	75	DEVELOPMENTAL BIOLOGY	Т	Р	Int	Ext	
Max. Ma	urk	100		5	-	25	75	
Course (Objective	s:						
The main	objectiv	es of this course a	re:					
1. Tł	ne objecti	ves of this course	e are to introduce students to developme	ents/ a	dvanc	es ma	de in	
f	ield of mi	icrobial technolog	y for use in human welfare and solving p	oroblen	ns of t	he soc	iety.	
Course o	outcomes							
On the s	uccessful	completion of th	e course, student will be able to:					
CO1		-	embryology (historical review) and more	recent	lv	K		
001			an emerging discipline and science.	recent	Ly	111		
CO2	•		themes and differences in developmenta			K5	5	
	with respect to anatomy, physiology and evolution in selected Invertebrates and Vertebrates species.							
CO3		·	e mechanisms of early embryonic develop			K2	2	
			age, blastula, gastrula, neurula) in Vertebrates and mouse and Invertebrates e.g. Drosophila					
		gaster and Sea Ur		inu				
CO4	•		thways controlling axis formation (anterint the axis) in amphibians (frog), mammals (-		, K4	ł	
			hila) including the signalling molecules a			;		
CO5	regulato							
05		ble to communica omental biology.	te scientific information about key conce	epts in		K	3	
K1	-		and; K3 - Apply; K4 - Analyze; K5 - Ev	aluate;	K6 -	Create	<u>)</u>	
UNIT I	BAS	SIC CONCEPTS	OF DEVELOPMENT			1.	3 Hrs	
Potency,	commitn	nent, specificatio	n, induction, competence, determinati	on and	d diff	erenti	ation;	
-		-	nd cell lineages; stem cells; genomic eq				,	
	-		g; mutants and transgenics in analysis of					
	GA	METOGENESIS	S, FERTILIZATION AND EARLY			1/	2 11	
UNIT II	DEV	VELOPMENT				1.	13 Hrs	
Productio	on of gar	netes, cell surfac	e molecules in sperm-egg recognition	in ani	mals;	embry	o sa	
developm	nent and	double fertilizati	ion in plants; zygote formation, cleava	age, b	lastula	a form	nation	
			28 nd formation of germ layers in an					

UNIT III	MORPHOGENESIS AND ORGANOGENESIS IN ANIMALS	14 Hrs
Cell aggreg	ation and differentiation in <i>Dictyostelium</i> ; axes and pattern formation in L	Drosophila
amphibia an	d chick; organogenesis – vulva formation in Caenorhabditis elegans, eye lens	inductior
limb develo	ppment and regeneration in vertebrates; differentiation of neurons, post	embryoni
developmen	t- larval formation, metamorphosis; environmental regulation of normal dev	velopment
sex determin	nation.	
UNIT IV	MORPHOGENESIS AND ORGANOGENESIS IN PLANTS	15 Hrs
Organization	n of shoot and root apical meristem; shoot and root development; leaf develo	pment and
phyllotaxy;	transition to flowering, floral meristems and floral development in Arabia	longie and
1 5 5	and the second s	iopsis and
Antirrhinum		
		-
Antirrhinum UNIT V		15 Hrs
Antirrhinum UNIT V Genetic rear	CANCER AND PROGRAMMED CELL DEATH	15 Hrs
Antirrhinum UNIT V Genetic rear cycle, virus	CANCER AND PROGRAMMED CELL DEATH rangements in progenitor cells, oncogenes, tumor suppressor genes, cancer a	15 Hrs nd the cel apoptosis
Antirrhinum UNIT V Genetic rear cycle, virus	CANCER AND PROGRAMMED CELL DEATH rangements in progenitor cells, oncogenes, tumor suppressor genes, cancer a -induced cancer, metastasis, interaction of cancer cells with normal cells,	15 Hrs nd the cel apoptosis
Antirrhinum UNIT V Genetic rear cycle, virus therapeutic i	CANCER AND PROGRAMMED CELL DEATH rangements in progenitor cells, oncogenes, tumor suppressor genes, cancer a -induced cancer, metastasis, interaction of cancer cells with normal cells, nterventions of uncontrolled cell growth. Programmed cell death, aging and se	15 Hrs nd the cel apoptosis nescence.
Antirrhinum UNIT V Genetic rear cycle, virus therapeutic i UNIT VI	CANCER AND PROGRAMMED CELL DEATH rangements in progenitor cells, oncogenes, tumor suppressor genes, cancer a -induced cancer, metastasis, interaction of cancer cells with normal cells, nterventions of uncontrolled cell growth. Programmed cell death, aging and se VIDEO LECTURES, SEMINARS AND WEBINARS	15 Hrs nd the cel apoptosis nescence.
Antirrhinum UNIT V Genetic rear cycle, virus therapeutic i	CANCER AND PROGRAMMED CELL DEATH rangements in progenitor cells, oncogenes, tumor suppressor genes, cancer a -induced cancer, metastasis, interaction of cancer cells with normal cells, nterventions of uncontrolled cell growth. Programmed cell death, aging and se VIDEO LECTURES, SEMINARS AND WEBINARS	15 Hrs nd the cel apoptosis nescence.

 Principles of Development (2019), 6th edition by Cheryll Tickle; Lewis Wolpert; Alfonso Martinez Arias.

Course Code Credits	22P2BTP02 5	CORE PRACTICAL-II	Hours/ WK		Marks	
Max. Mark	100	APPLIED BIOTECHNOLOGY	Т	T P		Ext
Max. Mark	100		-	6	40	60
	· · ·					•
Course Objectiv	es:					
The main objective	ves of this course a	are to:				
1. Train the studer	nts on basic tools a	and techniques required to understand bio	otechno	logy.		
		reas like microbiology, plant and animal			ed adv	ance
biology.						
	that subsequent r	practical would be understandable based	on these	e expe	rimen	ts.
List of Practical				I		
					1	
		from Bacteria, plants, animals and Separ	ation of	DNA	A by	
0	Electrophoresis					
		mini prep and maxi prep from E.coli				
-	n of Proteins by S					
	blotting – Demon					
5. Micro pro	opagation of callu	s culture				
6. ABO Blo	ood grouping (Rh t	yping) (Agglutination)				
7. WIDAL a	and Pregnancy tes	t (Agglutination)				
8. Productio	on and Estimation	of alcohol from grapes				
9. Productio	on and estimation	of citric acid from Aspergillus species				
10. Azolla ,S	pirullina, Vermicu	ulture and Mushroom cultivation				
11. Separatio	n of amino acids l	by paper chromatography				

