VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN

ELAYAMPALAYAM, TIRUCHENGODE (Tk.), NAMAKKAL (Dt.).

An ISO 9001: 2008 Certified Institution (Affiliated to Periyar University, Approved by AICTE, recognized u/s 2 (f) & 12 (B) & Re-accredited with 'A' by NAAC) Recognized under section 2(f) and 12(B) of UGC Act, 1956 An ISO 9001:2008 (Certificate Institution)

DEPARTMENT OF BIOCHEMISTRY M.Sc., BIOCHEMISTRY SYLLABUS AND REGULATIONS

FOR CANDIDATES ADMITTED FROM 2021-2022 ONWARDS UNDER AUTONOMOUS CBCS AND OBE PATTERN

VIVEKANANDHA EDUCATIONAL INSTITUTIONS Angammal Educational Trust Elayampalayam, Tiruchengode (Tk.), Namakkal (Dt.)

COLLEGE VISION AND MISSION

Vision

To evolve into a center of excellence in higher education through creative and innovative practices to social equity for women.

Mission

- > To provide sufficient learning infrastructure to the students to pursue their studies.
- To provide good opportunity for higher education and conducive environment to the students to acquire education.
- > To provide quality academic programs training activities and research facilities.
- > To facilitate industry-institute interaction.

DEPARTMENT

Vision

To be recognized as a centre for excellence in Biochemistry that provides an atmosphere to acquire skills in identifying the link between biological and human resources and transform it to enhance the quality of life.

Mission

- To help the students to gain more knowledge through visit to research Institutions, Industries, and hospitals through Job training and project work.
- To give an opportunity to students to meet eminent scientists working in various fields of Biochemistry by way of invited lectures, seminars & workshops
- Designing strategies and catalysts for making chemical bonds in new ways
- ➤ To provide opportunities to get hands on experience in
 - Research oriented education in Biochemistry
 - Programming and application skills in Bioinformatics and Drug Designing
 - Molecular Biology and Biotechnology
 - Apprenticeship in industries and service agencies
 - Entrepreneurship in Biochemistry-related areas.

> Promote research based projects/activities in the emerging areas of technology convergence. PROGRAMME EDUCATIONAL OBJECTIVES

- 1. To make the graduates to afford fundamentals and applications of current biochemical concepts at an advanced level.
- 2. To promote research in the thrust areas of Biochemistry ranging in wide areas like structural biology, gene regulation and to connect various field through Biochemistry
- 3. To equip with the up-to-date skills of evolving technologies as per industrial forecast

PROGRAMME SPECIFIC OBJECTIVES (PSO)

1. To provide students with learning experiences that help instill deep interests in learning Biochemistry; develop broad and balanced knowledge and understanding of biomolecules, like biochemical concepts, principles and theories related to Biochemistry and quip students with appropriate tools of analysis and with theoretical technical and analytical skills to tackle issues and problems in the field of Biochemistry.

2. To equip the graduates with the ability to prepare to a fast changing situations by gaining strength to learn and apply the new skills with competency and to provide students with the knowledge and skill base that make them undertake further studies in Biochemistry and related areas or I multidisciplinary areas that help develop a range of generic skills that are relevant to wage employment, self-employment and entrepreneurship.

3. To expose the students to a wide range of careers that combine biology, plants and medicine and render graduates with some work experience, as summer internship and a research project in a research laboratory to further boost the career prospects.

PO an	PO and Knowledge level						
PO No	PROGRAMME OUTCOME	Knowledge Level					
PO1	<i>Disciplinary knowledge:</i> Capable of demonstratingcomprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme ofstudy.	K2					
PO2	<i>Communication Skills:</i> Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one"s views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.	K1					
PO3	<i>Critical thinking:</i> Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefson the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theoriesby following scientific approach to knowledgedevelopment.	K4					
PO4	Problem solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real lifesituations.	K3					
PO5	<i>Analytical reasoning</i> : Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesise data from a variety of sources; drawvalid conclusions and support them with evidence and examples, and addressing opposingviewpoints.	K5					
PO6	Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment orinvestigation.	K6					
PO7	<i>Cooperation/Team work:</i> Ability to work effectively and respectfully with diverse teams, facilitate cooperative or coordinated effort on the part of a groupand act together as a group or a team in the interests of a common cause and work efficiently as a member of ateam.	K6					
PO8	<i>Scientific reasoning:</i> Ability to analyse, interpret and draw conclusions from quantitative/qualitativedata; and criticallyevaluate ideas, evidence and experiences from an open-minded and reasoned perspective.	K4					
PO9	<i>Reflective thinking:</i> Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society.	K2					
PO10	<i>Information/digital literacy:</i> Capability touse ICT in a variety of learning situations, demonstrate abilityto access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.	К3					
PO11	<i>Self-directed learning:</i> Ability to work independently, identify appropriate resources required for a project, and manage a project through tocompletion.	K6					
PO12	<i>Multicultural competence:</i> Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to	K5					

	offectively encode in a multicultural society and interact respectfully					
	with diverse groups					
	Maral and athiaal awaranass/reasoning, Ability, toombroom					
	Morai and einical awareness/reasoning: Addity toemorace					
	moral/etinical values in conducting one's file, formulate a					
	position/argument about an ethical issue from multiple perspectives, and					
DO 10	use ethical practices in all work. Capable of demonstrating the ability to	WO.				
PO13	identify ethical issues related to one's work, avoid unethical behaviour	K3				
	such as fabrication, falsification or misrepresentation of data or					
	committing plagiarism, not adhering to intellectual property rights;					
	appreciating environmental and sustainability issues; and					
	adoptingobjective, unbiased and truthful actions in all aspects of work.					
	Leadership readiness/qualities: Capability for mapping out the tasks of					
	a team or an organization, and setting direction, formulating an inspiring					
PO14	vision, building a team who can help achieve the vision, motivating and	and K6				
1014	inspiring team members to engage with that vision, and using	IX 0				
	management skills to guide people to the right destination, in a smooth	h				
	andefficientway.					
	Lifelong learning: Ability to acquire knowledge and skills, including					
	"learning how to learn", that are necessary for participating in learning					
DO15	activities throughout life, through self-paced and self-directed learning	VG				
FOIS	aimed atpersonal development, meeting economic, social and cultural	KU				
	objectives, and adapting to changing trades and demands of work place					
	through knowledge/skilldevelopment/reskilling.					

ELIGIBILITY FOR ADMISSION

• Candidates seeking admission to the first year M.Sc., Degree Course could have

a Bachelors Degree in Science with Biochemistry, Chemistry, Botany, Zoology, Nutrition and dietetics or Food and Nutrition or Food Sciences as the main subject or a Bachelors Degree in Agriculture and Life sciences as main subject of this University or any other qualification accepted as equivalent there to are eligible for admission to M.Sc., Degree course.

DURATION OF THE COURSE

The duration of the course is for two academic years consisting of four semesters.

EXAMINATIONS

There shall be four semester examinations: first semester examinations at the middle of the first academic year and the second semester examination at the end of the first academic year. Similarly, the third and fourth semester examinations shall be held at the middle and the end of the second academic year, respectively.

SCHEME OF EXAMINATIONS

The scheme of examinations for different semesters shall be as follows:

Theory External marks

S	=	13
Part A	=	20 Marks (01 x 20)
Part B	=	25 Marks (05 x 05)
Part C	=	30 Marks (03 x 10)

75

Internal marks		=	25
	Total Marks	=	100
	Time	=	3 Hrs.
The following procedure will	be followed for In	terna	l Marks
Theory - Internal Marks			
Theory best ave	rage of two tests	10	Marks
Attendance	-	5 N	Iarks
Seminar		5 N	Iarks
Assignment		5 N	Iarks
Total	2	5 Ma	rks
Practical - Internal Marks			
Practical best av	verage of two tests	25	Marks
Attendance	C	10	Marks
Observation No	te	5 N	Marks
Total	40	Mar	·ks
<u> Project- Internal Marks</u>			
Presentations [T	wo reviews 25+25]	5	0 Marks
Project Report		1	00 Marks
Viva - Voce		50) Marks
Total		2	00 Marks
Break-up Details for Attenda	nce		
F	Selow 75%	No	Marks
7	6 to 80%	01	Marks
8	S1 to 85%	02 N	Marks
8	86 to 90%	03 N	Marks
9	1 to 95%	04 M	larks
9	6 to 100%	05 M	larks

REQUIREMENTS FOR PROCEEDING TO SUBSEQUENT SEMESTERS

- (i) Candidates shall register their names for the first semester examination after the admission in the PG courses.
- (ii) Candidates shall be permitted to proceed from the first semester up to the final semester irrespective of their failure in any of the semester examination subject to the condition that the candidates should register for all the arrear subjects of earlier semesters along with current (subject) semester subjects.
- (iii) Candidates shall be eligible to proceed to the subsequent semester, only if they earn sufficient attendance as prescribed therefore by the Syndicate from time to time. Provided in case of candidate earning less than 50% of attendance in any one of the semester due to any extraordinary circumstance such as medical grounds, such candidates who shall produce Medical Certificate issued by the Authorized Medical Attendant (AMA), duly certified by the Principal of the College, shall be permitted to proceed to the next semester and to complete the course of study. Such candidate shall have to repeat the missed semester by rejoining after

completion of final semester of the course, after paying the fee for the break of study as prescribed by the college from time to time.

PASSING MINIMUM

a) There shall be no Passing Minimum for Internal.

b) For External Examination, Passing Minimum shall be of 50% (Fifty Percentage) of the maximum marks prescribed for the paper.

c) In the aggregate (External + Internal) the passing minimum shall be of 50% for each Paper/Practical/Project and Viva-voce.

d) Grading shall be based on overall marks obtained (Internal + External)

CLASSIFICATION OF SUCCESSFUL CANDIDATES

Candidates who secured not less than 60% of aggregate marks (Internal + External) in the whole examination shall be declared to have passed the examination in the first class. All other successful candidates shall be declared to have passed in second class. Candidates who obtain 75% of the marks in the aggregate (Internal + External) shall be deemed to have passed the examination in first class with distinction, provided they pass all the examinations (theory papers, practical, project and viva-voce) prescribed for the course in the first appearance.

GRADING SYSTEM

The term grading system indicates a 7 point scale of evaluation of the performances of students in terms of marks obtained in the Internal and External examination, grade points and letter grade.

GRADE	GRADE POINT	PERCENTAGE EQUIVALENT
'O'= Outstanding	5.50 - 6.00	75 - 100
'A'= Very Good	4.50 - 5.49	65 – 74
'B' = Good	3.50 - 4.49	55 - 64
'C'= Average	3.00 - 3.49	50 - 54
'D'= Below Average	1.50 - 2.99	35 - 49
'E'= Poor	0.50 - 1.49	25 - 34
'F'= Fail	0.00 - 0.49	00 - 24

SEVEN POINT SCALE (As per UGC notification, 1998)

RANKING

Candidates who pass all the examinations prescribed for the course in the first appearance itself alone are eligible for Ranking / Distinction. Provided in the case of candidates who pass all the examinations prescribed for the course with a break in the first appearance will not be eligible for ranking.

PATTERN OF QUESTION PAPER

PART A (Objective): Answer All the Questions $01 \ge 20$ MarksPART B (200 words): Answer All the Questions (Internal choice) $05 \ge 25$ MarksPART C (500 words): Answer All the Questions (Internal choice) $03 \ge 10 = 30$ MarksPROCEDURE IN THE EVENT OF FAILURE $03 \ge 10 \le 100$ Marks

If a candidate fails in particular subjects, she may reappear for the examination in the concerned subject in subsequent semester and shall pass the examination.

COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2017-18 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2017-18 and thereafter.

TRANSITORY PROVISION

Candidates who were admitted to the PG course of Microbiology before 2018 - 2019 shall be permitted to appear for the examinations under those regulations for a period of two years i.e., upto and inclusive of the examination of Apr/May 2019. Thereafter, they will be permitted to appear for the examination only under the regulations then in force.

DEPARTMENT OF BIOCHEMISTRY SCHEME OF CURRICULUM – M.Sc. BIOCHEMISTRY (For the candidates admitted during the academic year 2021-2022 onwards)

Sem	Subject code	Course	Subject title	Hrs/week	Credit	Int. marks	Ext. marks	Tot. marks
	21P1BC01	Core – I	Biopolymers	6	5	25	75	100
	21P1BC02	Core – II	Cellular Biochemistry	5	5	25	75	100
	21P1BC03	Core – III	Enzymology and Enzyme technology	5	5	25	75	100
Ι	21P1BCP01	Practical - I	Core Practical - I	5	3	40	60	100
	21P1BCP02	Practical - II	Core Pra1ctical - II	5	3	40	60	100
	21P1BCE01/ 21P1BCE02	Elective – I	Analytical Biochemistry Plant Biochemistry and Plant Biotechnology	4	4	25	75	100
			Total	30	25	180	420	600
	21P2BC04	Core – IV	Intermediary Metabolism and Regulation	6	5	25	75	100
	21P2BC05	Core – V	Molecular Biology	5	5	25	75	100
	21P2BC06	Core – VI	Immunology and Immunotechnology	5	5	25	75	100
п	21P2BCP03	Practical III	Core Practical- III	5	3	40	60	100
	21P2BCP04	Practical IV	Core Practical- IV	5	3	40	60	100
	21P2BCE03/ 21P2BCE04	Elective – II	Pharmaceutical Biochemistry and toxicology Endocrinology	4	4	25	75	100
			Total	30	25	180	420	600
	21P3BC07	Core – VII	Advanced Clinical Biochemistry	5	5	25	75	100
	21P3BC08	Core – VIII	Research Methodology	5	5	25	75	100
III	21P3BC09	Core – IX	Genetic Engineering and Fermentation Technology	5	5	25	75	100
	21P3BCP05	Practical- V	Core Practical-V	5	3	40	60	100

		Practical-	Core Practical-VI					
	21P3BCP06	VI		4	2	40	60	100
	21P3BCE05/ 21P3BCE06	Elective –III	Neuroscience Microbial Biochemistry	4	4	25	75	100
	21P3BCED01	EDC	Diagnostic Biochemistry	2	1	25	75	100
	21P3HR01		Human rights	1	1	25	75	100
			Internshp	1	1			
			Total	32	27	230	570	800
	21P4BC10	Core – X	Total Human Physiology	32 5	27 5	230 25	570 75	800 100
IV	21P4BC10 21P4BC11	Core – X Core XI	TotalHuman PhysiologyBioinformaticsandNanotechnology	32 5 4	27 5 4	230 25 25	570 75 75	800 100 100
IV	21P4BC10 21P4BC11 21P4BCPR01	Core – X Core XI Core – VII	TotalHuman PhysiologyBioinformatics and NanotechnologyProject work	32 5 4 10	27 5 4 5	230 25 25 50	570 75 75 150	800 100 100 200
IV	21P4BC10 21P4BC11 21P4BCPR01	Core – X Core XI Core – VII	TotalHuman PhysiologyBioinformatics and NanotechnologyProject workProject review	32 5 4 10 9	27 5 4 5 -	230 25 25 50 -	570 75 75 150	800 100 100 200
IV	21P4BC10 21P4BC11 21P4BCPR01	Core – X Core XI Core – VII	TotalHuman PhysiologyBioinformatics and NanotechnologyProject workProject reviewTotal	32 5 4 10 9 28	27 5 4 5 - 14	230 25 25 50 - 100	570 75 75 150 - 300	800 100 200 - 400

I YEAR I SEMESTER BIOPOLYMERS

Paper	: Core I	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21P1BC01	External	: 75

SUBJECT DESCRIPTION:

Biopolymers deal with the brief information on the structure, functions and behavioral properties of biomolecules.

OBJECTIVES:

The main objective of the course is to study about carbohydrates, proteins, lipids, and nucleic acids and their structure and properties in advanced level.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level			
C01	Familiarize about the definition, occurrence, and types of various biomolecules	K2			
CO2	Recall and understand the classification, chemistry and functions of macro and micro nutrients.	K2			
CO3	Imbibe and interpret the chemical reactions of monosaccharides, amino acids and structural organization of various biomolecules.	K3			
CO4	Evolve the physiological functions and significance of macro and micro nutrients.	K4			
CO5	Correlate the need of macro and micronutrients with the metabolic and physiological functions of the human body.	K4			
Mapping with Programme Outcomes					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	S	S	S	S	М	М	М	S	S	S	М	S	S	S
CO2	S	S	S	S	S	М	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	М	S	S	М	М	S	М	М	М	S
CO4	S	S	S	М	S	S	S	S	S	М	S	S	S	S	S
CO5	S	М	М	S	М	М	S	М	S	М	S	S	М	М	S

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Carbohydrates: Introduction, Classification, and Properties of carbohydrates, Bacterial cell wall Polysaccharides, Amino sugars and Deoxy sugars, Glycosaminoglycans-Structure and biological role of Hyaluronic acid, Chondroitin sulphate and Heparin, Sialic acid - Structure and Significance, Biological importance of Proteoglycans and Glycoproteins.

Unit II – (15 Hrs.): Proteins and Amino Acids:Classification, Structure, Function, Properties of Amino acids and Proteins, Amino acid sequencing, biological importance of selenocysteine and desmosine, Ramachandran plot, Structure and Function of Hb, myoglobin, Actin, Myosin, Keratin,

Collagen and Elastin, Transport of amino acid in to mitochondria. DNA binding proteins - helixturn-helix, zinc-finger motif, leucine zipper – direct interactions, Techniques for characterizing nucleic acid- protein complex- gel retardation assay. Disease related to protein folding – Alzheimer's and mad cow disease, Protein denaturation.

Unit III – (15 Hrs.): Lipids: Classification, Structure, Properties and Functions of lipids, Transport and hydrolysis of triglycerol, Plant and animal sterols, Fatty acids - Types and significance, Structure and functions of cholesterol, Lipid peroxidation and antioxidants, Lipoproteins - Classification, composition and functions

Unit IV – (15 Hrs.): Nucleic Acids:Structure and properties of nitrogenous bases and nucleotides, Cot value and Cot curve, Chemical synthesis of DNA, Major classes of RNA-Structure and biological functions of mRNA, rRNA, tRNA, snRNA, hnRNA, DNA histone proteins, chromatin, non-histone proteins, Methylated bases of DNA and DNA super coiling, Properties of DNA-buoyant density, viscosity, denaturation and renaturation.

Unit V – (15 Hrs.): Vitamins and Minerals - Definition, Classification of Fat soluble vitamins (A,D,E,K) and Water soluble vitamins (B complex vitamins & Vitamin C) - Sources, Chemical nature, functions and deficiency symptoms. Minerals: Requirements, macro and micro minerals (sources and functions).

TEXT BOOKS:

- 1. Deb, A.C (2004) Fundamentals of Biochemistry. 8th Edition, New Central Book Agency,
- 2. Jain, J.L & Jain, (2005) **Fundamentals of Biochemistry.** Sixth Edition, S.Chand & Company, New Delhi.
- 3. U.Sathayanarayana,(2009). **Biochemistry.** 5th Edition by Books and Allied (P) Ltd., India.

REFERENCE BOOKS

- 1. Murray, K.R. Granner, K.D.Mayes, P.A. and Rodwell W.V. (2016). **Harper's Biochemistry.** 31rd Edition, Prentice Hall International Inc., New Jersey.
- Nelson, D.L. and Cox, M.M (2017). Lehninger Principles of Biochemistry. 8th Edition, W.H.Freeman and Company, New York.

3. Bery J.M., Tymoezko J.L. and Stryer L. (2008) **Biochemistry**, 5th Edition, W.H. Freeman and Company, New York.

WEB OF RESOURCES

1. http://ull.chemistry.uakron.edu/genobc/.

- 2. http://www.biology.arizona.edu/biochemistry/biochemistry.html.
- 3. https://www.sciencedirect.com/topics/neuroscience/dna-binding-protein
- 4. https://biologydictionary.net/nucleic-acid/
- 5. https://www.helpguide.org/harvard/vitamins-and-minerals.htm

PEDOGOGY: CHALK and Talk, PPT

YEAR I – SEMESTER I CELLULAR BIOCHEMISTRY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21P1BC02	External	: 75

SUBJECT DESCRIPTION:

This course presents to focus on the different cellular signaling pathways, cellular organelles and organization its biochemistry.

OBJECTIVES:

The objective of the course is to understand the relationship between cellular organelles and cellular signaling in research.

OUTCOME:

Course No	Course Outcome					
CO1	Discuss the structure, differentiation of eukaryotes and prokaryotes and also cell cycle, check point interpretation, differentiation between mitosis and meiosis	K2				
CO2	Illustrate the cell organelles structure and functions such as nucleus, chloroplast, mitochondria, endoplasmic reticulum, ribosome and lysosome etc.	K3				
CO3	Apply the knowledge cell signaling of oncology markers such as P^{53} , Bcl2, Bax, AFP and IL-1 e and their clinical interpretation	K4				
CO4	Describes the critical based knowledge of membrane architecture and their types of models, and membrane transporters- like ion channels, symporters, and antiporters etc.	K5				
CO5	Evaluate and hypothesis of extra cellular matrix, gap junction and cell to cell communication and also signal transtrduction pathways such as G protein-coupled receptor and TrkA receptor etc,.	K6				

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	S	S	L	М	L	L	М	L	S	S	М	L	L	М
CO2	М	М	М	М	S	М	М	S	L	М	М	М	L	L	М
CO3	S	S	L	М	L	М	L	S	L	М	L	М	S	S	S
CO4	S	S	L	М	М	М	S	L	М	L	М	S	М	L	L
CO5	L	М	L	S	М	М	М	М	М	L	М	М	М	S	S

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.):Cellular Organelles: Definition, Structure and functions of cells-prokaryotes and eukaryotes, Morphology and function of Cytoplasm, endoplasmic reticulum, ribosomes, golgi apparatus, lysosomes, mitochondria, nucleus, chromosomes, chromosome organization, centrioles, chloroplasts, peroxisomes and glyoxysomes; Intracellular compartments and protein sorting, Intracellular vesicular traffic, Autocrine, Paracrine and endocrine.

Unit II – (15 Hrs.): Cell cycle : Cell division - mitosis and meiosis, cell cycle - phases of cell cycle, and regulation of cell growth and cell cycle,. Cytoskeleton - Structure and composition of cytoskeleton, Actin filament, intermediate filament and microtubule, Self assembly and dynamic structure of cytoskeletal filaments, regulation of cytoskeletal filaments, Molecular motor, Cytoskeleton and cell behaviour, molecular motors, micro tubular associated proteins - role in intracellular motility

Unit III – (15 Hrs.):Cellular Interaction and signaling : Cell-Cell interaction - Collagen, hyaluronan & proteoglycans, laminin, integrins and fibronectins, Cell-Cell adhesion - Specialised junctions, Desmosomes, Gap junctions, Adhesion molecules – Cadherins, Connexins.Cell-Cell signaling – Types, Cell Signaling molecules and their receptors, functions of cell surface receptors, pathways, intra and extracellular signal transduction and second messengers (G – protein coupled receptors, receptor tyrosine kinases), cAMP, cGMP

Unit IV – (15 Hrs.):

Programmed Cell Death and cancer signaling : cell growth and apoptosis, Apoptosis – PI3K-Akt, NF-KB, Ras-Erk IGF-1 and NOTch signaling Pathways, regulators, effectors in apoptosis, oncology: oncogenes, causes, malignant non-malignant tumor, Properties of tumor cells, Tumor suppressor genes, human chorionic gonadotropin, cancer antigen 125, carcinoembryonic antigen (CEA), prostate-specific antigen, alpha-fetoprotein cancer markers. Carcinogenic effect of chemicals and radiation. Methods of studying the cell surface, re-constitutional studies; fluorescence assisted methods e.g. flow cytometry

Unit V – (15 Hrs.): Membrane Architecture and Functions: Membrane bilayer - Models, Membrane lipids - fluidity, Asymmetry phase transition, Liposomes Membrane proteins - Types, Orientation, Bacteriorhodopsin, Porins-aquaporin, RBC ghosts, solubilisation of proteins, lipid anchored proteins carbohydrates and cell surface carbohydrates – Lectins, Membrane transport - ion channels, symporters and antiporters, Transport of water, glucose and amino acids.

TEXT BOOKS:

1. Rastogi,S.C. (2003), 2nd Edition, **Cell and Molecular Biology**. New Age International Publishers,New York.

2. Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David Baltimore, and James Darnell. (2000) **Molecular Cell Biology**, New York: W. H. Freeman

3. Gerald Karp, (2008).Cell and Molecular Biology. 5 thEdition, John Wiley and Sons New Jersey.

4. Ajay Paul, (2009). **Text Book of Cell and Molecular Biology.** 2 th Edition, Books and Allied (P) Ltd, Kolkata.

5.VK Agarwal and PS Varma , (2000). Cell Biology and Molecular Biology, Chand & Company, New Delhi.

REFERENCE BOOKS

1.Lodish, H. Baltimore, and *et al.*, (2008).**Molecular Cell Biology.** 6th Edition. W.H.Freeman and Co, NY.

2. Garrette, Grisham (1994) Principles of Biochemistry, Saunders College Publishing Co. USA.

3.Geoffrey, M. Cooper, Robert E. Hausman, **The Cell:A Molecular Approach**.4th Edition,Asm Press,USA.

4. **Bruce Albert** *et al.*, *Molecular biology of the cell*, Garland publications, New York & London, 3rd edition, 1994.

5. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin C. Raff, Keith Roberts, Peter Walter (2007), *Molecular Biology of the Cell*, Garland Science, Taylor & Francis Group.

WEB SOURCES:

1. https://www2.estrellamountain.edu/faculty/farabee/biobk/BioBookCELL2.html

2. https://www.physics.uoguelph.ca/~dutcher/download/.../1.pdf

3. https://www.khanacademy.org/.../cells/cell-cell-interactions/.../cell-cell-interactions-ho...

4. https://en.wikipedia.org/wiki/Programmed_cell_death

 $5.\ https://www.cellsignal.com/contents/science/key-signaling-networks-in-cancer/cancer-research$

PEDOGOGY: CHALK and Talk , PPT

YEAR I – SEMESTER I ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Core III	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21P1BC03	External	: 75
SUBJECT DESCRIPT	rion:		

Enzymology and Enzyme Technology deal with the knowledge on enzymes, classification structure

kinetics and applications.

OBJECTIVES

The Students should update their knowledge about the enzyme and its role in all stages of metabolism and biochemical reaction. This course will describe a clear idea about an isolation of enzyme, characteristic properties, production on bench scale to pilot scale and their application in bio-industries.

COURSE OUTCOMES

Course No	Course Outcome	Knowledge Level
CO1	Know about the key structural and energetic factors which increase enzyme stability	K2
CO2	Understand about the role of enzyme as a catalyst in biological process	K2
CO3	Interpret the optimum pH, Temperature, Concentration of enzyme for certain enzyme catalysed reaction	K3
CO4	Learn about the logistic and sensible entrapment technique to improve the state of enzyme immobilization	K3
CO5	Familiarize about the application of enzyme technology in industrial sector	K4

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	М	М	М	S	L	М	S	М
СО3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	М	L	М	L	М	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Enzymology:Introduction, Nomenclature and classification of enzymes by IUB system, enzyme characteristics, monomeric, oligomeric and multienzyme complex. Active site, models of enzyme action – lock and key and koshland induced fit model. Investigations of active site structure. Isoenzymes, abzymes and ribozymes. Multienzyme systems.Enzyme units and enzyme turnover.

Unit II – (15 Hrs.): Enzyme Kinetics: MM Kinetics, LB plot, Eadie - Hofstee plot and Haneswoolf plot.Factors affecting enzyme activity (pH, temperature, substrate and enzyme concentration and activators) - Bisubstrate reactions - Enzyme inhibition- Reversible and irreversible.Feedback inhibition -Allosteric inhibition and regulation, concerted and sequential models for allosteric enzymes, positive and negative co-operativity with special reference to aspartate transcarbamoylase.

Unit III – (15 Hrs.): Enzyme Catalysis& Coenzymes:Acid-base catalysis, covalent catalysis and metal ion catalysis.Mechanisms of action of lysozyme, chymotrypsin, ribonuclease and carboxypeptidase. Metal activated enzymes and metalloenzymes.Coenzymes – TPP, PLP, FMN, FAD, NADP, CoA, Biotin and tetrahydrofolate.

Unit IV – (15 Hrs.):EnzymeTechnology: Definition, types of immobilization – adsorption, covalent binding, entrapment, liposomes, cross linking and microencapsulation. Effect of immobilizationon enzyme activity and application of immobilized enzyme. Biosensors- calorimetric biosensors, potentiometric biosensors, Amperometric biosensors, optical biosensors, Piezo-electric biosensors and thermometric biosensor.Enzyme engineering – Artificial enzymes and antioxidant enzymes.

Unit V – (15 Hrs.): Enzyme Purification and Applications: Objectives and strategies of enzyme purification – source – methods of homoginization and separation based on size, polarity and binding sites – purification (Adenylate kinase from pig muscle). Enzymes as analytical agent, therapeutic agents and diagnostic reagents, Enzymes in industry like textile & leather industries and food industries. medical application of enzymes **TEXT BOOKS**

IEAI BOOKS

TEXT BOOKS

- 1. Cornish-Bowden A. (2012) Fundamentals of Enzyme Kinetics, Wiley-VCH GMbH, Germany.
- Price n.C. and Steven, V. (2002) Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins, 3rd Edition, Oxford University Press.
- 3. Khan, M Y nad khan, F (2015) Principles of Enzyme Technology, PHI learning

REFERENCE BOOKS

- Buchholz, K., Kasche, V. and Bornscheur, L.T. (2012) Bioatalyst and Enzyme Technology, Wiley-VCH VerlagGmnH, Gerany.
- 2. Paler, T. (1995) Understanding of Enzymes, 4th Edition, prentice Hall.
- Nelson, D.L. and Cox, M.M (2013). Lehninger Principles of Biochemistry. 7th Ed. W.H. Freema and Company, New York.
- 4. Voet, D and Voet, G, Fundamentals of Biochemistry, John Wiley and Sons, New York.

WEB SOURCES

www.ebi.ac.uk/enzymeportal http://expasy.org/enzyme/. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi. www1.lsbu.ac.uk/water/enztech/inhibition.html https://www.khanacademy.org/...enzymes/enzyme.../basics-of-enzyme-kinetics-graphs

PEDOGOGY: CHALK and Talk, PPT

YEAR I – SEMESTER I ANALYTICAL BIOCHEMISTRY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21P1BCE01	External	: 75
i aper Coue	. 211 IDCE01	External	. 15

SUBJECT DESCRIPTION:

Analytical Biochemistry deal with the principles, instrumentation, working and application of the instruments commonly used in the laboratories.

OBJECTIVES:

To make the students learn about buffers, centrifugation techniques, chromatography, electrophoresis and spectroscopy studies.

COURSE OUTCOMES:

Course No	Course Outcome	Knowledge Level				
CO1	Obtain knowledge about pH, buffers, difference between invivo and invitro studies and types of centrifugation techniques	K2				
CO2	Apply the knowledge about the separation and analysis of macromolecules and their fragments, based on their size and charge.	К3				
CO3	Implement chromatography techniques for the separation of the individual compound from the mixture of compound.	К3				
CO4	Explore the various spectroscopic techniques for studying the structures of atoms and molecules					
CO5	Appraise the attributes of naturally decaying atoms and their multiple applications across many aspects of modern day life	K5				

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	S	М	М	М	L	L	L	М	S	М	L	L	М	L	L
CO2	М	М	М	S	М	М	L	М	М	S	L	L	S	L	L
CO3	М	М	М	S	М	М	L	М	М	S	L	L	S	L	L
CO4	М	L	S	М	М	L	L	S	М	М	L	М	М	L	L
CO5	L	L	М	М	S	S	S	Μ	L	L	S	S	L	М	М

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): pH, Buffers and centrifugation: Definition and determination of pH, Henderson-Hasselbalch equation, Measurement of pH, pH electrode, Biological buffers, types of buffer system, In vivo and in vitro studies, organ and tissue slice techniques, tissue homogenization, Methods of cell disruption. Basic principles of sedimentation, types of centrifuges and rotors, Preparative ultracentrifugation, differential centrifugation, density-gradient and analytical ultracentrifugation and its applications in determination of molecular weight.