~	se Code 22P2BTE03 Hours/ its 5 Elective – III WK		M	Marks				
Credits		5	GENOMICS AND PROTEOMICS				1	
Total Ho		75	GENOMICS AND FROTEOMICS	Т	Р	Int	Ext	
Max. Ma	ark	100		5	-	25	75	
Course (Obiectiv	es:						
	•	ves of this course a	re:					
1. 7	To under	stand the basic con	ncepts in genomics and various technique	es app	olied t	o enur	nerat	
		equences and its fu						
-	-	-	ntals of proteomics and various technique	s supp	oortin	g the p	rotei	
S	equence	and functional ana	llysis.					
Course of	utcome	2						
	1	-	e course, student will be able to:					
CO1		now about DNA i nology	manipulating enzymes and its role in r	DNA		K1		
CO2		<u> </u>	different types plasmid vectors and th	neirU	sage	K2	K2	
CO3	To ac	To acquire knowledge on basic gene cloning strategies					К3	
CO4		valuate the usage opment value ad	and applications of gene cloning for the	he		K4		
CO5		÷	ile techniques in recombinant DNA techno	ology		K5	6&K6	
K1	- Remen	nber; K2 - Underst	and; K3 - Apply; K4 - Analyze; K5 - Eva	luate;	K6 -	Create	e	
UNIT I	GE	NOMICS				1.	3 Hrs	
Prokaryo	tic &Eul	karyotic Genomes	Organization- Nuclear Genomes Org	anelle	e geno	omes-c	origir	
Donotitiv	e DNA	contents-Tandem	repeats - DNA transposons- Comparati	ive ge	enomi	cs and	1	
Repetitiv	on of gen	omics in understar	nding genetic disease of humans.					
•	011 01 801					1		
applicatio		ADITIONAL AP	PROACHES TO EXPRESSION PROI	FILIN	G	1/	• тт	
applicatio	TR	ADITIONAL AP STUDY GENES		FILIN	IG	1.	3 Hrs	
applicatio	TR TO	STUDY GENES						
application	TR TO or large so	STUDY GENES		gun se	quenc	ing – 0	Cont	
application UNIT II SAGE for assembly	TR TO or large so z-techniq	STUDY GENES	on and analysis- DNA sequencing- shot g	gun se	quenc - RT-	ing – 0 PCR-F	Conti RACI	

UNIT III	GENOME MAPPING	14 Hrs			
Human geno	ome project Genetic Mapping –SNP AFLP-Human pedigree analysis–FISI	H – STS			
mapping –G	ene therapy for inherited disorders and infectious diseases.				
UNIT IV	PROTEOMICS	15 Hrs			
Definition, C	Characterization of proteins using 2-D gel electrophoresis, Multidimension	nal liquid			
chromatogra	phy and Mass spectrometry Tools of Proteomics- MALDI-TOF-ESI - tand	dem Mass			
analyzers-pe	ptide Mass finger printing-protein identification with MS data.				
UNIT V	UNIT V METABOLOMICS & GLOBAL BIOCHEMICAL NETWORKS				
Different le	vels of metabolite analysis, basic mass spectrometry metabolomics analysis	is, sample			
selection an	d handling for analysis of metabolites, methodology to construct global bi	ochemical			
network. Pro	otein mining - SALSA algorithm for mining specific features- protein microa	rrays			
protein expre	ession profiling.				
UNIT VI	VIDEO LECTURES, SEMINARS AND WEBINARS	5 Hrs			
REFEREN	CES:				
1.	Terence A Brown, 2002, Genomes, 2 nd Edition, Bios Scientific Publishers.				
2.	Tom Strachan and Andrew P Read, 1999, Human Molecular Genetics, 2nd edi	tion, Bios			
	Scientific Publishers.				
3.	Daniel C. Liebler, 2002, Introduction to Proteomics, tools for the new biology	- Humana			
	press. Totowa, NJ.				
4.	Pennington. S, M. Dunn, 2001, Proteomics: From Protein Sequence toFun	oction, 1 st			
	edition, Bios Scientific Publishers.				

Course C Credits	Code	22P3BTE04 5	Elective – IV		urs/ /K	Μ	arks	
Total Ho	11175	_	DIVERSITY OF LIFE FORMS	T	P	Int	Ext	
Max. Ma		100		5	-	25	75	
		1				1		
Course C	Dbjective	s:						
The main	objective	es of this course	are:					
1. It	t gives int	roduction to the	various transformation techniques emplo	yed in j	plant	system	ns.	
2. It	t also de	scribes the appl	lication of genetically modified plants	in the	vario	us fie	lds of	
S	cience.							
Course o	utcomes							
On the su	ıccessful	completion of t	he course, student will be able to:					
CO1		Learn the importance of embryology (historical review) and more recently					l	
CO2	-		as an emerging discipline and science.	entel k	violog	v Kž	,	
002	with res	•	unifying themes and differences in developmental biology anatomy, physiology and evolution in selected Invertebrates species.					
CO3	(fertiliza includin	Learn the process and the mechanisms of early embryonic development K3 fertilization, early cleavage, blastula, gastrula, neurula) in Vertebrates neluding frog, chicken and mouse and Invertebrates e.g. Drosophila melanogaster and Sea Urchin.						
CO4		To be able to communicate scientific information about key concepts in levelopmental biology						
CO5	dorsalve	entral and left-r and fly (Droso)	eathways controlling axis formation (anteright axes) in amphibians (frog), mam phila) including the signalling molecules	mals (mouse	e,	5&K6	
K1	- Remem	ber; K2 - Unders	stand; K3 - Apply; K4 - Analyze; K5 - Ev	aluate;	K6 -	Create	9	
UNIT I	PRI	NCIPLES & M	ETHODS OF TAXONOMY			1	3 Hrs	
Concepts	of specie	s and hierarchic	al taxa, biological nomenclature, classica	l &Qua	antitat	ive m	ethods	
of taxono	my of pla	ints, animals and	l microorganisms.					
UNIT II	LEV	ELS OF STRU	JCTURAL ORGANIZATION			1	3 Hrs	
Unicellul	ar, coloni	al and multicell	ular forms. Levels of organization of tis	sues, o	rgans	& sy	stems.	
Compara	tive anato	my, adaptive rac	diation, adaptive modifications.					
UNIT III		FLINE CLASS	IFICATION OF PLANTS, ANIMALS	&		1	4 Hrs	
	MIC	MICROORGANISMS 33						
Importan	t criteria	used for classi	fication in each taxon. Classification	of plan	nts, a	nimals	s and	

microorganis	sms. Evolutionary relationships among taxa.					
UNIT IV	NATURAL HISTORY OF INDIAN SUBCONTINENT15 H					
-	at types of the subcontinent, geographic origins and migrations of species. nals, birds. Seasonality and phenology of the subcontinent.	Common				
UNIT V ORGANISMS OF HEALTH & AGRICULTURAL IMPORTANCE AND CONSERVATION OF BIODIVERSITY						
-	rasites and pathogens of humans, domestic animals and crops. Rare, enda es. Conservation strategies.	ngered &				
UNIT VI	VIDEO LECTURES, SEMINARS AND WEBINARS	5 Hrs				
REFERENC	CES:					
1. Plan	t Diversity I and II by Pandey					
2. Inve	rtebrates and Vertebrates by Verma and Agarwal					

M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2022-2023 onwards)