Unit II – (15 hrs) Electrophoresis and blotting techniques : Electrophoresis techniques – Principle, technique and applications of paper, Native PAGE gels, SDS-PAGE, Isoelectric focusing, Pulse field electrophoresis, Capillary electrophoresis, Immunoelectrophoresis. Separation of cell organells 2D gel electrophoresis. Hybridization probes - Southern, western and Northern blotting techniques.

Unit III – (15 Hrs.): Chromatography: Definitions, General principles, Instrumentation and application of Chromatography – Paper, Column, Thin layer chromatography, Ion- Exchange, Molecular sieve (gel filtration), Affinity, High-performance liquid chromatography (HPLC), Gas–liquid chromatography (GLC), FPLC, HPTLC, FTIR.

Unit IV – (15 Hrs.): Spectroscopic Technique: Basic principles, wave number, wave laws of absorption, absorption sectrum, instrumentation and applications of UV, visible and IR spectrophotometers, Electron spin resonance, Nuclear Magnetic Resonance, Mass Spectrometry, Molecular analysis using light scattering and Atomic absorption spectroscopy, Flame Photometry – principle, instrumentation and applications, Electron microscope – principle, instrumentation and application of SEM and TEM. Colorimetry, flurimetry.

Unit V – (15 Hrs.): Radioisotopes and Microscopy: X-ray diffraction - Principle, theory of operation and application, Circular dichroism (CD) – principles, theory of operation and applications, Radioisotopic techniques- Principle and applications of GM Counter, Liquid and Solid Scintillation Counter and autoradiography, applications of radioactive isotopes in biological research, radiation hazards. Microscopy: basic principles, light, brightfield, phasecontrast, fluorescent, electron microspopy-TEM, SEM, preparation of specimen, microtomy fixation and staining, flow cytometry and FACS.

TEXT BOOKS

1. Wilson. K and Walker. J. (2010), Practical Biochemistry – Principles and techniques of Biochemistry and Molecular Biology, 7th Edition, Cambridge University Press, New York, USA.

2. Upadhyay, A., Upadhyay, K., and Nath, N., (2014), Biophysical chemistry – principle & techniques, Himalaya publishing House, Mumbai.

3. Gurdeep, R. Chatwal and Aanand. S.K. (2009). Instrumental Methods of Chemical Analysis, Himalaya publishing House, New Delhi.

REFERENCE BOOKS

1. Foster, L.E. (2007), Nanotechnology Science, Innovation and opportunity (First edition), Pearson Education, Inc, New York.

2. Pattabhi, V and Gautham, (2015), Biophysics, Narosa Publishing House PVT Ltd, New Delhi.

3. Rathi, R. (2007), Core Concept of Nanotechnology with application spectrum (First Edition),SBS Publishers and Distribution Pvt Ltd, New Delhi.

4. Sharma. P.K. (2008), Origin and Development of Nanotechnology (first edition), Vista

International publishing House Mumbai, New Delhi.

5. Wilson, K and Goulding, KH (1987). A Biologist Guide to Principles and Tecchniques of

Practrical Biochemistry, 3rd edition, Edward Arnold Publishers. Londan, UK.

WEB OF RESOURCE:

1.www.centrifugebybeckman.com
2.www.axis-shield-density-gradient-media.com/training-1new.
3.http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/radact.html
4.www.austincc.edu/.../
5.https://www.dnalc.org/resources/animations/gelelectrophoresis.html

PEDOGOGY: CHALK and Talk, PPT

PLANT BIOCHEMISTRY AND PLANT BIOTECHNOLOGY

Paper	: Elective – II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	:03
Credit	: 4	Internal	: 25
Paper Code	: 21P1BCE02	External	: 75
SUBJECT DES	CRIPTION:		

Plant biochemistry and Plant biotechnology deal with the plant and animal tissue culture methods, and mechanism of gene transfer, Methods of selection, Production of novel proteins and their applications.

Course No	Course Outcome	Knowledge Level
CO1	To obtain the knowledge of the state the importance of photosynthesis, factors affecting photosynthesis, the photosynthetic pigment, and describe the biochemistry of photosynthesis.	K1 & K2
CO2	To make the students understand the components of culture media and various tissue culture techniques. Learnt about the technique of genetic	K1 & K2
CO3	Define respiration and itemize detailed processes of cell respiration and gaseous exchange in flowering plants;	K1,K2 & k3
CO4	Clear about the list and describe the features of phloem translocation	K3 & K4
CO5	To obtain the knowledge about plant and animal tissue culture methods, mechanism of gene transferMethods of selection, Production of novel proteins and their applications.	K3 & K4

Mapping with Programme Outcomes															
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	М	L	М	L	Μ	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Photosynthesis:Photosynthetic apparatus, organisation of thylakoid, role of chlorphylls, carotenoids and other photosynthetic pigments, light absorption and energy conservation, Light – properties of both particle and wave, light absorption by pigment molecules, Photosystems I and II, Electron transport pathways in chloroplast membranes, ATP synthesis in chloroplasts, cyclic and noncyclic photophosphorylation

Unit II - (15 Hrs.): Carbon Reactions & Transpiration: C3, C4 and CAM plants - Calvin

cycle; Hatch-Slack pathway, Photorespiration in plants, biochemical basis of PR pathway – C2 cycle, Pathways of glucose oxidation in plants, starch biosynthesis and degradation, metabolic transport between organelles, Overview of lipid and protein metabolism in plants, Transpiration-Types, theories of transpiration, mechanism and factors affecting transpiration.

Unit III – (15 Hrs.): Nitrogen Fixation: Symbiotic and non-symbiotic - Symbiotic nitrogen fixation in legumes by Rhizobia, biochemistry and molecular biology of nitrogen fixation, enzymology of nitrogen fixation, regulation of *nif* and *nod* genes of nitrogen fixation, Interaction between nitrate assimilation and carbon metabolism, Sulphur chemistry and functions, reductive sulfate assimilation pathway, Synthesis and functions of glutathione and its derivatives, Interrelationship between photosynthesis and nitrogen metabolism.

Unit IV – (15 Hrs.):Structure of Plant Genes:Structure, transport, distribution, mechanism of action and physiological effects of Auxin, gibberellins, cytokinins, absisic acid, ethylene, Phytochrome, Biological clock,Fruit ripening, scenscence

Unit V – (15 Hrs.): Plant Cell Culture: Tissue culture media – composition and preparation, Micropropagation, somoclonal variation, Callus, Protoplast culture - isolation and purification of protoplasts, Protoplast fusion, genetic modification of protoplasts, Anther, pollen and ovary culture for production of haploid plants and homozygous lines, Uses of haploids in plant breeding. Secondary metabolites

TEXT BOOKS

1.Heldt, HW. (2005), **Plant Biochemistry.** 3rd Edition, Elserveir Academic PressPublication,

USA.

2.Lea, P.J. and Leegood, R.C.(1999). Plant Biochemistry and Molecular Biology. 2nd Edition,

Wiley and Sons, New York.

3.Harborne, J.B. (1989). Methods in Plant Biochemistry in Plant Phenolics. Academic Press,

London, Uk.

4.Goodwin Ane Mercer,(2003).Introduction to Plant Biochemistry.2nd Edition,CBS

Publishers, New Delhi.

REFERENCE BOOKS

1.Hans, Walter-Heldt, (1997). Plant Biochemistry and Molecular Biology. 3rd Edition

Academic Press, California.

2.Narayanaswamy, S. (1999). Plant Cell and Tissue Culture. 2nd Edition, Tata McGraw Hill

Publishing Company Ltd, New York.

WEB REFERENCES:

1. www.biology4kids.com/files/plants_photosynthesis.html

- 2. www.slideshare.net/BiologyIB/photosynthesis-powerpoint-3983595
- 3. http://www.slideshare.net/shivam_hayabusa/production-of-secondary-metabolites
- 4. www.slideshare.net/JonathanOLeary/photosynthesis-power-point
- 5. https://en.wikipedia.org/wiki/Photophosphorylation

PEDOGOGY: CHALK and Talk, PPT

YEAR I – SEMESTER I CORE PRACTICAL - I

Paper	: Core Biochemistry Practical I	Total Hours	: 45
Hours/Week	: 5	Exam Hours	: 06
Credit	: 3	Internal	: 40
Paper Code	: 21P1BCP01	External	: 60
NIDSE OUTCOM			

COURSE	OUTCOMES :
--------	-------------------

Course No	Course Outcome	Knowledge Level
CO1	Learn and understand the concepts of separation of aminiacids and carbohydrates	K1 & K2
CO2	Demonstrate the level of glucose, Ascorbic acid, Lecithine	K1 & K2
CO3	Learn the isolation of compounds like starch, Glycogen etc	K1,K2 & k3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	М	S	М	М	L	L	М	L	L	S	S
CO3	S	S	М	М	S	М	Μ	М	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

- 1. Isolation and estimation of Starch from Potato.
- 2. Isolation and estimation of DNA from liver
- 3. Estimation of RNA
- Separation of Amino acids, Sugars by Paper Chromatography (Ascending, Descending and Circular).
- 5. Estimation of Calcium from milk by titrimetry.
- 6. Isolation of Lecithin from milk
- 7. Isolation of plasmid DNA
- 8. Isolation of Genomic DNA
- 9. Restriction digestion of DNA
- 10. Preparation of competent cell and Transformation

REFERENCE BOOKS:

1.Harold Varley, (1980). **Practical Clinical Biochemistry, Volume I and II**. 5th Edition. CBS Publishers. New Delhi.

2. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry. 2nd Edition .New Age International (P) Limited. New Delhi

3. Sadasivam S and Manickam P. (2005) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

YEAR I – SEMESTER I CORE PRACTICAL - II

Paper	: Core Biochemistry Practical II	Total Hours	: 45
Hours/Week	: 5	Exam Hours	: 06
Credit	: 3	Internal	: 40
Paper Code	: 21P2BCP02	External	: 60
UDGE OUTCON	ITC.		

COURSE OUTCOMES:

Course No	Course Outcome	Knowledge Level
CO1	Learn and understand the concepts of buffer, separation techniques of biomolecules.	K1 & K2
CO2	Demonstrate marker enzyme by kit method	K1 & K2
CO3	Optimize the enzyme activity in terms of pH , substrate, temperature, and enzyme concentration.	K1,K2 & k3

Mapping with Programme Outcomes

			_												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	М	S	М	М	L	L	М	L	L	S	S
СО3	S	S	М	М	S	М	М	М	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

Enzyme Studies:

I. Sub cellular fractionation of organelles from liver cells and identification of beta glucuronidase II.Kinetic studies of

Effect of pH,Temperature and Substrate concentration-MM Plot, V max)

- 1. Peroxidase
- 2. Amylase
- 3. Urease
- 4. Alanine Phosphatase
- 5. Acid Phosphatase (Effect of pH and Temp)
- 6. Catalase

III. Immobilised Enzyme Reactions

1. Immobilisation of peroxidase/Acid phosphatase by matrix entrapment, ionic and cross linking

IV. Separation of Isoenzymes

Seperation of LDH by SDS-PAGE

REFERENCE BOOKS:

- Harold Varley, (1980). Practical Clinical Biochemistry, Volume I and II. 5th Edition. CBS Publishers. New Delhi.
- 2. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry. 2nd Edition .New Age International (P) Limited. New Delhi

3. Sadasivam S and Manickam P. (2005) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc., BIOCHEMISTRY YEAR I – SEMESTER I (2021-22) Core Practical - I

Paper	: Core Practical – I								
Examination	: External								
Time	: Six Hours								
Paper Code : 21P1BCP01 Maximu		Maximum I	Marks	: 60					
(Answer all the questions)									
1. a)Estimate th	e amount of glycogen present ir Or)	the given unknown sample.	(25 Marks)						
b) Estimate th	e amount of Sodium and Potass	ium by Flame photometry							
2. a)Estimate the	e amount of Ascorbic acid from	ı fruits	(25 Marks)						
(Or)									

b) Separate the given mixture of amino acids by Paper Chromatography.

RECORD: 10

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc., BIOCHEMISTRY YEAR I – SEMESTER I (2021-22) Core Practical - II

: Core Practical – II		
: External		
: Six Hours		
: 21P1BCP02	Maximum Marks	: 60
	: Core Practical – II : External : Six Hours : 21P1BCP02	: Core Practical – II : External : Six Hours : 21P1BCP02 Maximum Marks

(Answer all the questions)

1. a) Determine the Effect of Temperature on the activity of Peroxidase (Or)	(25 Marks)
b) Determine the Effect of pH on the activity of Alanine phosphatase	
2. a) Perform Immobilisation of peroxidase by matrix entrapment methods	(25 Marks)
(Or)	
b) Determine the Effect of Substrate concentration on the activity of Alkalir	ne phosphatase

RECORD: 10

M.Sc., BIOCHEMISTRY QUESTION PAPER PATTERN MAXIMUM MARKS – 75 marks DURATION – 3 hours

PART - A (20X 1=20 marks)

Multiple Choice Question From each unit 4 Questions

PART – B (5 X 5 = 25 marks) Answer All Questions

One Question from each unit with internal choice

PART-C (3x10=30 marks)

Answer any three Questions

One question from each unit

		VIVEKANANDHA COLLEGI	E OF	FARTS AND SCIENCES FOR WOME	Ν	
		(A	UT(DNOMOUS)		
		MODEL QUESTION VEAR L-	N PA SEN	APER M.Sc. BIOCHEMISTRY AFSTER I (2021-22)		
		CELLUI		BIOCHEMISTRY		
Pape	er	: Core Paper I	Ι			
Exa	mina	ation : External		Section $-A(25X1)$: 25
Tim	e	: Three Hours		Section $-B(5X5)$: 25
Pape	er Co	ode : 21P1BC02		Maximum Marks :75		: 75
1	W	Section A (Answer all	l the	questions) (20x1=20)	CO1	K1
		Single shromosome		Multinla abromosomos		171
	A	Single chromosome	D	Multiple chromosomes		
	C	No chromosomes	D	Double chromosome		
2	W	hich of the following transports only one	kino	d of substrate?	CO4	K3
	A	Uniport carriers	В	Symport carriers		
	C	Antiport carriers	D	Membrane proteins		
3	W	hich one is the longest phase of cell cycle	e?		CO2	K3
	Α	Prophase	В	Telophase		
	С	G1-phase	D	G2-phase		
4	W	hich of the following is energy independ	ent?	L		
	Α	Active transport	В	Primary active transport		
	С	Secondary active transport	D	Passive transport		
5	W	hich network of microtubules and micro	filar	ents is classified as	CO2	K1
	Α	Endoplasmic skeleton	В	Vertebral skeleton		
	С	Active skeleton	D	Cytoskeleton		
6	W	hich of the following is a microtubule or	gani	zing center?	CO3	K 1
	A	Centrosome	В	Kinetochore		
	С	G2 phase	D	Centrioles		
7	W	hich of the following is not true for chro	mati	n?	CO1	K3
	A	Organized structure of DNA and protein	В	These are highly condensed DNA		
	C	It is found in the nucleus	D	It contains a single dsDNA		
8	W	hich of these are not from plastid family	?		CO3	K3
	A	Chloroplast	В	Tonoplast		
	С	Chromoplast	D	Leucoplast		
9	W	hat is Protein kinase A			CO2	K2
	Α	Completely inhibited by cyclic AMP	В	Allosterically activated by cyclic AMP		
	С	Affected by cyclic AMP only under unusual circumstances	D	Activated by covalent binding of cyclic AMP		
10	W	hat are the enzyme activated by cyclic A	MP		CO1	K2
	Α	Protein kinase B	В	Protein kinase A		