SEMESTER – III

Course Code Credits		22P3BT09 5	CORE – IX		urs/ /K	M	Marks	
Total Ho	ours	75	PLANT	Т	P	Int	Ext	
Max. Ma		100	BIOTECHNOLOGY	5	-	25	75	
Course	Objective				•			
	-	s of this course	are:					
	U		n various aspects of cell and molecular	biology	stroot	ne inc	luding	
			eir interactions in DNA replication, and				-	
	÷	regulation	en interactions in Divit repretation, and	protein	1 0105	<i>y</i> inches	is und	
		C	understanding on the complete cellular a	nd mole	cular	functi	ons of	
	•	•	ell to cell interaction, gene regulation, cel					
3. To	impart the	molecular biolo	ogy knowledge in applications of various	human	health	n care		
Course	outcomes							
On the s	uccessful	completion of	the course, student will be able to:					
CO1	Acquire	a complete k	nowledge about molecular marker-aid	led bree	eding	K	3, K6	
	and app	ly that for effe	ective crop improvement.					
CO2	Obtain	a comprehensi	ve knowledge about the concepts of p	lant tis	sue	K	I, K2	
	culture	and its applica	tions.					
CO3	Underst	and the metho	ds of plant genetic transformation and	l use su	ich	K	2, K3,	
	acquain	tance to devel	op transgenic plants with improved transference	aits.		Ke	5	
CO4	Know a	nd apply adva	nced technologies for improving plan	t		K	I, K5	
	perform	ance						
CO5	Demon	strate the appli	cation of transgenic technology and a	pply th	at	K	3, K4	
	knowle	dge effectively	v in relevant areas.					
K1 - R	L Remember	; K2 - Unders	tand; K3 - Apply; K4 - Analyze; K5 -	Evalua	ite; K	6 - Cr	eate	
UNIT I	PLA	NT TISSUE	CULTURE			1.	3 Hrs	
History	- princip	le - media co	omposition, types Sterilisation, prepa	ration	and	applic	ation.	
Micropr	opagation	n, meristems c	culture, callus collures, suspension cu	ultures,	Orga	anoge	nesis,	

somatic hybridization & somatic embryogenesis - shoot formation, Root formation & hardening, protoplast isolation and fusion. Somaclonalvariation. Germplasm storage and cryopreservation

UNIT II PLANT MOLECULAR BIOLOGY

Plant genomic DNA-organelle DNA: Mitochondrial DNA & chloroplast DNA. Gene expression in higher plants: post transcription processing of plant RNA. Communication in plant cells: nucleus - mitochondria interaction and chloroplast - mitochondria evolved by endosymbiosis. Plant transformation technology: agrobacterium mediated gene transfer, Direct transfer and particle bombardment.

UNIT III MEDICINAL PLANTS APPLICATION

Diversity of medicinal plants in India: *Phyllanthusamarus, Casiaaugustifolia, Aloe verra, Bacopamonnieri, Saracaasoca, Withaniasomnifera, Ocimumtenuiflorum, Allium cepa*, *Piper betle and Cinnamomumzeylanicum*. Molecular pharming - concept of plants as biofactories, production of industrial enzymes and pharmaceutically important compounds

UNIT IVAGRICULTURE & FOREST BIOTECHNOLOGY15 Hrs

Seed production technology. Genetically modified plant: Resistances: herbicides- insect pest –pathogen . Metabolic engineering: secondary metabolic production, molecular farming. Risk assessment of transgenic plants: impact on agriculture development and insect protected crops. Agroforesty. Transgenictrees. Biotechnology production of wood composites. Biological control of forest pest.

UNIT V INTELLECTUAL PROPERTY RIGHTS

IPR in context with PBT, Patenting in PBT. International treaty on plant genetic resources for food and agriculture.IPR on biological resources & access to germplasm. Agriculture legislations. National biodiversity authority. Plant biotechnology in developing countries:

Asia and India. Revocation of turmeric and neem patent

REFERENCES:

1. Modern Concepts of Biotechnology H.D. Kumar Vikas Publishing House Pvt. Ltd., New Delhi .

2. Role of Biotechnology in Medicinal and Aromatic Plants Irfan A. Khan and AtiyaKhanumUkaaz Publications, Hydreabad

13 Hrs

14 Hrs

15 Hrs

3. Plant Tissue Culture Kalyan Kumar D. New Central Book Agency (P) Ltd, Calcutta

4. An introduction to Plant tissue Culture M.K. Razdan Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

5. Biotechnology B.D. Sigh Kalyan Publishers New Delhi

6. Introduction to Plant Biotechnology H.S. Chawla Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

7. Plant Biotechnology Recent Advances P.C. TrivediPanima Publishing Corporation, New Delhi

8. Biotechnology J.E. Smith Cambridge University Press

9. Plant Biochemistry and Molecular Biology Hans, Walter Held Oxford, NY 10. Plant Cell, Tissue, and Organ Culture- Fundamental Methods.

19.

Course	Code	22P3BT10	CODE	Hours/		M	Marks	
Credits		5	CORE – X	WK			T	
Total Ho	ours	75	ANIMAL	Т	Р	Int	Ext	
Max. Ma	ark	100	BIOTECHNOLOGY	5	-	25	75	
Course	•				·			
The man	1 objecti	ives of this course	are:					
	organiz	ation and their i	arious aspects of cell and molecular biolo interactions in DNA replication, and pro-				-	
2.To dev	elop co	mprehensive unde	rstanding on the complete cellular and mole	cula	r fund	ctions	of cel	
organelle	es in teri	ms of cell to cell in	nteraction, gene regulation, cellular signaling	5.				
3. To im	part the	molecular biology	v knowledge in applications of various human	n hea	alth ca	are		
Course	outcom	es						
On the s	uccessf	ul completion of t	the course, student will be able to:					
CO1		fundamental deering.	knowledge in stem cell biology a	nd	tissu	e Ki	1	
CO2			ection, potential manipulations and charses and charse	llenş	ges o	f K2	2	
CO3	-	in significance, eering	current status and future potential of t	issu	e	K3	3	
CO4	Ident	ify key challenge	es in tissue engineering of different huma	n tis	ssues.	K4	1	
CO5		ribe design, fabri eering scaffolds	cation and biomaterials selection criteria	for	tissu	e Ká	5&K6	
K1	- Reme	mber; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Evalu	iate;	K6 -	Create	è	
UNIT I	Al	NIMAL TISSUE	CULTURE			12	2 Hrs	

Animal Tissue culture history, Laboratory design, aseptic conditions, methodology and Media: Balanced salt solutions and simple growth medium, Chemical, physical and metabolic functions of different constituents of culture medium. Role of Carbon di oxide, Role of serum, and supplements. Serum & protein free defined media and their applications: equipments and materials for animal cell culture technology. Basic techniques of mammalian cell culture in vitro 39

synchroniza	tion. Somatic cell fusion, organ and histotypic Culture. Tissue eng	gineering.			
Applications of animal cell culture, stem cell cultures, embryonic stem cells and their					
applications	cell culture based vaccines.				
UNIT III	IVF & CLONING	13 Hrs			
Invitro ferti	lization and embryo transfer, Sex determination or sex specific markers,	, Assisted			
reproductive	e technology, Intracytoplasmic sperm injection, Cryopreservation of gar	netes and			
embryo. Ar	imal cloning – reproductive cloning, therapeutic cloning, Xenotransp	lantation,			
Animal gen	es and their regulation, some specific promoters for tissue specific expre	ession.			
UNIT IV	COMMERCIAL ASPECTS	16 Hrs			
Improvemen	nts of animals using transgenic approach with specific examples, An	nimals as			
bioreactors:	applications of biotechnology in sericulture, production of transgen	ic fishes.			
General ste	ps to make and analyze transgenic fish .Genetically improved tilapia	, Genetic			
engineering	for production of regulatory proteins and blood products. Hormone pr	oduction,			
Invitro cult	ure of tissues and organs, Stem cell technology, Embryonic stem cel	ls,			
maintenance	e of stem cell culture, Characterization of stem cells.				
UNIT V	GENE THERAPY	15 Hrs			
Gene therap	by, Cancer Gene therapy, mechanism of gene therapy, Somatic versus	germ line			
gene thera	py, Immunotherapy. Vaccinology: history of development of	vaccines,			
introduction	to the concept of vaccines, conventional methods of animal vacci	ne			
production,	recombinant approaches to vaccine production, modern vaccines.				
UNIT VI	VIDEO LECTURES, SEMINARS AND WEBINARS	5 Hrs			
REFERENC	CES:				
John 2. John	nney RI. (2005). Culture of animal cells: A manual of basic techniques, 5th Ed Wiley and Sons. R W Masters. (2000). Animal cell culture, 3rd Edition, Oxford University Pre ence PR. (2006). Animal Biotechnology, Dominant Publishers and Distributors	ss.			