	C	Protein kinase C	D	G protein receptor kinase				
11	Wł	at is Ras protein		r · · · · · ·	CO3	K2		
	A	G-protein switch	В	Small monomeric GTPase switch				
	С	Serine-threonine kinase	D	Tyrosine kinase				
12	Wł	ich is adhesion' molecules			CO5	K2		
	A	The cadherin superfamily	В	Selectins				
	C Integrin D All of above							
13	Wł	ich is cancer caused due to	L	L	CO1	K4		
	Α	Controlled mitosis	В	Uncontrolled mitosis				
	С	Controlled meiosis	D	Uncontrolled meiosis				
14	Wł	hat are P^{53} activated by	L	L	CO4	K4		
	Α	Phosphorylation	В	Dephosphorylation				
	С	Methylation	D	Carboxylation				
15	Wł	ich are cause cancer	L	L	CO4	K4		
	Α	Mutagen	В	Carcinogen				
	С	Oncogene	D	None of above				
16	Which of the following statement is correct							
	A	The levels of p53 in normal cell is high	В	DNA damage is due to low level of p53				
	C	The level of p53 in normal cell is low	D	High level of p53 in normal cell prevent apoptosis				
17	Wł	ich out of the following is not a mediate	ed tra	ansport?	CO3	K5		
	Α	Facilitated diffusion	В	Primary active transport				
	С	Secondary active transport	D	Simple diffusion				
18	Wł	ich of the following is a microtubule or	gani	zing center?	CO4	K5		
	Α	Centrosome	В	Kinetochore				
	С	G2 phase	D	Centrioles	•			
19	Wł	o discovered cell in 1665?	•		CO5	K5		
	A	Robert Hook	В	Robert Crook				
	C	David Thomson	D	Marie Francois				
20	Wł	ich of the following is not a G-protein c	coup	led receptor?	CO4	K5		
	A	Glycine receptor	В	Adrenergic receptor				
	C	Glutamate receptor	D	Muscarinic receptor				
		Sec	tion	B				
21	Δ	Answer All que	estio	ns (5 x 5 = 25)	CO3	K6		
∠ I	~	Differentiate between prokaryote and	CUK			IXU		
			OF	k l				
	В	What is cell cycle? discuss about the r	egul	ation of cell growth	CO2	K6		

22	Α	What is power house? briefly note on structure of mitochondrial	CO4	K5
		OR		
	В	Short a note on the structure of cytoskeleton	CO4	K5
23	Α	Brief a note on TrkA signaling pathway and their significance	CO2	K2
		OR		
	В	Write a note on proteoglycans and its functions	CO2	K2
24	Α	What is carcinogen? discuss about the chemical carcinogen	CO5	K3
		OR		
	В	What is tumor suppressor gene? significance of P53 gene	CO5	K3
25	Α	Give a detailed account on ion channels transports	CO1	K 1
		OR		
	В	What are cell surface carbohydrates? it's function	CO1	K1
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Brief a detailed note on mitosis cell division and significance		
27		Give a detailed account on how a protein undergoes change in ER.	CO3	K4
28		Write a detailed note on collagens and significance	CO1	K3
29		What is tumor suppressor gene? Brief a detailed note on P ⁵³	CO4	K5
30		Write a detailed note on fluid mosaic model	CO5	K 1

Knowledge	K1	К2	K3	К4	К5	K6	Total
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	TOLAT
I	0	7	0	0	0	0	7
II	0	7	0	0	0	0	7
	0	0	7	0	0	0	7
IV	0	0	0	7	0	0	7
V	0	0	0	7	0	0	7
Total	0	14	7	14	0	0	35

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowledge	К1	К2	K3	K4	К5	K6	Tatal
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	Total
I	0	24	0	0	0	0	24
II	0	24	0	0	0	0	24
	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	24	0	0	24
Total	0	48	24	48	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER I BIOPOLYMERS

Pape	r	tion	Core Paper I		Section A (25V	(1)	. 25
Examination			: External : Three Hours		Section – $A(23A)$.1)	· 25
Pape	r Co	de :	21P1BC01		Maximum Marks)	: 75
1 up c	1 00	Se	ction A (Answ	er all the questions)	(20x1=20)		
1	1 The general formula of Carbohydrates is				C	201	K1
	Α	CnH2nOn	В	C2nH2On			
	С	CnH2O2n	D	CnH2nO2n			
2	The Keto sugar is		C	201	K1		
	Α	Glycerose	В	Ribulose			
	С	Fructose	D	Dihydoxyacetone			
3	Polysaccharides are		C	201	K 1		
	Α	Polymers	В	Acids			
	С	Proteins	D	Oils			
4	The most important epimer of glucose is			C	201	K1	
	Α	Galactose	В	Fructose			
	С	Arabinose	D	Xylose			
5	5 A heteropolysacchraide among the following is			C	CO2	K2	
	A	Inulin	В	Cellulose			
	С	Heparin	D	Dextrin			
6	An	example of a saturat	ted fatty acid is		(CO2	К2
	Α	Palmitic acid	B Oleic acid				
	С	Linoleic acid	D	Erucic acid			
7	Molecular formula of cholesterol is		(CO2	K2		
	Α	C27H45OH	В	С29Н47ОН			
	С	С29Н47ОН	D	С23Н41ОН			
8	Sphingomyelins		(CO2]	K2		
	Α	Phospholipids	В	Nitrolipids			
	С	Alcohols	D	None of these			
9	The end products of saponification			(CO3	K3	
	A	glycerol	В	acid			
	С	soap	D	Both (A) and (C)			
10	All	proteins contain the	Į	<u>I</u>	(CO3	K3
	A	Same 20 amino acio	ds B	Different amino acids			

11	Sulphur containing amino acid is				CO3	K3
	Α	Methionine	В	Leucine		
	С	Valine	D	Asparagine		
12	2 An essential amino acid in man is				CO3	K3
	A	Aspartate	B	Tyrosine		
	С	Methionine	D	Serine		
13	Wł	Which of the following is a dipeptide?			CO4	K4
	Α	Anserine	В	Glutathionen		
	С	Glucagon	D	β –Lipoprotein		
14	Vit	itamins are		CO4	K4	
	Α	Accessory food factors	В	Generally synthesized in the body		
	C	Produced in endocrine glands	D	Proteins in nature		
15	On	e manifestation of vitamin A de	eficie	ency is	CO4	K4
	Α	Painful joints	B	Night blindness		
	С	Loss of hair D Thickening of long bones				
16	Vit	itamin K is found in			CO4	K4
	Α	Green leafy plants	В	Meat		
	С	Fish	D	Milk		
17	In l	n human body highest concentration of ascorbic acid is found in			CO5	K4
	Α	Liver	В	Adrenal cortex		
	С	Adrenal medulla	D	Spleen		
18	Aı	A nucleoside consists of			CO5	K4
	Α	Nitrogenous base	В	Purine or pyrimidine base + sugar		
	С	Purine or pyrimidine base + phosphorous	D	Purine + pyrimidine base + sugar + phosphorous		
19	RN	RNA does not contain			CO5	K4
	Α	Uracil	В	Adenine		
	С	Thymine	D	Ribose		
20	The	The major catabolic product of pyrimidines in human is			CO5	K4
	Α	Alanine	В	Urea		
	С	Uric acid	D	Guanine		
	Section B Answer All questions $(5 \times 5 - 25)$					
21	Α	Discuss about the Polysacharie	des?		CO1	K1
		OR				
	В	What are Proteoglycans? Explain			CO1	K 1
22	A	Classify the Protein with examples	CO2	K2		
----	----------	---	-----	-----		
		OR				
	В	Explain about the Ramachandran Plot?	CO2	к2		
		r		132		
23	Α	What are sterols? Explain about plant sterols	CO3	КЗ		
		OR				
	В	Classify the Lipoproteins and explain its composition	CO3	K3		
24	Α	Write the structures of nucleotides	CO4	K4		
		OR				
	B	Describe the DNA histone proteins?	CO4	КЛ		
			04	127		
25	Α	Explain about nucleic acid binding proteins?	CO5	K4		
		OR				
	В	Write the biological properties of vitamins	CO5	К4		
	<u> </u>	Section C				
		Answer ANY THREE Questions (3 x 10 = 30)				
26		Discuss briefly about bacterial cell wall polysaccharides?	CO1	K1		
27		Explain about amino acid sequencing	CO2	K2		
28		Explain the transport and hydrolysis of triglycerol?	CO3	K3		
29		Discuss the structure of nitrogenous bases?	CO4	K3		
30		Explain the structure, requirement, deficiency and anti oxidant properties of water	CO5	K4		
		soluble vitamins?				

Outcome	K1	K2	К3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	7	0	0	0	0	0	07
П	0	7	0	0	0	0	07
III	0	0	7	0	0	0	07
IV	0	0	1	6	0	0	07
V	0	0	0	7	0	0	07
Total	7	7	8	13	0	0	35

TYPES OF SPECIFICATION (Question wise-no of questions)

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	24	0	0	0	0	0	24
II	0	24	0	0	0	0	24
III	0	0	24	0	0	0	24
IV	0	0	10	14	0	0	24
V	0	0	0	24	0	0	24
Total	24	24	34	38	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER I (2021-2022) ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Core Paper III	Section – A $(20X1)$:20
Examination	: External	Section $-B$ (5X5)	: 25
Time	: Three Hours	Section $-C$ (3X10)	: 30
Paper Code	: 21P1BC03	Maximum Marks :75	
Section A (Ans	swer all the questions)	(20x1=20)	

1	No	ble prize for discovering enzyme was	given to		CO1	K2
	A	Fischer	В	Altmann		
	С	Fleming	D	Buchner		
2	Est	erases belongs to	•		CO1	K2
	Α	oxidoreductases	В	carboxylases		
	С	hydrolases	D	transferases		
3	3 Ribozyme is					K2
	Α	RNA without sugar	В	RNA without phosphate		
	С	RNA have enzyme activity	D	RNA with extra phosphate group		
4	Am opt	ount of enzyme transforming 1 μ me imal conditions of measurement is cal	ole of si led	ubstrate per minute at 25°C under	CO1	K2
	Α	Specific activity	В	IU		
	C	Catalytic center activity	D	Enzyme purity		
5	An enzyme acts by					K2
	Α	Reducing activation energy	В	Increasing activation energy		
	С	Increasing reaction time	D	Decreasing reaction time		
6	At	CO2	K2			
	Α	Slightly activated	В	killed		
	С	inactivated	D	unaffected		
7	Wh clos	en the action of the enzyme is inhib sely resembles the substrate molecule,	oited in then the	the presence of a substance which e inhibition is known as	CO2	K2
	Α	Feedback inhibition	В	Non-competitive inhibition		
	С	Allosteric inhibition	D	Competitive inhibition		
8	Up read	on binding the substrate at one site ctive. This is called	, other	sites on an enzyme become more	CO2	K2
	Α	Allosteric inhibition	В	Specificity		
	С	Co-operativity	D	Activation		
9	Act cov	ivation or inactivation of certain he alent modification of the amino acid	e regula	tory enzymes is accomplished by	CO3	K3
	Α	tyrosine	В	Phenyl alanine		
	С	lysine	D	Serine		
10	An	enzyme which brings about lysis of b	acterial	cell wall is	CO3	K3
	A	amylase	В	lysozyme		
	C	trypsin	D	lipase		

11	The	e following are examples of nucleophi	le excen	t	CO3	K3
	A	carbanion	B	Hydroxide ion	005	K 5
	C	imidazole	D	proton		
12	Wh	ich of the following is not a compone	nt of coe	Proton	CO2	V2
14		Adapylic acid	B	Dantothanic acid	005	X
	А С	cystamine	D	Acetic acid		
12		is the enclosing of a	drank	at of solution of onzyma in a	004	170
13	sen	nipermeable membrane capsule by imp	mobiliza	tion method	C04	К3
	Α	Entrapment	В	Encapsulation		
	C	Cross-linking	D	Adsorption		
14	The	e advantages of immobilized enzymes	include	s all except one. Identify it.	CO4	K3
	Α	Saving in capital cost	В	More stability		
	C	Minimum reaction time	D	Not reusable		
15	Du occ	ring the functioning of biosensor, wours?	hich of	the following sequences of event	CO4	К3
	A	Enzyme reaction \rightarrow detector \rightarrow transducer	В	Enzyme reaction \rightarrow transducer \rightarrow detector		
	С	Enzyme reaction \rightarrow pressure guage \rightarrow time	D	Enzyme reaction \rightarrow vibrator \rightarrow mechanical signal		
16	Th	e productivity of an enzyme when imi	nobilize	d is	CO4	K3
	A	increased	В	decreased		110
	С	moderate	D	No change		
17	Th	.i	CO5	K4		
	Α	protease	B	Protease and amylase		
	С	lipase	D	RNAse		
18	Inv	ertase is widely used in	•		CO5	K4
	Α	Detergent making	В	Confectionaries production		
	C	Leather industry	D	Slatter house		
19	All	caline protease is used in			CO5	K4
	Α	Leather industry	В	Food industry		
	С	Detergent making	D	Dairy industry		
20	The	e enzyme used to dissolve blood clot i	n corona	ry artery is	CO5	K4
	Α	thrombokinase	В	renin		
	С	streptokinase	D	tyrosinase		
		Sec	tion B			
		Answer All que	stions (S	$5 \times 5 = 25$)		
21	A	Define active site and write about the	e proper	ties of active site	CO1	K2
	В	CO1	K2			
22	Α	Write a note on allosteric enzyme in	hibition	and its regulation.	CO2	K2
		OR				
	В	What are the factors affecting enzym	ne activi	ty?	CO2	K2
23	Α	Write a short note on acid base catal	vsis	-	CO3	K3

		OR		
	В	What are the coenzymic activity of tetrahydrofolate?	CO3	K3
24	Α	What are the application of enzyme immobilization?	CO4	K3
		OR		
	В	Write in detail about the calorimetric biosensor and its application.	CO4	K3
25	Α	Explain about the methods of homogenization.	CO5	K4
		OR		
	В	Discuss on enzyme application in diagnosis and textile industry.	CO5	K4
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Write in detail about nomenclature and classification of enzymes	CO1	K2
27		Write a detailed note on enzyme inhibition.	CO2	K2
28		What is the mechanism of action of lysozyme?	CO3	K3
29		Write a note on immunosensor.	CO4	K3
30		How enzymes are purified? Describe any one method.	CO5	K4

TYPES OF SPECIFICATION (Question wise-no of questions)

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	0	7	0	0	0	0	7
II	0	7	0	0	0	0	7
III	0	0	7	0	0	0	7
IV	0	0	7	0	0	0	7
V	0	0	0	7	0	0	7
Total	0	14	14	7	0	0	35

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit	_	_			_	_	
Ι	0	24	0	0	0	0	24
Π	0	24	0	0	0	0	24
III	0	0	24	0	0	0	24
IV	0	0	24	0	0	0	24
V	0	0	0	24	0	0	24
Total	0	48	48	24	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER I (2021-2022) ANALYTICAL BIOCHEMISTRY

Pape	er	: ELECTIVE I				
Exa	mina	tion : External		Section – A	A (25X1)	: 25
Tim	e C	: Three Hours		Section – I	3 (5X5)	: 25
Pape	er Co So				Marks	: /5
1	Th	e blood pH maintains a		Allowe	CO1	K2
	Α	20:1 ratio HCO_3^- : H ₂ CO ₃	В	20:1 ratio H ₂ CO ₃ : HCO ₃ ⁻		
	С	10:1 ratioHCO ₃ ⁻ : H ₂ CO ₃	D	10:1 ratio H ₂ CO ₃ : HCO ₃ ⁻		
2	Th	e technique of performing	a gi	iven procedure in a controlled	CO1	K2
	env	vironment, outside of a living or	gani	sm		
	Α	Invitro	В	Invivo		
	С	Silico studies	D	Endocytosis		
3	Re	ducing agent used for mammalia	an ti	ssue homogenization is	CO1	K2
	Α	Kcl	В	Sucrose		
	С	Dithiothreitol d) NaOH	D	NaOH		
4	In	which method titanium carbide	bead	s are used to rupture the cell wall	CO1	K2
	A	Bead mill disruption	В	Detergent solubilization		
	С	Osmotic shock	D	High pressure Homogenizer		
5	In	paper chromatography, locating	agei	nt of amino acid is	CO2	К3
	Α	Diazo reagent	В	Ninhydrin		
	С	Ethidium bromide	D	Bromophenol Blue		
6	Wł org	nich of the following centrif anelles from whole cell?	ugat	ion is used to separate certain	CO2	К3
	A	Rate-zonal centrifugation	В	Normal centrifugation		
	С	Differential centrifugation	D	Isopycnic centrifugation		
7	In iso	the following electrophoresis, electric point is	the	separation of protein based upon	CO2	K3
	Α	Pulse field	В	Submarine		
	C	Isoelectric focusing	D	Capillary		
8	Pu	se field gel electrophoresis was	dev	eloped by	CO2	К3
	Α	Collins and John	В	Kary Mullis		
	C	Patrick O' Farrell	D	Schwartz and Cantor		
9	In ser	which of the following separated on the basis of their net of	barat charg	ion method where proteins are	CO3	К3
	A	Affinity	B	adsorption		
	С	Gel filtration	D	Ion Exchange		

10	Re	tardation factor is the ratio of			CO3	К3
	A	Distance moved by substance from base line to distance moved by the solvent from base Line	В	Distance moved by solvent from base line to distance moved by the substance from base line		
	C	Distance moved by substance from top line to distance moved by the solvent from top line	D	Distance moved by solvent from top line to distance moved by the substance from top line		
11	Th	e thin layer chromatography pla	te is	made up of	CO3	К3
	Α	Glass	В	wood		
	С	Fiber	D	Metal		
12	Wł suł	nich would be best to separate ostrate?	e a	protein that binds strongly to its	CO3	K3
	Α	Gel filtation	В	Affinity chromatography		
	С	Cation exchange	D	Anion exchange		
13	In fin	infrared spectroscopy which gerprint region?	fre	quency range is known as the	CO4	K4
	Α	400 - 1400cm ⁻¹	В	1400 - 900cm ⁻¹		
	С	900 - 600cm ⁻¹	D	600 - 250cm ⁻¹		
14	Ma	ass spectrometer use to determin	e isc	otopes in solid state is	CO4	K4
	Α	Bohr's	В	Aston's		
	С	dempester's	D	Alison's		
15	Be	er's Law states that	•		CO4	K4
	A	absorbance is proportional to both the path length and concentration of the absorbing species absorbance is equal to P_0 / P_0	B	absorbance is proportional to the log of the concentration of the absorbing species		
16	U W	pere do we obtain the magnified	ima	as of the specimen in SEM?	<u>CO4</u>	КЛ
10	Δ	Cathode ray tube	R	nhosnhorescent screen	0.04	174
	C A	anode	ת	scanning generator		
17	X-1 wh	ray diffractometers are not used	l to	identify the physical properties of	CO5	K5
	A	Metals	В	Liquids		
	C	Polymeric materials	D	solids		
18	Wł is t	nen nuclear radiations pass thro he principle of which of the foll	ugh owii	, gas ionization is produced.' This ng detectors?	CO5	K5
•	Α	Proportional counter	В	Flow counter		
•	C	Geiger Muller counter	D	Scintillation counter		
	L					

19	Liq	uid Scintillators are used for wl	CO5	K5		
	Α	Low energy beta materials	В	High energy beta materials		
	С	Low energy gamma materials	D	High energy gamma materials		
20	Ra	dioisotopes are commonly used	in	st	CO5	K5
	Α	Pharmacological studies	B	Molecular biology techniques		•
	С	Ecological studies	D	All the above		
		Se	ctio	n B		
21	Δ	Answer All que Write a short note on biologica	estic	$\frac{1}{10000000000000000000000000000000000$	CO1	к2
						112
			0	R		
	В	Explicate organ and tissue slic	e tec	chniques	CO1	K2
22	Α	Write a short note density grad	lient	centrifugation	CO2	K3
			0	R		
	В	Explicate capillary electrophor	CO2	K3		
23	Α	Describe molecular sieve chro	CO3	K3		
	В	Explain affinity chromatograp	CO3	К3		
		I the state of the				
24	A	Explicate scanning electron m	icros	scope	CO4	K4
			0	DR		
	В	Describe the instrumentation of	of NI	MR spectroscopy	CO4	K4
25	Α	Write a short note on autoradio	ogra	phy and its applications	CO5	К5
			0	DR		
	В	Explicate the working principl	e of	solid scintillation counter	CO5	K5
	i	Section	on (2		•
26		Answer ANY THREE	Que	estions $(3 \times 10 = 30)$	CO1	V2
20 27		Describe the principle instru		ntation and applications of SDS		K2
21		PAGE electrophoresis	unnel	ination and applications of 5DS-		к.)
28		Discuss the principle, instrume chromatography	enta	tion and applications of Gas-liquid	CO3	К3
29		Describe the principle, instru photometer	imer	ntation and applications of Flame	CO4	K4
30		Write a brief note on principle of X-ray diffraction	e, th	eory of operation and applications	CO5	K5

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	0	7	0	0	0	0	07
Π	0	0	7	0	0	0	07
III	0	0	7	0	0	0	07
IV	0	0	0	7	0	0	07
V	0	0	0	0	7	0	07
Total	0	7	14	7	7	0	35

TYPES OF SPECIFICATION (Question wise-no of questions)

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outcome	K1	K2	К3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	0	24	0	0	0	0	24
II	0	0	24	0	0	0	24
III	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	0	24	0	24
Total	0	24	48	24	24	0	120

YEAR I – SEMESTER II INTERMEDIARY METABOLISM AND REGULATION

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 6	Exam Hours	:03
Credit	: 5	Internal	: 25
Paper Code	: 21P2BC04	External	: 75

SUBJECT DESCRIPTION:

Intermediary metabolism and regulation deals with the metabolic reactions of biomolecules, energy production through different mechanism and various regulatory mechanisms that control metabolic reactions under normal condition.

OBJECTIVE:

The objective of the paper is to make the students to study about bioenergetics of important metabolic pathways and metabolic changes of molecules in the body. Also to know about the Interrelationship between carbohydrate, fat and protein metabolism. To analyse the fate of nucleic acids and porphyrins in the biological system.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Explore knowledge on biological oxidation, redox potential, ETC and mitochondrial shuttle mechanism.	K1 & K2
CO2	Demonstrate the important carbohydrate metabolic pathways and understand alternate pathways for glucose oxidation, anapleurotic	K1 & K2
CO3	Highlight about types of fatty acid oxidation, biosynthesis of TGs, Phospolipids and prostaglandins and various regulatory mechanism involved. involved their the Understand the concepts of metabolism of	K1,K2 & k3
CO4	Describe the types and significance of anabolic and catabolic reactions of amino acids, interrelationship between carbohydrate, lipid &protein metabolism and understand the specialized products from amino acids.	K3 & K4
CO5	Demonstrate the fate of nucleic acids and porphyrins in the biological system.	K3 & K4

Mapping with Programme Outcomes

-			U												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	L	L	S	М	М	М	М	L	S	L	М	S	М	L
CO2	L	М	М	S	L	L	L	М	М	S	S	М	L	S	М
CO3	S	Μ	М	М	М	S	L	М	S	L	L	М	L	S	М
CO4	S	Μ	L	М	S	М	L	М	S	S	L	М	L	М	М
CO5	S	L	М	М	Μ	S	S	L	S	Μ	L	L	S	М	S

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Bioenergetics and Biological Oxidation:Introduction,Free energy, laws of thermodynamics, Enzymes involved in redox reactions,Electron transport chain - organization and role in electron capture, Mechanism of Electron transport chain and oxidative phosphorylation, Chemiosmotic theory, Inhibitors of respiratory chain and oxidative phosphorylation, Uncouplers and Ionophores, Regulation of oxidative Phosphorylation, Mitochondrial transport systems - ATP/ADP exchange, malate / glycerophosphae shuttle.

Unit II – (15 Hrs.): Carbohydrate Metabolism: An overview of carbohydrate metabolism glycolysis and gluconeogenesis, energetic - Regulation of glycolysis and gluconeogenesis, Metabolism of glycogen and its regulation, HMP shunt, TCA cycle steps and its regulation, glyoxalate pathway, Cori cycle, Anaplerotic reactions, Metabolism of fructose, galactose and mannose, Lactose and glycoprotein synthesis.

Unit III – (15 Hrs.): Lipid Metabolism: An overview of fatty acid metabolism - fatty acid synthesis and Regulation control of cetyl CoA carboxylase, Oxidation of saturated and unsaturated fatty acids, Oxidation of fatty acids with even and odd numbered carbon atoms, Alpha, beta and omega oxidation, biosynthesis and regulation of triacylglycerols, cholesterol, phosphatidyl choline, sphingomyelin, Biosynthesis and regulation of prostaglandins, Eicosanoids, thrombaxanes and leucotriens, Ketogenesis and its control.

Unit IV – (**15 Hrs.**):**Amino acid Metabolism:** An overview of gamma glutamyl cycle, An overview- Methionine methyl donor (SMP pathway), Urea cycle and its regulation, Degradation of aminoacids- transamination, decarboxylation, oxidative and non-oxidative deamination, Catabolism of aminoacids- carbon skeleton of amino acids to amphibolic intermediates, Inter relationship between carbohydrates, proteins and fat metabolism, Conversion of amino acids to specialized products: Serotonin, GABA, dopamine, epinephrine, nor-epinephrine, melanin, creatinine and creatine.

Unit V – (15 Hrs.): Porphyrine Metabolism: Regulation, biosynthesis and degradation of Hb, chlorophyll and cytochrome, Nucleic acid metabolism - Biosynthesis and degradation of purine and pyrimidines (Denovo and Salvage pathway), Regulation of Pyrimidine biosynthesis - aspartate carbomoyl transferase, Biosynthesis and degradation of porphyrin, formation, transport and excretion of bile pigment.

TEXT BOOKS

1. Nelson, David, L. and Cox, (2008). Lehninger principles of Biochemistry. 5th Edition,

W.H.Freeman and Co., New York.

2. Donald Voet, Judith, G. Voet, and Charlotte, W Pratt, (2008). Fundamentals of Biochemistry,

3rd Edition. John Wiley &Sons, New Jersey.

3. Lubert Stryer, (1995). **Biochemistry.** 4th Edition .WH freeman and co, Sanfrancisco.

4. Thomas, M. Devlin, (1997). Text book of Biochemistry. 4th Edition A John Wiley, Inc

Publication, New York.

REFERENCE BOOKS

 $1. Devlin, T.M. (2002) \\ \textbf{Textbook of Biochemistry with Clinical Correlations.} John Wileysons,$

INC. New York.

2.Robert Murray, Bender, (2012) Harper's Illustrated Biochemistry. McGraw Hill.

WEB SOURCES

www.britannica.com/science/glyoxylate-cycle https://www.uic.edu/classes/phar/.../transaminationofaminoacid.htm www.slideshare.net/YESANNA/transamination-deamination

MOLECULAR BIOLOGY

Paper	: Core V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21P2BC05	External	: 75

SUBJECT DESCRIPTION:

Molecular Biology deal with the central dogma of life and its regulation.

OBJECTIVE:

To make the students understood the synthesis of genetic material, RNA and proteins, gene repair mechanism and gene mutation. To make the students learn about the techniques used in identifying gene mutation.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Illustrate the molecular mechanism of DNA replication in prokaryotes and eukaryotes and DNA repair mechanisms	K2
CO2	Explain the stages of transcription and post transcriptional processing	K3
CO3	Analyze the decoding process of mRNA for protein designing principle	K4
CO4	Formulate the protein targeting, transport, translocation and regulation of gene expression	K6
CO5	Categorize the different types of DNA recombination and mutation	K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	М	L	М	L	М	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): DNA Replication and DNA damage & repair mechanisms: Types of replication, evidence for semi conservative replication, Meselson and Stahl experiment, replications in circular chromosomes - Cairns model, rolling circle model, Enzymology of Replication, Replication in prokaryotes and eukaryotes- inhibitors of replication. DNA damage - different types, DNA repair - direct reversal repair, direct repair of nicks, excision repair, nucleotide excision repair, mismatch repair, recombination error and SOS repair.

Unit II – (15 Hrs.): Transcription: Prokaryotic RNA polymerase, Initiation of transcription, chain elongation, chain termination, Eukaryotic RNA polymerases, Conserved sequences of eukaryotic promoters, Transcriptional factors and basal eukaryotic transcription complex, Enhancers, Transcriptional termination in eukaryotes, Post transcriptional processing of Pre-mRNA – addition of Cap to the 5'end, Polyadenylation of the 3' end, RNA splicing and processing of Pre-mRNA, Inhibitors of transcription, Reverse transcription.

Unit III – (15 Hrs.): Translation:Genetic code - salient features of genetic code, structure of tRNA, activation of enzymes, binding of amino acids to tRNA, wobble mechanism and its significance, composition of prokaryotic and eukaryotic ribosomes, prokaryotic and eukaryotic protein biosynthesis - initiation, elongation, translocation and termination, Inhibitors of protein synthesis, Post translational modification of proteins.

Unit IV – (15 Hrs.):Protein Transport and Regulation of Gene Expression: Protein targeting, translocation, heat shock proteins, glycosylation, SNAPs and SNAREs, bacterial signal sequences, mitochondrial, chloroplast and nuclear protein transport, endocytosis-viral entry, ubiquitin TAG protein destruction, gene expression and regulations, molecular mechanism of regulation, prokaryotes - operon model, lac, trp, arabinose operons, repression and attenuation, eukaryotes - C value paradox, repetitive DNA, gene dosage and gene amplifications.

Unit V - (15 Hrs.): DNA Recombination and Mutation: Homologous recombination, Site specific recombination and DNA transposition. Types of mutation- Base substitution, insertion, deletion, inversion, duplication, translocation, mutagens.

TEXT BOOKS

- Ajoy Paul, Text book of Cell and Molecular Biology 4th Edition, Books and Allied (P) Ltd, Kolkata, 2015.
- 2. Rastogi.S.C. Cell and Molecular Biology, India Binding House, U.P., 2nd edi. 2010.

REFERENCE BOOKS

- David L. Nelson and Michael Cox, Lehninger Principles of Biochemistry, WH Freeman Publisher, 7th ed., 2017
- Freifelder. D., Essentials of Molecular Biology, Jones and Bartlett Publications Inc., London 3rd Edition, 1998.
- **3.** De Robertis E.D.P and E.M.F. De Robertis, Cell And Molecular Biology, Walters Kluwer Publisher, 8th ed., 2010.
- **4.**Gerald Karp, Janet Iwasa and Wallace Marshall, Karp's Cell and Molecular Biology, Wiley Publisher, 9th ed., 2019.
- 5. Jocelyn E. Krebs, Elliott S. Goldstein and Stephen T. Kilpatrick, Lewin's GENES XII, Jones and

Bartlett Publishers, 12th Revised edition, 2017.