CHARACTERIZATION

Biology and characterization of the cultured cells, measuring parameters of growth. Cell

THE

13 Hrs

OF

- Sandy Primrose, RichardTwyman and Bob Old. (2001). Principles of Gene Manipulation, 6th Edition, Blackwell Science Ltd. p: 174-319.
- 5. Ranga MM. (2006). Animal Biotechnology.

BIOLOGY

CULTURED CELLS

UNIT II

AND

6. Animal Biotechnology by Professor P.K. Gupta

7. Text Book of Animal biotechnology - B Singh S K Gautam and M S Chauhan

Course Code	22P3BT11	CORE -XI	Hours/ WK		Ma	arks
Credits	5	ENVIRONMENTAL BIOTECHNOLOGY				
Total Hours	75		Т	Р	Int	Ext
Max. Mark	100		5	-	25	75

Course Objectives:

The main objectives of this course are:

1. To familiarize the student in various aspects of cell and molecular biology streams including cellular organization and their interactions in DNA replication, and protein biosynthesis and translational regulation

2. To develop comprehensive understanding on the complete cellular and molecular functions of cell organelles in terms of cell to cell interaction, gene regulation, cellular signaling.

3. To impart the molecular biology knowledge in applications of various human health care

Course outcomes

On the successful completion of the course, student will be able to:

CO1	Acquire a complete knowledge about bio-fuel and bio-energy and its future needs	K1
CO2	Understand dangerous effects of environmental pollution and its methods of control and management which make them to create more remediation methods in future.	K1, K2
CO3	Familiarize the different methods of environmental pollution using biotechnological approaches	К3
CO4	Obtain a comprehensive knowledge about global environmental problem and disasters management which help to think about environmental protection	K4
CO5	This course is important in the era of industrialization leading to environmental hazards and hence will help students to take up a career in tackling industrial pollution	K5, K6
K1 - R	emember: K2 - Understand: K3 - Apply: K4 - Apalyze: K5 - Evaluate: K6	- Create

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

UNIT I ENVIRONMENTAL ISSUES

13 Hrs

Climate change, Conservation Energy, Environmental degradation, Environmental Health Genetic engineering Intensive farming Land degradation soil, Land use. Nanotechnology Nuclear issues Over population, Burial, Ozone depletion-CFCP pollution, Water pollution, Air pollution, Reservoirs Resources depletion Consumerism-Fishing, Logging, Mining Toxins, Waste.

UNIT II	BIOREMEDIATION AND BIO-LEACHING	13 Hrs			
Environmer	tal impact of pollution and measurement methods- Composting of	f organic			
wastes, microbial bioremediation of oil spills; Waste water treatment- sewage treatment and					
common in	dustrial effluent treatment; Concepts of bioremediation (in-situ and	ex-situ),			
Bioremedia	tion of toxic metal ions-biosorption and bio accumulation principles.	Concepts			
of phytorem	nediation; Microbial biotransformation of pesticides and xenobiotics: M	Microbial			
leaching of	ores- direct and indirect mechanisms.				
UNIT III	BIOFUEL TECHNOLOGY	14 Hrs			
Classificatio	on of biofuel, First generation biofuels, Bioalcohols, Biodiesel, Gree	en diesel,			
Vegetable of	il, Bioethers, Biogas, Syngas, Solid biofuels, Second generation biofu	uels			
(advanced b	iofuels), Biofuels by region, Issues with biofuel production and use.				
UNIT IV	WASTE WATER TREATMENT	15 Hrs			
Definition,	source, types and composition of waste water, domestic sewage and	industrial			
waste water	. Methods of analysis of waste water- Std. parameters for physical, cher	nical and			
biological a	nalysis, microbiological analysis, rationales and methods, their signific	ance and			
C	nalysis, microbiological analysis, rationales and methods, their signific Primary treatment: (Chemical/Physical) sedimentation, screening, coa				
limitations.		gulation,			
limitations.	Primary treatment: (Chemical/Physical) sedimentation, screening, coa	gulation, iological/			
limitations. flocculation biochemical	Primary treatment: (Chemical/Physical) sedimentation, screening, coa, dilution, neutralization, equalization etc. Secondary treatment: (B	gulation, iological/			
limitations. flocculation biochemical	Primary treatment: (Chemical/Physical) sedimentation, screening, coa , dilution, neutralization, equalization etc. Secondary treatment: (B) Activated sludge process, Trickling filters, anaerobic filters, sludge c	gulation, iological/			
limitations. flocculation biochemical Aerated lag	Primary treatment: (Chemical/Physical) sedimentation, screening, coa , dilution, neutralization, equalization etc. Secondary treatment: (Bi) Activated sludge process, Trickling filters, anaerobic filters, sludge cons, Algal ponds, Evapo- transpiration system.	ngulation, iological/ ligestion, 15 Hrs			

Biomineralization, Bioelectricity through microbial fuel cell. Energy management and safety.

REFERENCES:

Text Books

- 1. Alan, S. (1999). Environmental Biotechnology. Pearson Education Limited, England.
- 2. Allsopp, D. and Seal, K.J. (1986). Introduction to Biodeterioration. ELBS/Edward Arnold, London.
- 3. Athie, D and Ceri, C.C. (1990). The use of Macrophytes in Water Pollution Control. Pergamon Press, Oxford.
- 4. Chin, K.K. and Kumarasivam, K. (1986). Industrial Water Technology Treatment-Reuse and Recycling. Pergamon Press, Oxford.

- 5. Dart, R.K. and Stretton, R.J. (1994). Microbiological aspects of pollution control. Elsevier Pub. Co., Amsterdam, New York.
- 6. Fry, F.C. and Gadd, G.M. Herbert, R.A. Jones, C.W. and Watson-Crick, J.A. (1982). Microbial Control of Pollution. Cambridge University Press, New York.
- 7. Henze, M and Gujer, W. (1992). Interactions of waste water: Biomat and Reactor Configurations in Biological Treatment Plan. Pergamon Press, Oxford.
- 8. Jenkins, D. and Olson, B. H. (1989). Water and Waste water Microbiology. Pergamon Press, Oxford.
- 9. John, C. and Todd, V.C. (1990). Integrated environmetal Management. Lewis Publishers Inc., Chel.
- 10. Kaul, T.N. and Trrivedy, R.K. (1993). Pollution Control in Distilleries. Enviromedia, Karad, India.
- 11. McEldowney, Sharon, Hardman, David, J. and Waite, S. (1993). Pollution, Ecology Biotreatment. Longman Scientific and Technical, Harlow, England.
- 12. Technoglous, G. Burton, F.L. and Stensel, H.D. (2004). Wastewater Engineering-Treatment, Disposal and Reuse. Metcalf and Eddy Inc., TataMcGraw Hill, New Delhi.