WEB SOURCES

1. https://microbenotes.com/prokaryotic-dna-replication-enzymes-steps-and-significance/

- 2. https://microbenotes.com/rna-splicing/
- 3. https://www.sparknotes.com/biology/molecular/translation/section3/
- 4.https://www.khanacademy.org/science/biology/gene-regulation/gene-regulation-in-bacteria/a/the-

trp-operon

5. https://www.nature.com/articles/nrm2008

PEDOGOGY: CHALK and Talk, PPT

ENDOCRINOLOGY

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21P2BCE04	External	: 75
SUBJECT DESC	RIPTION:		

Endocrinology deal with the endocrine system of human body, mechanism of action on

endocrine system and hormonal actions

OBJECTIVE:

To make the students understand clearly on various alimentary parts of human body. Learnt more

the endocrinal activities, learn about the mechanisms and actions of vital organs.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
	Explain the hormones, neuroendocrine, hormone secretion, mechanism of	K2
CO1	hormone action I and II and also communication between the chemical	
		K3
CO2	mechanism	KJ
CO3	Apply the knowledge of hormonal disease like thyroids hormones and their medication	K4
CO4	Describes the critical knowledge of synthesis, chemistry and action of	K5
	Evaluate the male and female reproductive system, synthesis of hormones,	K6
CO5	pathology and also treated with infertility	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	Μ	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	Μ	Μ	Μ	S	L	Μ	S	М
CO3	L	М	L	М	L	L	S	L	S	S	Μ	Μ	L	L	L
CO4	S	L	Μ	S	S	L	L	S	L	L	S	L	Μ	S	S
CO5	Μ	Μ	L	Μ	L	Μ	S	L	S	S	Μ	Μ	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Hormones-Introduction, hormones and homeostasis, neuroendocrine integration in homeostasis, Classes of chemical messengers, hormone secretion, transport and clearance, Feed back control of secretion, Mechanism of hormone action-Type I and II, Second messengers -postoglandine, Cytosolic hormone receptors, Eicosonoids and hormone action.

Unit II – (15 Hrs.): Pituitary Hormones-Anatomy of pituitary gland, hormones of the pituitary, pathophysiology, Endocrine hypothalamus- structure, hypophysiotropic hormones, control of hypothalamic hormone secretion, feedback mechanisms, mechanism of action, Neurohypophysis - Synthesis, chemistry and control of neurohypophyseal hormone secretion, mechanism of action

and pathophysiology of oxytocin, vasopressin, Somatotropins and somatomedins, Growth factorsneurotropic growth factors, hematopoietic growth factors.

Unit III – (15 Hrs.): Thyroid and Parathyroid Gland- Synthesis and chemistry of hormones, control of thyroid hormone secretion, circulation and metabolism, physiological function, mechanism of action, Physiological function of vitamin D,Pathophysiology, Mechanism of action of calcium homeostasis and pathophysiology. Melanotropic hormones- chemistry, functions of MSH, mechanism of action and pathophysiology, Pineal gland - melatonin, melatonin secretion and circulation, functions of pineal gland and mechanism of action.

Unit IV – (15 Hrs.):Pancreas- Endocrine pancreas, insulin, glucagons and somatostatin, Pancreatic peptide – chemistry, physiological function and mechanim of action, Pathophysiology, Catecholamines - synthesis, chemistry and metabolism, Neurohormones- endorphins-source, chemistry, control of secretion, physiological function, mechanism of action and pathophysiology.

Unit V – (15 Hrs.): Reproductive Endocrinology-Male and female reproductive system- source, chemistry, synthesis, metabolism of hormones, physiological function, mechanism of action and pathophysiology. Sex differentiation and development, endocrinology of pregnancy, parturition and lactation, puberty and hormone control, human infertility-reasons, therapy and treatment.

TEXT BOOKS

1. Murray, K.R., Granner, K.D., Mayes, P.A. and Rodwell, W.V. (2009) Harper's

Biochemistry, 28thEd, Appleton & Lange Stamford, Connecticut.

2.Guyton, A.C. and Hall, J.E (2006), **Textbook of Medical Physiology**, 11th Edition, Saunders

Co. Pennsylvania.

REFERENCE BOOKS

1. Foye, O.W., Lemke, J.L. and William D.A. (1995), Medicinal Chemistry, B.I. Waverly Pvt.

Ltd., New Delhi.

2.West, E.S., Todd, W.R., Mason, H.S. and Van Brugge, T.J. (1966), Biochemistry. 4th Edition,

The Macmillan Company, London.

WEB OF RESOURCE:

https://en.wikipedia.org/wiki/Endocrine_system www.medicinenet.com > ... > thyroid az list > medterms medical dictionary az list www.btf-thyroid.org > Info www.healthline.com/human-body-maps/pituitary-gland

PEDOGOGY: CHALK and Talk, PPT

YEAR I – SEMESTER II IMMUNOLOGY AND IMMUNOTECHNOLOGY

Paper	: Core VI	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21P2BC06	External	: 75
SUBJECT DES	SCRIPTION:		

Immunology and Immunotechnology deal with the immunity, cells and organs of immune system, mechanism of how immune cells act, to understand infectious diseases and interaction with the host's immune system.

OBJECTIVE:

To understand about immunity and its types, cells and organs, MHC and its significances and disorders and techniques in immune biology.

Course No	Course Outcome	Knowledge Level							
CO1	To obtain the knowledge of the immune system is a host defense system comprising many biological structures and processes within an organism that protects against disease.	K1 & K2							
CO2	To concentrate on the antigen and antibody reactions and immunological techniques.	K1 & K2							
CO3	Understanding about the two branches of immune system such as humoral immunityand cellular immunity, cytokines and complement system.								
CO4	Clear about the hypersensitivity reaction or intolerance with undesirable reactions produced by the normal immune system, including allergies and	K3 & K4							
CO5	To obtain the knowledge about the hybridoma technology is to produce large numbers of identical antibodies (also called monoclonal antibodies) and a recombinant DNA technology that involves inserting the DNA encoding an antigen that stimulates an immune response.	K3 & K4							

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	S	М	М	М	S	S	М	S	М	М	М	S	S	S
CO2	S	S	М	М	М	S	S	S	S	S	S	М	М	S	S
CO3	S	М	М	М	S	S	S	S	S	М	S	М	S	S	L
CO4	S	S	S	М	S	S	S	S	М	М	М	М	S	М	L
CO5	S	S	М	S	М	S	S	S	М	М	М	М	S	S	М

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Overview of Immunology and Cells and Organs of Immune system: Historical perspective, Basic concepts of immunology-types of immunity-Innate and Adaptive Immunity, components of immune system, Cells of the Immune System, Hematopoisis, Organs of Immune system – Primary and Secondary lymphoid organs. Phagocytosis

Unit II – (15 Hrs.): Antigen and Antibodies: Antigens, Haptens, Epitopes Cross-Reactivity, Properties of the immunogen, Adjuvants, Antibodies- Structure, theories of antibody formation, side chain and clonal selection theory, Antibody classification and Biological activities, MHC Antigen processing and presentation, Monoclonal Antibodies- Production and Application, cytokines, complement system

Unit III – (**15 Hrs.**): **Antigen** –**Antibody interactions**: Principles and Applications - Strength of Antigen-Antibody interactions, Cross-Reactivity, Precipitation reactions, Agglutination reactions, Radiimmunoassay, ELISA, Western Blotting, Immnofluorescence, Humoral immune response- B Cell maturation, activation, differentiation and proliferation, Cell mediated immune response - T-cell maturation, activation and differentiation, HypersensitivityTypes and clinical manifestations, Immunotolerence, autoimmune disorders - type I DM.

Unit IV – (**15 Hrs.):Pathophysiology of Immune System**: Immunology disorders- B cell deficiencies, T cell deficiencies, secondary immunodeficiency diseases – AIDS, HIV lifecycle, pathogenesis, immunological abnormalities, diagnosis and treatment, Transplantation immunology- allograft, typing – HLA typing and GVH reaction, organ transplantation and immune suppressive therapy

Unit V – (15 Hrs.): Immune System in Disease: Vaccines, Quantification of Antibody and Tumor Immunology, Isolation and characterization of immune cells, Macrophage culture and assay of macrophage activation, Tumor immunology - immune surveillance, tumor antigens, immune response to tumors, immunotherapy of tumors.Sars, mars, covid Benefits and adverse effects of vaccination, Recombinant Vaccines

TEXT BOOKS

1. Tizard(1984). An Introduction Immunology: Tizard K, Saunders college Publishing

2.Immunology Roitt. Brostoff and David(1998). Immunology, 4th Edition, Mosby Times Mirror

Int Pub Ltd.

3. KubyRichard, (2000). Immunology, 4th Edition, W.H. Freeman and Company, NewYork.

4.Janeway Jr.Paul., (2001). The Immune System in Health and Disease. Travels and Co.,

REFERENCE BOOKS

1 . KubyRichard, (2000). **Immunology**, 4th Edition, W.H. Freeman and Company, NewYork.

2. Stites D.P. Stobo, J.D.Fundanberg. H.A and Wells. J.V. (1990) Basic and Clinical

Immunology. 6th Edition Los AtlasLange.

WEB OF REFERENCE:

www.microbiologybook.org/mayer/ab-ag-rx.htm

www.ebi.ac.uk/interpro/potm/2005_2/Page1.htm

www.quickhack.net/

https://www.sciencebasedmedicine.org/

PEDOGOGY: CHALK and Talk, PPT

Paner	· Elective II	Total Hours	• 75
			. 75
Hours/week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21P2BCE03	External	: 75
SUBJECT DES	CRIPTION:		

PHARMACETICAL BIOCHEMISTRY AND TOXICOLOGY

This course presents to focus on the bioactive principles used for drug discovery and it also covers human biology where ever relevant.

OBJECTIVE:

This course deals with the study of fundamental concepts of pharmacology about the physicochemical properties of the drug, their origin, classification and nomenclature of drugs, how do they act etc., It also enables the students to gain the complete knowledge about drug designing and also know about the principles of toxicology.

Course No	Course Outcome	Knowledge Level
CO1	To understand the development of the traditional and modern methods used for drug discovery; of how molecules interact.	K2
CO2	Explain the pharmaceutical industry is by far the largest employer of medicine	К3
CO3	Analyze the skills in the use of reaction mechanisms and how knowledge of reaction mechanisms can aid in understanding the mode of action of a drug, and the method by which it can be synthesized, and developed	K4
CO4	Knowledge of reaction mechanisms can aid in understanding the mode of action of a drug	K6
CO5	Categorize the learnt method by which it can be synthesized, and developed.	K5

COURSE OUTCOME:

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	М	L	М	L	М	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

UNIT-1 - (15 Hrs) General Pharmacology Introduction to pharmacology, Sources of drugs, Classification and Nomenclature of drugs, Dosage forms, Routes of Drug administration, Factors

influencing dosage and drug action, Absorption of drugs and factors affecting absorption, Distribution of drugs, Factors affecting distribution, Bioavailability, Dose response relationship, ED50 and LD50. Combined effect of drugs.

UNIT-II: - (15 Hrs) Pharmacodynamics: Mechanism of drug action: Theories of Receptors. Types of Receptors: Enzyme linked receptors, G-Protein coupled receptors, Ion-channel receptors, Nuclear receptors. Drug metabolism: pathway of drug metabolism, phase I and phase II reactions, Adverse drug reactions, Drug Interactions. Cytochrome P450 cycle, non- microsomal reactions of drug metabolism, drug metabolizing enzymes. Elimination of Drugs. Role of isomerism in drugs and its clinical significance.

UNIT-III - (15 Hrs) Drug design and Discovery: Physicochemical factors in relation to biological activity of drugs: Hydrogen bonding, Ferguson principle, Ionisation and pKa value, stearic features of drug, bioisosterism, Lipinski's rule of five, Concepts of drug designing and marketing, Molecular modeling, QSAR-Quantitative structure Activity Relationship, Drug targets.

UNIT-IV - (15 Hrs) Systemic Pharmacology: Anticholinergic drugs, Diuretics and anti diuretics, Antiarrhythmic drugs, Anti hypertensive drugs, Antibacterial agents, Antiviral agents, anticancer agents, Antiulcer agents, Anaesthetics-General and Local, Tranquillizers, Anti histamines, Non steroidal Anti inflammatory drugs-NSAIDS, Sedatives ,Analgesics, Anti tussives.

UNIT-V - (15 Hrs) Toxicology: Basic Principles of Toxicology: Toxicants and its types, Classification of Poisons, Sources of Poisoning, Factors affecting toxicity, Chemical food poisoning, Toxic effects of metals (Arsenic Lead, Mercury, Copper, Iron) and nonmetals (Phosphorus, Chlorine, Bromine, Iodine, Formaldehyde) Toxic effects of Poisonous plants (Abrus precatorius, Ricinus communis, Calotropis) Toxic effects of Cardiac poison (Oleanders, Nicotine, Aconite) Toxic Effects Caustics, Treatment and management of poisoning, Antidotes.

TEXT BOOKS

1. Willam.O.Foye, (1995) **Principles of Medicinal Chemistry** 4thEdition Waverks Pvt. Ltd. New Delhi

2. Nirmala, N., Rege, R.S., Santoskar, S.D. and Bhandarkar (2011), Pharmacology and Pharmacotherapeutics, 23rd edition, CBS Publishers and Distributors Pvt. Ltd.

3.Padamaja udayakumar(2017) **Medical pharmacology** 5TH Edition .,CBS publishers and distributors pvt.ltd(Textbook),Newdelhi.

REFERENCE BOOKS.

1.Burger's Medicinal Chemistry and Drug Discovery: principles and practice – Wolf, John Wiley

2.Glick, Pasternak, (2002) Molecular Biotechnology 2nd Edition ak, Panima Publishers,

3.R.S.Satoskar., S.D.Bhandhakar., Nirmala.N.Rege(2015) Pharmacologyand

pharmocotherapeutics.

4. Tripathi, K.D. (2013) 'Essentials of Medical Pharmacology' 7 thedition, Jaypee brothers, Medical

publishers, New Delhi

WEB REFERENCES

1.https://www.msdmanuals.com/professional/clinical-pharmacology/adverse-drug-reactions/adverse-drug-reactions

2. https://en.wikipedia.org/wiki/Pharmacodynamics

3. https://www.healthline.com/health/chemotherapy

4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560124/

YEAR I – SEMESTER II CORE PRACTICAL – III

Paper	: Core Practical III	Total Hours	: 45
Hours/Week	: 5	Exam Hours	:06
Credit	: 3	Internal	: 40
Paper Code	: 21P3BCP03	External	: 60

COURSE OUTCOMES:

Course No	Course Outcome	Knowledge Level
CO1	Get an insight into estimation of chlorophyll, alkaloid, falvonoid from leaveits results interpretation	K1 & K2
CO2	Get an insight into isolation of solanine, caffeine and its results identification	K1 & K2
CO3	Get an insight into plant tissue culture and its methods, Get an insight into extraction of pectin fro organe peel and its results identifications	K1,K2 & k3

Mapping with Programme Outcomes

				[
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	Μ	S	М	Μ	L	L	М	L	L	S	S
CO3	S	S	М	М	S	М	М	М	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

I. PHYTOCHEMICAL ANALYSIS

- 1. Qualitative analysis of secondary phytochemicals in medicinal plants
- 2. Estimation of chlorophyll in leaves
- 3. Extraction and confirmation
- a. Pectin from orange peel
- b. Caffeine from tea
- c. Solanine from potato

II. PLANT TISSUE CULTURE

- 1. Streilization and media preparation
- 2. Callus Induction and micro propagation
- 3. Isolation of protoplasts
- 4. Protoplast Culture
- 5. Anther culture

III QUANTITATIVE ANALYSIS

- 1. Estimation of total alkaloids
- 2. Estimation of total flavonoids

REFERENCES

- 1.David, T. Plummer, (1988). **An Introduction to Practical Biochemistry**. 3rd Edition. Tata McGraw Hill Publishing Company Ltd. New Delhi.
- Pattabiraman, T.N. (1998). Laboratory Manual in Biochemistry. 3rd Edition. All India Publishers and Distributors. Chennai.

3. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry.2nd Edition. New Age International (P) Limited. New Delhi

4. Sadasivam S and Manickam P. (2004) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

YEAR I – SEMESTER II CORE PRACTICAL – IV

Paper	: Core Practical IV	Total Hours	: 45
Hours/Week	: 5	Exam Hours	:06
Credit	: 3	Internal	: 40
Paper Code	: 21P3BCP04	External	: 60
COURSE OUTCOM	Е:		

Course No	Course Outcome	Knowledge Level
CO1	Learn and understand the methods of bleeding-Tail vein puncture, Intravenous, Retro orbital, cardiac vein puncture	K1 & K2
CO2	Demonstrate Rh typing and Identification of blood group	K1 & K2
CO3	Learn the Immunodiffusion –Single radial and double diffusion and Immuno electrophoresis – Counter Current immunoelectrophoresis	K1,K2 & k3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	М	S	М	М	L	L	М	L	L	S	S
CO3	S	S	М	М	S	М	М	М	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

- 1. Preparation of serum and plasma from Blood
- 2. Identification of blood cells
- 3. Isolation of blood mononuclear cells.
- 4. Identification of blood group & Rh typing
- 5. Preparation of Blood antigens
- 6. Testing: Widal slide test and Pregnancy Test (Slide Test)
- 7. Immunodiffusion –Single radial and double diffusion
- 8. Immunoelectrophoresis Counter Current immunoelectrophoresis
- 9. C reactive protein

REFERENCES

- 1.David, T. Plummer, (1988). **An Introduction to Practical Biochemistry**. 3rd Edition. Tata McGraw Hill Publishing Company Ltd. New Delhi.
- Pattabiraman, T.N. (1998). Laboratory Manual in Biochemistry. 3rd Edition. All India Publishers and Distributors. Chennai.
- 3. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry.2nd Edition. New Age

International (P) Limited. New Delhi

4. Sadasivam S and Manickam P. (2004) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER II (2021-22) Intermediary Metabolism And Regulation

Paper	: Core Paper IV								
Examination	: External	Section $-A(25X1)$: 25						
Time	: Three Hours	Section $-B(5X5)$: 25						
Paper Code	: 21P2BC04	Maximum Marks:	: 75						
Section A (Answer all the questions)									

1	Stu org	idy of relationship of energy a ganisms is known as	nd t	transformation of energy in living	CO1	K2
	Α	Catabolic energetic	В	Anabolic energetic		
	С	Broken energetic	D	Bioenergetics		
2	W	hich out of the following has the h	nighe	est redox potential?	C01	K2
	Α	NAD	В	FMN		
	C	FAD	D	O ₂		
3	3 Loss of hydrogen atoms from a molecule results in					K2
	Α	Loss of electron	В	Gain of electrons		
	C	Gain of protons	D	Gain of neutrons		
4	W	hich one out of the following is no	ot a l	NAD ⁺ requiring enzyme?	C01	K2
	Α	Lactate dehydrogenase	В	Pyruvate dehydrogenase complex		
	C	Maltate dehydrogenase	D	Acyl co-A dehydrogenase		
<u> </u>	XX /1	hich type of metabolic fuel is	CO2	K3		
5	coi	nditions of severe starvation?		5 55		
5	con A	nditions of severe starvation? Glycogen	В	Fat		
5	Con A C	nditions of severe starvation? Glycogen Starch	B D	Fat Amino acid		
5	C C C	nditions of severe starvation? Glycogen Starch nplest carbohydrate is	B D	Fat Amino acid	CO2	K3
6	C C Sin A	aditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone	B D B	Fat Amino acid Glycerldehyde	CO2	K3
6	C C Sin A C	aditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose	B D B D	Fat Amino acid Glycerldehyde Gulose	CO2	K3
5 6 7	C Sin A C Th	aditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is	B D B D an a	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide	CO2 CO2	K3 K3
5 6 7	C Sin A C Th A	aditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol	B D B D an a B	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA	CO2 CO2	K3 K3
5	C C Sin A C Th A C	nditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol Hyaluronic acid	B D D an a B D	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA Glycogen	CO2	K3 K3
5 6 7 8	C C Sin A C Th A C Th	nditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol Hyaluronic acid e carrier of citric acid cycle is	B D D an a D	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA Glycogen	CO2 CO2	K3 K3 K3
5 6 7 8	C C Sin A C Th A C Th A	nditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol Hyaluronic acid e carrier of citric acid cycle is Succinate	B D B D an a B D	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA Glycogen Fumarate	CO2 CO2 CO2	K3 K3 K3
5 6 7 8	A C Sin A C Th A C Th A C Th A C	nditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol Hyaluronic acid e carrier of citric acid cycle is Succinate Malate	B D an a B D B D	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA Glycogen Fumarate Oxaloacetate	CO2 CO2 CO2	K3 K3 K3
5 6 7 8 9	A C Sin A C Th A C Th A C Th A C Th	nditions of severe starvation? Glycogen Starch nplest carbohydrate is Dihydroxy acetone Glucose e under mentioned compound is Dicumarol Hyaluronic acid e carrier of citric acid cycle is Succinate Malate e key regulatory enzyme of chole	B D D an a B D B D	Fat Amino acid Glycerldehyde Gulose cid mucopolysaccharide EDTA Glycogen Fumarate Oxaloacetate ol synthesis is	CO2 CO2 CO2 CO2	K3 K3 K3 K3

	C	HMG Co A reductase	D	Mevolanate kinase		
10	Th	e dietary fat are transported as	i		CO3	K3
	Α	Micelles	В	Chylomicrons		
	С	Fatty acid albumin complex	D	Liposomes		
11	Wł	nich of the following is not used fo	or fa	tty acid synthesis?	CO3	K3
	A	Cobalamine	В	NADPH		
	C	Biotin	D	Bicarbonate		
12	Th	e key enzyme for the utilization o	of ke	tone bodies is	CO3	K3
	Α	Thiolase	В	Thiophorase		
	C	Thiokinase	D	Thioesterase		
13	3-р	hosphoglycerate is not the metab	olic	precursor for	CO4	K4
	Α	Serine	В	Glycine		
	С	Cysteine	D	Arginine		
14	Th	e cyclized derivative of glutamate	e is	<u>.</u>	CO4	K4
	Α	Proline	В	Arginine		
	С	Glutamine	D	Serine		
15	руі	rophosphate is a precursor of try	ptop	han an	CO4	K4
	Α	Tyrosine	В	Histidine		
	C	Phenylalanine	D	Isoleucine		
16	Wł	nich of the following is not an aro	mat	ic amino acid?	CO4	K4
	Α	Phenylalanine	В	Tyrosine		
	C	Tryptophan	D	Leucine		
17	Ac	quired porphyria is due to		<u>.</u>	CO5	K3
	Α	Hg	В	Pb		
	C	Cu	D	Sn		
18	He	me synthesis happens in		-condition and is expressed as	CO5	K4
	Α	Cytoplasm	В	Mitochondria		
	C	Both	D	None		
19	Wł	nich is not a hemoprotein?			CO5	K4
	A	Catalase	В	Tryptophan pyrrolase		
	C	Neuroglobin	D	Adenylate kinase		
20	Sin	gle letter code of pyrrolysine is	i		CO5	K4
	Α	В	В	J		
	C	0	D	U		
		PAR	ΤB	$(E \mathbf{V} \mathbf{E} - 2 \mathbf{E} \mathbf{M}_{a})$		
21	A	Write a short notes on high energy	y ph	$\frac{1}{100} = 25 \text{ (Marks)}$	CO1	K2

		OR		
	В	Describe malate-Asparatate shuttle system.	CO1	K2
22	A	Explain the energetic of Glycolysis	CO2	К3
		OR		
	В	Give a note on Glyoxalate pathway	CO2	K3
23	Α	Explain alpha oxidation of Fattyacid	CO3	K3
		OR		
	В	Write the synthesis of TAG and phosphatidyl choline	CO3	K3
	-			
24	Α	Explain transamination and decarboxylation	CO4	K4
		OR		
	В	Describe the synthesis of epinephrine and nor epinephrine	CO4	K4
25	Α	Write a notes on biosynthesis of Hb	CO5	K4
		OR		
	В	Write about the regulation of pyrimidine biosynthesis	CO5	K4
		Section C Answer ANY THREE Questions (3 x 10 - 30)		
26		Write a short notes on oxidative phosphorylation	CO1	K2
27		TCA cycle and its regulation	CO2	K3
28	-	Write about beta oxidation of palmitic acid and calculate the energitics	CO3	K3
29		Describe Urea cycle and its regulation	CO4	K4
30		Describe about denovo synthesis of purines	CO5	K4

TYPES OF SPECIFICATION (Question wise-no of questions)

Outcome/	K1	K2	K3	K4	K5	K6	Total
Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	0	5	0	0	0	0	05
II	0	0	7	0	0	0	07
III	0	0	7	0	0	0	07
IV	0	0	01	6	0	0	07
V	0	0	0	0	7	0	07
Total	0	5	15	6	7	0	33

Outcome/	K1	K2	K3	K4	K5	K6	Total
Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	0	24	0	0	0	0	24
II	0	0	24	0	0	0	24
III	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	24	0	0	24

TYPES OF SPECIFICATION (Marks wise-Total marks)

			M.Sc.	Biochemistr	y-Syllabus	2021-22	
Total	0	24	48	48	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER II (2021-22)

Molecular Biology

Paper : Core Paper V		
Examination : External	Section – A (25X5)	: 25
Time : Three Hours	Section $-B(5X5)$: 25
Paper Code : 21P2BC05	Maximum Marks:	: 75

Section A (Answer all the questions) 20*1=20

1	Mo	ode of DNA replication in E.Coli is			CO1	K2
	Α	Conservative and unidirectional	B	semiconservative and		
	0		Л	unidirectional		
	C	Conservative and bidirectional	ע	bidirectional		
2	In	lagging strand synthesis of DNA	rep	lication, the synthesized DNA	CO1	K2
	fra	gments are known as	П			
	A	Okazaki iragments	В	Complementary DNA		
	C	Primer	D	Primed-DNA Template		
3	Na	me the protein, which is used for term	ninat	ion of replication?	CO1	K2
	A	DnaC	В	SSB		
	C	Tus protein	ר ח	DNA polymerase		
			ע			
4	Th	e DNA polymerase involved in base e	excis	ion repair is	CO1	K2
	Α	DNA polymerase α	В	DNA polymerase β		
	C	DNA polymerase σ	D	DNA polymerase γ		
5	In	prokaryotes, transcription is			CO2	K3
	A	terminated by the stop codon	В	terminated by a protein called rho		
	C	terminated by a poly A sequence	D	terminated by a start codon		
6	In	eukaryotes, there are three differ	ent	RNA polymerases. The RNA	CO2	K3
	A	RNA polymerase I	B	RNA polymerase II		
•	C	RNA polymerase III	D	none of these		
7	Pro	bcess in which introns are removed to as	fron	n messenger RNA precursor and	CO2	K3

	A	Splicing	B	capping		
	C	polyadenylation	D	replication		
8	Th	e largest class of introns which are	e fo	und in nuclear mRNA primary	CO2	K3
	A	Spliceosomal introns	В	Group I introns		
	C	Group II introns	D	Group IV introns		
9	Dı	uring translation, the role of enzyme p	epti	dyl transferease is	CO3	K4
	Α	transfer of phosphate group	В	amino acid activation		
	С	peptide bond formation between adjacent amino acids	D	binding of ribosome subunits to mRNA		
10	In	prokarvotes, the ribosomal hinding sit	e or	mRNA is called	CO3	K4
10	Δ	Hogness-sequence	R	Shine-Dalgarno sequence	005	121
	Г С	Pribnow-sequence	ם ח	$T\Delta T\Delta$ hox		
		1 Honow-sequence	μ			
11	In	prokarvotes, the termination codon II.	ΔΔ	& UAG is recognized by	CO3	K4
11	Δ	RE3	R	RF?	005	187
	Г С	RF1	ם ח	ARE		
12	Wł	nich of the following is not a type of p	ost	translational modification?	CO3	K4
	Α	Proteolysis	В	Protein folding		
	С	Glycosylation	D	Lipid addition		
					~ ~ 1	
13	Wł	nich of the following acts as the induc	er o	f lac operon is?	CO4	K6
	A	Glucose	В	lactose		
	C	galactose	D	Allolactose		
14	Th	e gene product of lac A gene in lac on	eron	ic	CO4	K6
17	Δ	B-galactoside permease	R	B-galactoside isomerase	COT	<u>IXU</u>
	C	B-galactosidase	ם ח	B-galactoside		
	C	p-galactosidase		p-galacioside		
15	Но	w many amino acid residues are there	in ı	ıbiquitin?	CO4	K6
-	A	72	В	73		
	C	75	_ ת	76		
	Č		ע			
16	See	cretory proteins are synthesized by	<u>.</u>		CO4	K6
	A	Ribosomes on the nuclear	В	Ribosomes on endoplasmic		
		membrane		reticulum		

	C	Free ribosomes	D	None of the mentioned		
		i	i	i		
17	Re	combinational repair is often due to		-	CO5	K5
	A	Incorporation of many incorrect nucleotides by DNA pol	В	Many cystidine dimer and associated large gaps in a strand		
	С	Many thymidine dimer formation and associated large gaps in a strand	D	All of the above		
18	W	hy recombinational repair system is ca	lled	double strand break repair?	CO5	K5
	A	Both strands are broken	В	One strand is broken		
	С	No strand is broken	D	Both strand act ss template		
19	Ad	ldition or deletion of bases causes whi	ch k	ind of mutation?	CO5	K5
	A	Transversion	B	Frameshift mutation		
	C	Transition	D	Transcription		
20	Na	me the type of mutation in which the	caus	se of mutation is not known?	CO5	K5
	Α	Spontaneous mutation	В	Suppressor mutation		
	C	Nonsense mutation	D	Mis-sense mutation		
		Section Answer All question	n B ons	$(5 \times 5 = 25)$		
21	A	Illustrate semi conservative replication	on a	nd experimental proof	CO1	K2
		OR				
	В	Explicate SOS repair			CO1	K2
22	A	Write a note on inhibitors of transcri	ptio	n	CO2	К3
		OR				
	В	Explicate splicing mechanism of gro	oup I	introns	CO2	K3
	•					
23	A	Describe genetic code and its feature	es		CO3	K4
		OR				
	В	What is wobble hypothesis? How is	it us	ed in genetic code?	CO3	K4
24	A	Illustrate arabinose operon			CO4	K6
		0.D				
		UK				

	B	Narrate protein targeting and translocation	CO4	K6
25	Α	Describe site specific recombination	CO5	K5
		OR		
	В	Describe the holiday model of recombination	CO5	K5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Describe briefly about mechanism of prokaryotic replication	C01	K2
27		Describe the mechanism of initiation, elongation and termination of transcription in Prokaryotes	CO2	K3
28		Describe briefly about the mechanism of translation in prokaryotes	CO3	K4
29		Explicate positive and negative regulation mechanism of Trp operon	CO4	K6
30		Write a brief note on types of mutation	CO5	K5

TYPES OF SPECIFICATION (Question wise-no of questions)

Outco	K1	K2	K3	K4	K5	K6	Tot
me/	(Rememberi	(Understandi	(Applyin	(Analyzi	(Evaluati	(Creatin	al
Unit	ng)	ng)	g)	ng)	ng)	g)	
Ι	0	7	0	0	0	0	07
II	0	0	7	0	0	0	07
III	0	0	0	7	0	0	07
IV	0	0	0	7	0	7	07
V	0	0	0	0	7	0	07
Total	0	7	7	7	7	7	35

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outco	K1	K2	K3	K4	K5	K6	Tot		
me/	(Rememberi	(Understandi	(Applyin	(Analyzi	(Evaluati	(Creatin	al		
Unit	ng)	ng)	g)	ng)	ng)	g)			
Ι	0	24	0	0	0	0	24		
II	0	0	24	0	0	0	24		
III	0	0	0	24	0	0	24		
IV	0	0	0	0	0	24	24		
V	0	0	0	0	24	0	24		
Total	0	24	24	24	24	24	120		

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER II (2021-22) Endocrinology