Publications

- 1. De, A. K. (2004). Environmental Chemistry . Wiley Eastern Ltd., New Delhi.
- 2. Jogdand, S.N. (1995). Environmental Biotechnology. Himalaya Publishing House, Bombay. Sastry, C.A. Hashim, M.A. and Angamuthu, P. (1995). Waste Treatment Plants. Narosa Publishing House, New Delhi, India.

Course Code Credits	22P3BT12 5	CORE – XII		urs/ /K	Ma	arks
Total Hours	75	BIOINFOMRATICS	T	P	Int	Ext
Max. Mark	100		5	Г 	25	Ext 75
	100		5		23	15
<u> </u>						
Course Object	tives:					
The main object	ctives of this course	are:				
1. To gain	n basic knowledge i	n the concept of essential of bioinformation	atics.			
2. To und	lerstand the usage of	f prediction tools that are used to predic	ct the biolo	ogical	systen	1
3. To und	lerstand basic conce	pts of drug designing				
UNIT I	BIOLOGICAL DA	ATABASES			13	Hrs
Biological Dat	tabases. Nucleic ad	cid sequence databases- GenBank/N	CBI EM	BL 9	nd Γ	DRI
U	·	protKB and PIR, Structure databases				
*		OMIM and KEGG.	TDD, C			COI
Specialized Du		Ommer and REGO:				
UNIT II	SEQUENCES AN	ALYSIS			12	Hrs
		ALYSIS equence Alignment- Local alignmer	nt and G	lobal		
Sequence alig	nment, Pairwise S				alignn	nents-
Sequence alig Dynamic prog	nment, Pairwise S ramming algorithm,	equence Alignment- Local alignmen	ltiple Sequ	uence	alignn Align	nents- ment-
Sequence alig Dynamic prog Clustal X, Phy	nment, Pairwise S ramming algorithm, logenetic Analysis-	equence Alignment- Local alignmen, Scoring matrices, gap penalties. Mu	ltiple Sequ m likeliho	uence od and	alignn Align d maxi	nents- ment- imum
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum	ltiple Sequ m likeliho	uence od and	alignn Alignn d maxi nd type	nents- ment- imum
Sequence alig Dynamic prog Clustal X, Phy parsimony- NJ UNIT III	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea	ltiple Sequ m likeliho arch – BL4	uence od and AST ai	alignn Alignn d maxi nd type 15	nents- ment- imum es Hrs
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Predictic	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea	ltiple Sequ m likeliho arch – BL4 alysis, PR	uence od and AST an IMER	alignn Alignn d maxi nd type 15 Desig	nents- ment- imum es Hrs gning,
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Predictio	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana	ltiple Sequ m likeliho arch – BL4 alysis, PR	uence od and AST an IMER	alignn Alignn d maxi nd type 15 Desig	nents- ment- imum es Hrs gning,
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR.	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N	ltiple Sequ m likeliho arch – BL4 alysis, PR	uence od and AST an IMER	alignn Align d maxi nd type 15 Desig Fasmar	nents- ment- imum es Hrs gning,
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N CODELING	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- O	uence od and AST an IMER Chau-F	alignn Align d maxi nd type 15 Desig Fasmar 15	nents- ment- imum es Hrs gning, n and Hrs
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV Molecular Me	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M schanics – force f	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N CODELING Tields; Bond length, Torsion angle,	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo	uence od and AST an IMER Chau-F	alignn Align d maxind type 15 Desig Fasman 15 interac	nents- ment imum es Hrs gning, n and Hrs ctions
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Predictic RNA Seconda GOR. UNIT IV Molecular Me electrostatic an	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N CODELING Fields; Bond length, Torsion angle, interactions, energy minimization- lo	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo	uence od and AST an IMER Chau-F	alignn Align d maxind type 15 Desig Fasman 15 interac	nents- ment- imum es Hrs gning, n and Hrs ctions
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Predictio RNA Seconda GOR. UNIT IV Molecular Me electrostatic an Modeling, Mol	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals ecular dynamics and	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N ODELING ields; Bond length, Torsion angle, interactions, energy minimization- loc d simulation.	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo	uence od and AST an IMER Chau-F	alignn Align d maxi nd type 15 Desig Fasman 15 interac Hom	nents- ment- imum es Hrs gning, n and Hrs ctions ology
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV Molecular Me electrostatic an Modeling, Mol	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals ecular dynamics and DRUG DESIGNIN	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure M ODELING Fields; Bond length, Torsion angle, interactions, energy minimization- loc d simulation.	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo ocal and g	uence od and AST an IMER Chau-I nded global,	alignn Alignt d maxi nd type 15 Desig Fasmat 15 interac Hom	hents- ment- imum es Hrs n and Hrs ology Hrs
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV Molecular Me electrostatic an Modeling, Mol UNIT V Drug Discover	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals ecular dynamics and DRUG DESIGNIN ry – Deriving and	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N CODELING fields; Bond length, Torsion angle, interactions, energy minimization- loc d simulation. NG using 3D pharmacophore; Molecular	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo ocal and g	ience od and AST an IMER Chau-I Inded global,	alignn Align d maxi nd type 15 Desig Fasmar 15 interac Hom 15	hents- ment- imum es Hrs gning n and Hrs ology Hrs based
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV Molecular Me electrostatic an Modeling, Mol UNIT V Drug Discover methods to id	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals ecular dynamics and DRUG DESIGNIN ry – Deriving and	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure M ODELING fields; Bond length, Torsion angle, interactions, energy minimization- loc d simulation.	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo ocal and g	ience od and AST an IMER Chau-I Inded global,	alignn Align d maxi nd type 15 Desig Fasmar 15 interac Hom 15	hents- ment- imum es Hrs ming, n and Hrs ology Hrs based
Sequence alig Dynamic progr Clustal X, Phy parsimony- NJ UNIT III Gene Prediction RNA Seconda GOR. UNIT IV Molecular Me electrostatic an Modeling, Mol UNIT V Drug Discover	nment, Pairwise S ramming algorithm, logenetic Analysis- methods, UPGMA PREDICTION AN on methods – ORF ry Structure Predic MOLECULAR M echanics – force f nd van der Waals ecular dynamics and DRUG DESIGNIN ry – Deriving and	equence Alignment- Local alignment, Scoring matrices, gap penalties. Mu Tree construction methods- Maximum and WPGMA, Database Similarity Sea ND ANALYSIS TOOLS Finder, Genscan, Restriction Site Ana tions, Protein Secondary Structure N CODELING fields; Bond length, Torsion angle, interactions, energy minimization- loc d simulation. NG using 3D pharmacophore; Molecular	ltiple Sequ m likeliho arch – BLA alysis, PR Aethods- (Non- bo ocal and g	ience od and AST an IMER Chau-I Inded global,	alignn Align d maxi nd type 15 Desig Fasmar 15 interac Hom 15	hents- ment- imum es Hrs ming, n and Hrs ology Hrs based

- 1. Bioinformatics Sequence and Genome analysis By David W. Mount.
- 2. Introduction to Bioinformatics T.K. Atwood and Parry Smith.
- 3. Biological sequence analysis R. Durbin, S. Eddy, A. Krogh and G. Mitchison
- Andrew R. Leach (2001) "Molecular Modeling Principles and Applications"; Second Edition, Prentice Hall, USA.

Credits 5 LAB IN ADVANCED WK Total Hours 75 BIOTECHNOLOGY T P Max. Mark 100 5 - Course Objectives: The main objectives of this course are: 1. To familiarize the student in various aspects of cell and molecular biology streat cellular organization and their interactions in DNA replication, and protein biot translational regulation 2 2. To develop comprehensive understanding on the complete cellular and molecular sig 3. 3. To impart the molecular biology knowledge in applications of various human he Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform <tr< th=""><th colspan="2">Marks</th></tr<>	Marks		
Max. Mark 100 5 - Course Objectives: The main objectives of this course are: 1. To familiarize the student in various aspects of cell and molecular biology streat cellular organization and their interactions in DNA replication, and protein bio translational regulation 2. To develop comprehensive understanding on the complete cellular and molecular of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig 3. To impart the molecular biology knowledge in applications of various human he Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: 1. Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four <t< th=""><th>Int</th><th colspan="2">Ext</th></t<>	Int	Ext	
 The main objectives of this course are: To familiarize the student in various aspects of cell and molecular biology streacellular organization and their interactions in DNA replication, and protein biotranslational regulation To develop comprehensive understanding on the complete cellular and molecular of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig To impart the molecular biology knowledge in applications of various human heteodecodecodecodecodecodecodecodecodecode	25	75	
 The main objectives of this course are: To familiarize the student in various aspects of cell and molecular biology streacellular organization and their interactions in DNA replication, and protein biotranslational regulation To develop comprehensive understanding on the complete cellular and molecular of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig To impart the molecular biology knowledge in applications of various human heteodecodecodecodecodecodecodecodecodecode			
 To familiarize the student in various aspects of cell and molecular biology streat cellular organization and their interactions in DNA replication, and protein biot translational regulation To develop comprehensive understanding on the complete cellular and molecular of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig To impart the molecular biology knowledge in applications of various human heter of cell organization of callus culture Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. 			
 cellular organization and their interactions in DNA replication, and protein bio translational regulation 2. To develop comprehensive understanding on the complete cellular and molect of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig 3. To impart the molecular biology knowledge in applications of various human he Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: 1. Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 translational regulation 2. To develop comprehensive understanding on the complete cellular and molecu of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig 3. To impart the molecular biology knowledge in applications of various human he Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: 1. Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	ms inc	ludir	
 To develop comprehensive understanding on the complete cellular and molecular of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig To impart the molecular biology knowledge in applications of various human he Course outcomes Micro propagation of callus culture Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. 	ynthes	sis ar	
 of cell organelles in terms of cell to cell interaction, gene regulation, cellular sig 3. To impart the molecular biology knowledge in applications of various human he Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: 1. Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 To impart the molecular biology knowledge in applications of various human he Course outcomes Micro propagation of callus culture Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	lar fur	oction	
 To impart the molecular biology knowledge in applications of various human he Course outcomes Micro propagation of callus culture Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	naling.		
 Course outcomes 1. Micro propagation of callus culture 2. Separation of Proteins by thin layer chromatography 3. Amplification of Genomic and ligated plasmid by PCR 4. Program to convert DNA to RNA/Protein 5. BLAST and Multiple Sequence and Phylogenetic Analysis 6. Western Blotting- Demonstration 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: 1. Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	Ũ		
 Micro propagation of callus culture Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Sucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. 		.10	
 Separation of Proteins by thin layer chromatography Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Sucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. 			
 Amplification of Genomic and ligated plasmid by PCR Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. 			
 Program to convert DNA to RNA/Protein BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four S. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 BLAST and Multiple Sequence and Phylogenetic Analysis Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four S. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 Western Blotting- Demonstration Establishment of virus free plant using MS media Establishment and maintenance of callus culture and Preparation of synth Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Sucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 7. Establishment of virus free plant using MS media 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 8. Establishment and maintenance of callus culture and Preparation of synth 9. Isolation of auxotrophic mutants by replica plating technique 10. Gene and Protein Structure prediction (Secondary and tertiary)-bioinform 11. Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecular Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 Isolation of auxotrophic mutants by replica plating technique Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Sucleic Acid Detection: Methods and Protocols (Methods in Molecular Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 Gene and Protein Structure prediction (Secondary and tertiary)-bioinform Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecular Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	etic se	eds	
 Transformation & Selection of recombinant clones by (IPTG-X-gal: Blue selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 selection) REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four Sucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	atics t	ools	
 REFERENCES: Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	white	•	
 Molecular Cloning: A Laboratory Manual. Michael R. Green. 2014, Four 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 2. Nucleic Acid Detection: Methods and Protocols (Methods in Molecul Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 Dmitry M. Kolpashchikov and Yulia V. Gerasimova, 2013. 3. PCR Primer Design. Basu and Chhandak. 2015. 4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 			
 PCR Primer Design. Basu and Chhandak. 2015. Measurement of Antioxidant Activity & Capacity: Recent Trends and A 	ar Bio	ology	
4. Measurement of Antioxidant Activity & Capacity: Recent Trends and A			
	pplica	tion	
result ipurestucupunostat cretatonistianiai, 2017.			
5. Cytogenetics. P.K. Gupta. Rastogi publications. 2018.			

Course Coo		P3BTE06		Hours/ WK		M	Marks	
Credits	5		ELECTIVE –V NANOTECHNOLOGY		1			
Total Hour		0	NANOIECHNOLOGI	T	P	Int	Ext	
Max. Mark	10	0		5	-	25	75	
Course Obj	jectives:							
The main of	ojectives of	this course a	re:					
1. To :	familiarize	he student in	various aspects of nano particle synth	esis				
2. To	develop cor	nprehensive	understanding on the functions of nano	particles	.			
3. To i	mpart the k	nowledge in	applications of various nanoparticles a	and mate	rials			
Course out	comes							
On the succ	ressful com	nletion of th	e course, student will be able to:					
			f nanotechnology and nano materia	16			K1	
~ ~ ~ ~		-	abrication of bio molecular structur				K1 K2	
		-	ano elements	03			3,K5	
L	1		ials and robots			_	K4,K5	
	•		plications of nanotechnology in the	field			2,K3	
			nd drug discovery	neiu			.2, N .	
K1 - Ren	ember; K2	2 - Understa	nd; K3 - Apply; K4 - Analyze; K5	- Evalua	te; K	6 - Cı	reate	
UNIT I			TO NANOBIOTECHNOLOGY				3 Hrs	
Definition	prospects	and challer	nges; Topology of DNA, protein ar	d linida	and	salf		
			icial structures. Top up and botto	_				
nanomateri			icial structures. Top up and bolio	uow	п арр	noaci		
		1011.						
UNIT II	NANON	ATERIA	LS AND ITS PROPERTIES			1.	3 Hrs	
Carbon n	anotubes a	and nanorod	ls, Quantom dots, metal based nan	ostructu	ires (Iron o	oxide	
nanoparti	cles), na	nowires,	polymer based nanostructures	(dend	rimer	s),	Gold	
nanostruc	tures (nano	orods, nanoc	cages, nanoshells), nanocomposites.					
UNIT III	FABRICA	TION AND A	NALYSIS OF BIOMOLECULAR NANOST	URUCTU	RES	1	4 Hrs	
AtomicFor	ce Micros	scopy, Sca	anning Probe Electron N	Microsco	opy	and		
		1.	n: Lab on a Chip. Fabrication ofbio		1.		oarra	
technology			47		1			
cennology	•							

UNIT IV	MINIATURIZED DEVICES	S IN NANC	DBIOTECHN	NOLOGY	15 Hrs
Types and a	pplications; Nanobiosensors:	different	classes,	molecula	ar
recognition	elements (MRE), transducin	g elements,	applications	of MRE in nan	o sensing
of different	analytes				

UNIT V APPLICATIONS OF NANOBIOTECHNOLOGY

15 Hrs

Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery..

- Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware

Course Code	22P3BTE06
Credits	5
Total Hours	75
Max. Mark	100

ELECTIVE –VI PHARMACEUTICAL BIOTECHNOLOGY

Hou W	urs/ K	Ma	arks
Т	Р	Int	Ext
5	-	25	75

Course Objectives:

The main objectives of this course are:

- 4. To familiarize the student in various aspects of cell and molecular biology streams including cellular organization and their interactions in DNA replication, and protein biosynthesis and translational regulation
- 5. To develop comprehensive understanding on the complete cellular and molecular functions of cell organelles in terms of cell to cell interaction, gene regulation, cellular signaling.
- 3. To impart the molecular biology knowledge in applications of various human health care

Course of	outcomes				
On the s	uccessful completion of the course, student will be able to:				
CO1	Acquire knowledge about natural sources of drugs, interaction of drugs	K2			
CO2	The students will get an insight about how various biological systems can be used for biopharmaceutical production.	K5			
CO3	Obtain comprehensive knowledge about vital facets of clinical testing in obtaining approval for new drugs.	K4			
CO4	Learn about emerging powerful tools employed for efficient and safe delivery of drugs into the host system.	K6			
CO5	Understand the roles, responsibilities and organizational structure of regulatory bodies	K5			
K1 - R	emember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - C	Create			
UNIT I	INTRODUCTION TO PHARMACOLOGY	13 Hrs			
	& development in pharmacology. Principles of pharmacology. – Pharmaco century – Drugs – Sources, dosage forms and routes of administration	logy in			
UNIT II	DRUG NAMES & CLASSIFICATION SYSTEMS	13 Hrs			
	General Principles of Drug action Pharmacokinetics, Pharmacodynamics, measurement of drug action.				
UNIT II	I DIAGNOSIS AND CHEMOTHERAPY	14 Hrs			
Prenatal	diagnosis: Invasive Techniques- Amniocentesis, Fetoscopy, Non I	nvasive			
-	ues – Ultra Sonography. Diagnosis using protein & enzymes markers, DNA 49 diagnostics. Therapeutic drugs – Protein synthesis inhibitors, Antiba				
Jaseu (anagnostics. Therapeutic arags – Protein synthesis initionois, Antiba	icici ial,			

UNIT IV	INTRODUCTION TO R-DNA TECHNOLOGY	15 Hrs
Production	on of biological: Human Insulin, HGH, GRF, Erythropoietins, IFN	I, TNF
Interleuk	ins, Clotting factor VIII. Synthetic therapy: Synthetic DNA, therapeutic rib	ozymes
synthetic	drugs.	
UNIT V	PRODUCTION AND APPLICATIONS	15 Hrs
Probiotic	s, anticancer and anti-inflammatory agents. Biochips, biofilms and biosur	rfactants
Tissue E	ngineering, Recombinant vaccines and Cell adhesion based therapy.	
REFERE	NCES:	
A Text Bo	ok of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.	
1. P	narmacology – H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingsto	on.
2. B	asic Pharmacology – Foxter Cox. Butterworth"s 1980	
3. P	narmacology and Pharmacotherapeutics – R.S.Satoskar, S.D. Bhandhakam	and
S	S. Alinapure	
5. P	narmaceutical Biotechnology – S.S. Purohit, Kaknani, Saleja	
	narmacology – Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Willi dition.	iams
	IIIOII.	

M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2022-2023 onwards)

SEMESTER – III

Extra disciplinary courses (EDC)

offered to other departments

Course Code	Title of the Course	Credits	Hours		Maximum Marks			
Course Coue	The of the Course		Theory	Practical	Int	Ext	Total	
Semester – III								
Extra Disciplina	Extra Disciplinary Courses offered to other departments							
22P3BTED01 Nanotechnology 2 2 - 25 75 10								
22P3BTED02 Bioinformatics								

Course C Credits	Code	22P3BTED01 5	Extra Disciplinary Course		urs/ /K	M	Marks		
Total Ho	urs	75	NANOTECHNOLOGY	Т	T P		Р	Int	Ext
Max. Ma	rk	100		5	-	25	75		
Course C	bjectiv	7 es:							
The main	objecti	ves of this course a	are:						
1. T	o famil	iarize the student i	n various aspects of nano particle synthe	esis					
2. Т	'o devel	op comprehensive	understanding on the functions of nano	particles					
3. Т	'o impai	rt the knowledge in	n applications of various nanoparticles a	and mate	rials				
Course o	utcome	es							
On the su	ıccessfi	ul completion of t	he course, student will be able to:						
CO1	Know	basic concepts of	of nanotechnology and nano material	ls			K1		
CO2	Know	the concepts of	fabrication of bio molecular structur	es			K2		
CO3	Devel	op miniaturized	nano elements			K	K3,K5		
CO4	04 Analysis of nano materials and robots				K	4,K5			
CO4	04 Understand various applications of nanotechnology in the field				K	2,K3			
			and drug discovery						
K1 - R	ememb	er; K2 - Underst	and; K3 - Apply; K4 - Analyze; K5	- Evalua	ite; K	6 - Cı	eate		
UNIT I	IN	TRODUCTION	N TO NANOBIOTECHNOLOGY			1.	3 Hrs		
Definitio	on, pros	spects and challe	nges; Topology of DNA, protein an	d lipids	and	self-			
assembly	from	Natural to artif	ficial structures. Top up and botto	m dow	n app	proach	nes ir		
nanomat	erial fa	brication.							
UNIT II	NA	ANOMATERIA	LS AND ITS PROPERTIES			1.	3 Hrs		
Carbon	nanoti	ubes and nanoro	ds, Quantom dots, metal based nan	ostructu	ires (Iron (oxide		
nanopa	rticles)	, nanowires,	polymer based nanostructures	(dend	rimer	·s),	Gold		
nanostr	uctures	s (nanorods, nano	cages, nanoshells), nanocomposites.						
UNIT II	[FA	BRICATION AND A	NALYSIS OF BIOMOLECULAR NANOST	URUCTU	IRES	1	4 Hrs		
AtomicF	force I	Microscopy, Sc	canning Probe Electron M	Aicrosco	ору	and			
Lithogra	phy. N	anoscale detection	on: Lab on a Chip. Fabrication ofbio	onanoch	ip &	micro	barray		
technolo	gy.								
UNIT IV	M	INIATURIZED	DEVICES IN NANOBIOTECHN	OLOG	Y	1	5 Hrs		

Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nano sensing of different analytes..

UNIT V APPLICATIONS OF NANOBIOTECHNOLOGY

Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery..

- Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware

Course Code	22P3BTED02	Extra Disciplinary Course BIOINFOMRATICS	Hours/		Marks	
Credits	5		WK			
Total Hours	75		Т	Р	Int	Ext
Max. Mark	100		5	-	25	75
				•	•	

Course Objectives:

The main objectives of this course are:

- 4. To gain basic knowledge in the concept of essential of bioinformatics.
- 5. To understand the usage of prediction tools that are used to predict the biological system
- 6. To understand basic concepts of drug designing

UNIT I BIOLOGICAL DATABASES

Biological Databases, Nucleic acid sequence databases– GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP. Specialized Databases- PUBMED, OMIM and KEGG.

UNIT II SEQUENCES ANALYSIS

Sequence alignment, Pairwise Sequence Alignment- Local alignment and Global alignments-Dynamic programming algorithm, Scoring matrices, gap penalties. Multiple Sequence Alignment-Clustal X, Phylogenetic Analysis- Tree construction methods- Maximum likelihood and maximum parsimony- NJ methods, UPGMA and WPGMA, Database Similarity Search – BLAST and types

UNIT III	PREDICTION AND ANALYSIS TOOLS	15 Hrs
Gene Predicti	on methods - ORF Finder, Genscan, Restriction Site Analysis, PRIMER	Designing,

RNA Secondary Structure Predictions, Protein Secondary Structure Methods- Chau-Fasman and GOR.

UNIT IV MOLECULAR MODELING

15 Hrs

15 Hrs

13 Hrs

12 Hrs

Molecular Mechanics – force fields; Bond length, Torsion angle, Non- bonded interactions electrostatic and van der Waals interactions, energy minimization- local and global, Homology Modeling, Molecular dynamics and simulation.

UNIT V DRUG DESIGNING

Drug Discovery – Deriving and using 3D pharmacophore; Molecular Docking; Structure-based methods to identify lead compounds; de novo ligand design, Structure Activity Relationship - QSARs 54

- 5. Bioinformatics Sequence and Genome analysis By David W. Mount.
- 6. Introduction to Bioinformatics T.K. Atwood and Parry Smith.
- 7. Biological sequence analysis R. Durbin, S. Eddy, A. Krogh and G. Mitchison
- Andrew R. Leach (2001) "Molecular Modeling Principles and Applications"; Second Edition, Prentice Hall, USA.

M.Sc., Biotechnology Curriculum (Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2022-2023 onwards)

SEMESTER – IV

Course Code Credits	22P4BT12 5	CORE – IX RESEARCH METHODOLOGY		Hours/ WK		Marks	
Total Hours	75	AND BIOSTATISTICS		T P 5 -		Int Ext	
Max. Mark	100	_				75	
4. To fami cellular translati	ctives of this course liarize the student organization and t onal regulation	e are: in various aspects of cell and molecular bi heir interactions in DNA replication, and p understanding on the complete cellular and	protein	ı bios	ynthes	is and	
3. To impar	t the molecular bio	cell to cell interaction, gene regulation, cellu logy knowledge in applications of various h	-		-		
CO1 Acc	uire a complete k	mowledge about collection of research	paper		K	3, K6	
CO2 Obt	-	vive knowledge about the concepts of re	search	1		I, K2	
CO3 Cla	ssified and identit	fied of research work			K	2, K3	
CO4 Kno	ow and apply for	the various statistical theory			K	I, K5	
	nonstrate the app ically calculation	lication of production and applied for va methods	arious		K3	3, K4	
K1 - Remer	nber; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - H	Evalua	ite; K	6 - Cı	reate	

Types of Research: Descriptive vs. Analytical Research, Applied vs. Fundamental Research, Quantitative vs. Qualitative Research, Conceptual vs. Empirical Research, Formulating the Research Problem, Research Methods vs. Research Methodology, Literature Review, Review Concepts and Theories, Current trends in Research, Mono,Trans, Inter- disciplinary Research, Computer & Internet: Its Role in Research, Threats and Challenges to Good Research. 57

UNIT II	HYPOTHESIS:	13 Hrs					
Formulation, Sources, Characteristics, Role, Test, Research Design, Legal Research							
Clinical Trials, Evolutive and Evaluative, Identificatory and Impact studies, Projective and							
Predictive, Writing an: Article, Essay, Research Paper, Research Project, Legislation							
Drafting, Judgment Writing, Thesis, Dissertation, Book, Reviews - Book Review; Case							
Review, C	riteria of Good Research, Research Ethics, Citation Methods: Foot N	lote, Text					
Note, End I	Note, Bibliography, Citation Rules						
UNIT III	PRINCIPLE AND APPLICATION OF RESEARCH METHODS	14 Hrs					
Spectropho	tometer, Visible, UV, Fluorescence Flame photometer, Atomic al	osorption					
spectrophot	tometer, IR, NMR. Laboratory Safety Methods: Biohazardous Agents -	Risk					
Groups and	Biosafety levels – Laboratory safety measures.						
UNIT IV	STATISTICS IN RESEARCH	15 Hrs					
Sampling Design, Data Collection- Primary and Secondary data, Processing and Analysis of							
Data, Limi	tation and uses of Statistics, Graphs, mean, Median, Mode, Standard d	leviation,					
Standard er	ror.						
UNIT V	BIOLOGICAL DATA ACQUISITION	15 Hrs					
Access, Re	trieval and Submission methods for DNA sequence, protein sequence and	nd protein					
structure i	nformation; Databases -Annotated sequence databases, Organism	specific					
databases;	Sequence Similarity Searches: Local versus global. Distance metrics	, Scoring					
matrices, I	Dynamic programming algorithms, Needleman-wunsch and Smith-water	rman.					
REFEREN	CES:						
2. Prac	earch Methodology: A Step-by-Step Guide for Beginners–by Ranjit Kur ctical Research: Planning and Design (10th Edition) 10th Edition by Pau dy, Jeanne Ellis Ormrod						

- 3. Developing Research Proposals (Success in Research) by Pam Denicolo, Lucinda Becker
- 4. Research Methodology C.R.Kothari
- 1.B.K. Mahajan, (1997)Methods in Biostatistics, Sixth Edition, Jaypee Brothers Medical Publishers(p)Ltd
- 6. 2.S.P. Gupta, (2011)Statistical Methods58(41th edition),Sultan Chand & sons, New Delhi

- 7. Gurumani, N.1943.Research Methodology for Biological Sciences.MJP Publications
- 8. Plummer, D.T.1996. An Introduction to Practical Biochemistry.
- 9. Johanson, D.A 1940. Plant Microtechniques, Mac graw Hill
- 10. Stock.R and Rice, C.B.F.1980.Chromatograophic methods, Champman and Hall
- 11. Burdan R.H.Knippenbergh P.H. 1989.Techniques in Biochemistry and Molecular Biology 2nd Ed,Elsevier.
- 12. Daphne J.O and Michael, B.J.1989.Cell separation in Plants physiology,Biochemistry and Molecular Biology.Springer-verlag,Berlin Ramawat K.G, Shaily Goyal. 2009.Comprehensive Biotechnology 4th Ed,S.Chand.