	Pa	per : EL	ECT	TIVE IV					
	Examination : E		terna	ernal Section – A (25X1)	: 25		
	Time : Th		ree Hours Section – B (Section $-B$ (5	5X5)	: 25		
	Paper Code : 21P2B		P2B	CE04	Maximum Ma	arks : 75	: 75		
					20X1= 20				
1	W	hich cells produce ins	ulin	/ 		Unit - IV	KI	CO-1	
	A	Alpha cells	B	Beta cells					
	C	Delta cells	D	F cells					
2	W	here is Pancreas locate	ed?			Unit – IV	K2	CO-1	
	A	Below stomach	В	In-between stomach and liver					
	С	Behind the stomach	D	Above the stomach					
3	W	hat does pancreas mak	ke?			Unit – IV	K2	CO-1	
	Α	Enzymes	В	Carbohydrates					
	С	Fats	D	Muscles					
4	W	hich among the follow	ving	is structural and functional unit of a k	tidney?	Unit – IV	K1	CO-1	
	A	Nephron	В	Neuron					
	С	Urethra	D	Henle's loop					
5	DNA and histones are collectively called as ?		tively called as ?		Unit – I	K2	CO-3		
	A	Chromosomes	В	Chromatin					
	С	Centromere	D	Loci					
6	Which type of epithelium is found in thyroid follicles?U				Unit – III	K1	CO-2		
	A	Squamous	В	Cuboidal					
	C	Transitional	D	Columnar					
7	W	hat hormone does the	para	thyroid produce?		Unit – III	K2	CO-3	
	A	Calcitonin	В	PTH					
	C	PFH	D	Insulin					
8	Ho	w many parathyroid g	glano	ls are present?		Unit – III	K1	CO-1	
	A	4	B	3					
	C	2	D	1					
9	W	hich cells produce cal	citor	nin?		Unit – III	K2	CO-2	
	A	C cells	В	B cells					
	C	A cells	D	T cells					
10	Where are parathyroid glands present?			Unit – I	K2	CO-3			

	A	Posterior surface of lateral lobes of thyroid	В	Posterior to stomach			
	С	On top of kidneys	D	Upper chest under breastbone			
11 Which of the following is an energy source for the sperm?					Unit – II	K2	CO-3
	Α	Somatostatin	В	Prostaglandin			
	С	Proteins	D	Fructose			
12Which of the following produces the male sex hormone?Unit – V						K2	CO-3
	A Rete testis B Seminiferous tubule						
	С	Leydig cell	D	Scrotum			
13	Whi	ch hormone possess	es ai	nti-insulin effect?	Unit – V	K2	CO-3
	Α	Cortisol	В	Calcitonin			
	С	Oxytocin	D	Aldosterone			
14	14 Which hormone stimulates the secretion of milk from female?				Unit – II	K2	CO-3
	Α	Oxytocin	В	Progesterone			
	С	LH	D	Prolactin			
15	Whi	ch gland secretes od	oroi	as secretion in mammals?	Unit – I	K3	CO-2
	A	a) bartholins	В	Prostate			
	С	Anal gland	D	Liver.			
16 Which of the following is the common passage for bile and pancreatic juice?			Unit – II	K3	CO-2		
	Α	Duct of oddi	В	Ampulla			
	С	Stomach	D	Duct of Wirsung			
17	17Which of these is not an endocrine property?Unit – VK3CO-						CO-2
	A	Hormones reach targets through the blood	В	Effects are slow and cyclic			
	C	Rapid acting effects	D	Effects caused by chemicals			
18	.8 Which of these is not an endocrine gland?		Unit – V	K3	CO-2		
	A	Pancreas	В	Testes			
	С	Salivary gland	D	Parathyroid			
19	19 Which of the following is Growth hormone inhibiting hormone?			Unit – II	K3	CO-2	
	Α	FSH	В	TRH			
	C	GHRH	D	Somatostatin			
20 What do delta cells secrete? Unit $-I$ K3 C					CO-2		
	A	Cortisol	В	Glucose			
	C	Pancreatic enzyme	D	Somatostatin			
$\frac{\text{Section B}}{\text{Answer All questions } (5 \times 5 = 25)}$							

21	A	Discuss the thyroid hormone and their pathology	Unit – III	K6	CO-5				
		OR							
	В	Evaluate the pancreas hormone and their pathology	Unit – IV	K6	CO-4				
22	Α	Discuss the interrelationship between insulin and glucagons?	Unit – IV	K6	CO-4				
		OR							
	В	Evaluate the Pineal gland and their pathology	Unit – III	K5	CO-2				
			TT • T						
23	Α	Explain the Cytosolic hormone receptors	Unit – I						
	n		T T •/ T	TTC	00.4				
	В	Elaborate the Classes of chemical messengers	Unit – I	K6	CO-4				
24	A	Draw the structure of pituitary gland and its function	Unit – II	K6	CO-4				
		OR							
	В	Discuses the mechanism of growth factors	Unit – II	K5	CO-2				
25	Α	Brief notes on human infertility	Unit – V	K5	CO-2				
		OR							
	В	Draw the structure of male reproductive system and its function	Unit – V	K6	CO-4				
		<u>Answer ALL Questions $(3x \ 10 = 30)$</u>							
26		Explain the interrelationship between calcium, vitamin D and K and physiology functions	Unit – III	K5	CO-4				
27		Elaborate the catecholamines neurotransmitters and their functions	Unit – IV	K4	CO-6				
28		Brief notes on Mechanism of hormone action-Type I and II	Unit – I	K5	CO-6				
20		Evaluia the Enderning has a the learner	II. 1	17.4					
29		Explain the Endocrine hypothalamus	Unit – 11	К4	0-4				
30		Discuses the menstruation cycle	Unit – V	K5	CO-5				
		······································							
	<u> </u>								
Knowledg	K1	К2	К3	K4	K5	К6	Tota		
-----------	-------------	---------------	----------	-----------	------------	----------	------		
e level /	(Rememberin	(Understandin	(Applyin	(Analyzin	(Evaluatin	(Creatin	IULA		
Unit	g)	g)	g)	g)	g)	g)	I		
I	0	7	0	0	0	0	7		
II	0	7	0	0	0	0	7		
	0	0	7	0	0	0	7		
IV	0	0	0	7	0	0	7		
V	0	0	0	7	0	0	7		
Total	0	14	7	14	0	0	35		

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowledg	K1	К2	КЗ	K4	K5	K6	Toto
e level /	(Rememberin	(Understandin	(Applyin	(Analyzin	(Evaluatin	(Creatin	IOLA
Unit	g)	g)	g)	g)	g)	g)	1
I	0	24	0	0	0	0	24
II	0	24	0	0	0	0	24
111	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	24	0	0	24
Total	0	48	24	48	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER II (2021-22) Immunology and Immunotechnology

Paper	: Core Paper VI
Examination	: External
Time	: Three Hours
Paper Code	: 21P2BC06

Section – A (25X1)	: 25
Section – B (5X5)	: 25
Maximum Marks : 75	: 75

Section A Answer all questions (10 x 1 = 10)

1	What Immunity acquired after an infection is			K1	CO-1	
	Α	Active immunity	В	Passive immunity		
	C	Innate immunity	D	Both B and C		
2	Which one engulfs foreign materials		K1	CO-1		
	Α	Macrophages	В	Plasma cells		
	C	Mast cells	D	Lymphocytes		
3	Wh	hich one helps in differentiation of ce	lls o	f immune system	K1	CO-1
	A	Cortiosol	В	Thymosin		
	C	Steroid	D	Thyroxine.		
4	Wh	ich of the following does not protect	t boc	ly surfaces:	K1	CO-1
	A	Skin.	В	Mucus.		
	С	Salivary amylase	D	Gastric acid.		
5	Wh	ich of the following statements abou	t mo	noclonal antibody production is true?	K2	CO-2
	Α	B cell+hybridoma -> myeloma	В	B cell + myeloma -> hydridoma		
	C	B cell + spleen cell -> hybridoma	D	T cell + hybridoma -> myeloma		
6	Wh	hich of the following interleukin activ	vates	eosinophil that consists of FcR for IgE?	K2	CO-2
	Α	IL-1	В	IL-2		
	С	IL-4	D	IL-5		
7	Wh	lich of the following is a hapten		L	K2	CO-2
	A	cyanide	В	penicillin		
	C	paracetamol	D	None of the above		
8	Wh	Lich of the following is NOT true reg	ardir	ng effective immunogens?	K2	CO-2
	Α	Foreign to the host	B	Fairly large (molecular weight > 6000)		
	C	Chemically complex	D	Requires a carrier-conjugate to cause the generation of antibodies		

9	Wh	ich of the following statement is true	e reg	arding Fc region	K2	CO-3
	A	Fragment crystalisation and is the constant region	В	Fragment constant and is the variable region		
	С	Fragment crystalisation and is the	D	Fragment crystalisation and has both		
10	W	hich of these autoimmune diseases c	an b	e cured?	K3	CO-3
		Lupus	2	Multiple sclerosis		
	C	Scleroderma	D	None of the above		
11.	Wh	ich of the following molecule can be	dete	ected by ELISA?	K4	CO-3
	A	proteins	В	hormones		
	С	antibodies	D	all of the above		
12.	Wh stai	at kind of microscope slide should t ning?	be us	ed in preparation for immunofluorescence	K4	CO-3
	Α	Plain glass slide	В	Monospot slide		
	C	Any kind of slide	D	Glass slide frosted on both sides		
13.	Wh	ich of the following immune cell acellular pathogens?	s/mc	lecules are most effective at destroying	K4	CO-4
	A	T helper cells	B	B cells		
	С	Antibodies	D	T cytolytic cells		
14.	Wh	at is the name of MHC in humans?			K4	CO-4
	A	HLA	В	H2		
	С	Adjuvants	D	Haplotype		
15.	Wh	ich MHC molecule recognizes CD8	TC (cells?	K5	CO-4
	A	MHC I	В	MHC II		
	С	MHC III	D	HLA-C		
16.	Wh	ich hypersensitivity reactions are T of	cell r	nediated?	K5	CO-4
	Α	Туре І	В	Type II		
	С	Type III	D	Type IV		
17.	Wh vac	ich of the following animal was t cination for the first time?	he r	naterial isolated which was used for the	K3	CO-5
	A	cat	В	goat		
	С	cow	D	pig		
18.	Wh cult	ich viral disease, vaccine has been ure?	rece	ntly developed through the use of tissue	K3	CO-5
	A	Measles	B	Mumps		
	C	Rabies	D	Small pox		

19.	An	example of a known oncogenic virus	s is		K2	CO-5
	Α	Herpes zoster.	В	HIV-2		
	С	Epstein-Barr virus.	D	Vesicular stomatitis virus.		
20.	20. Which of the following is a non-organ-specific autoimmune disease:			K3	CO-5	
	A	Myasthenia gravis.	В	Systemic lupus erythematosus		
	С	Hashimoto's thyroiditis.	D	Pernicious anemia.		
11	Α	Outline of the innate immunity?	1		K2	CO-1
		OR				
	В	Summarize the haematopoisis.?			K2	CO-1
12.	A.	Explain about structure and proper	ties (of antibody?	K2	CO2
				OR		
	В.	Explain about properties of immun	oger	1?	K2	CO2
13.	А.	Distinuguish the T –cell maturation	n and	B-cellmaturation?	K4	CO3
		OR				
	В.	Discuss about Immunofluorescence	e?		K4	Co3
14.	A.	Discuss about allograft?				CO4
				OR		
	B.	Explain about HLA-Typing			K2	Co4
15.	Α	Outline of the Tumor antigen?			K2	CO5
				OR		
	В.	Discuss about Vaccines?			K4	Co5
	1	Answer ANY	<u>9</u> 117	Section C REE Questions (3 x 10 = 30)		
16	٨	Euglain about algorification of the		fimmunitur	V 2	CO 4
10.	А.	Explain about classification of typ	es o	OR	К3	CO-4
				UK		
	B.	Explain about classification of imn	nune	response?	K3	CO-3
17.	А.	Explain about production and appli	cati	on of monoclonal antibodies?	K3	C04
		- ••		OR		
	B.	Explain about Structure and theries	of a	antibody formation?	K3	CO4
	L	L				

18	A.	Detailed account on Principles and application of Antigen & Antibody interaction?	K2	CO3
	B.	Explain about differientian and proliferation and activation of B cell maturation?	K3	CO3
		OR		
19.	А.	Explain about Secondary immune deficiency diseases?	K3	CO4
		OR		
	В.	Illustrate the organ transplantation of immune suppressive therapy?	K4	CO4
20.	A.	Evaluate the isolation and characterization of immune cells?	K5	CO5
	B.	Explain about immune surveillance and tumor antigens.?	K3	CO5

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Knowled	K1	К2	КЗ	K4	K5	K6	Tat
ge level /	(Rememberin	(Understandi	(Applyin	(Analyzin	(Evaluatin	(Creatin	
Unit	g)	ng)	g)	g)	g)	g)	aı
I	04	04	02	0	0	0	10
II	0	06	02	0	0	0	08
III	0	02	02	4	0	0	08
IV	0	01	01	0	0	0	02
V	0	02	04	01	01	0	08
TOTAL	04	15	11	05	01	0	36

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowled	K1	К2	K3	K4	K5	K6	Tot
ge level /	(Rememberin	(Understandi	(Applyin	(Analyzin	(Evaluatin	(Creatin	
Unit	g)	ng)	g)	g)	g)	g)	ai
I	04	10	20	0	0	0	34
II	00	14	20	0	0	0	34
III	00	06	11	12	0	0	29
IV	00	05	10	0	0	0	15
V	00	06	13	05	10	0	34
TOTAL	04	41	74	17	10	0	166

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR I – SEMESTER II (2021-22) Plant Biochemistry and Plant Biotechnology

Paper	: Elective – II		
Examination	: External	Section – A $(25X1)$: 25
Time	: Three Hours	Section $-B(5X5)$: 25
Paper Code	: 21P1BCE02	Maximum Marks : 75	: 75

Section A (Answer all the questions)

1. Which one of the following is a product of both cyclic and non cyclic photophosphorylation?

a) NADPH b) O₂ c) ATP d) Carbohydrate

- **2. Which of the following is the reduced form of a temporary electron carrier molecule?** a) FADH₂ b) ATP c) NADP+ d) CO₂
- **3. NADP+ is reduced to NADPH during**

a) Light dependent reactions b) photorespiration c) calvin cycle d) none of these

- 4. Autophosphorylation is done on
 - a) His residues b) Ser/ Thr residues c) Lys residues d) Thr residues
- 5. Transcription factor in plants is
 - a) Serine b) Therein c) WRKY/22/29 D) Leucine
- **6.** A factor involved in regulating the fate of stem cells in plant development a) Adrenaline b) Epinephrine c) Thyroid stimulating hormone d) CLVI
- 7. Transpiration can be influenced by interfering with
- a) Guard cell b) Epidermis c) Osmotic pressure d) Atmospheric temperature

8. Which of the following statements is not true for stomatal apparatus

- a) Guard Cells invariably posses chloroplast and mitochondria b)Inner wall of guard cell are thick c)Stomata are involved in gaseous exchange d) Guard cells are alwayssurrounded by subsidiary cells
- 9. Plants absorbs N2 in the form of
 - a) Nitrites (NO₂⁻) b) nitrates (NO₃⁻) c) ammonium (NH₄⁺) d) all of the above
- **10.** The conversion of nitrogen to ammonia nitrogenous compounds is called as a) Nitrogen assimilation b) Nitrogen fixation c) Denitrification d) Nitrification
- **11. Symbiotic N₂ FixingCyanobacteria are present in all except** a) Anthoceros b) Azolla c) Cycas d) Gnetum
- **12.** Conversion of No₂ to NO₃ is carried out by
 - a) Nitrosomonas b) Nitroscoccus c) Nitrobacteria d) Clostridium
- 13. Genes of chromosome consists of
 - a) Genesis b) dominant genesis c) DNA d) alleles
- 14. Chromosomes are made up of special material of protein called
 - a) Cytosine b) thymine c) chromatin d) adenine
- 15. If BP is a gene pair of individual then alleles for this gene pair are
 - a) A & B b) a & b c) a & A d) b & B
- 16. Two chromosomes in pair are classified as
 - a) Heterologous chromosomes b) homologous chromosomes c) homozygous chromosomes d) heterozygous
- 17. Cellular totipotency is the property of
 - a) Plants b) animals c) bacteria d) all of these

18. Subculturing is similar to propagation by cutting because

- a) It separates multiple microshoots and places them in a medium
- b) It uses scions to produce new microshoots
- c) They both use in vitro growing conditions
- d) All of the above
- **19.** What is are the benefit(s) of micro propagation or clonal propagation
 - a) Rapid multiplication of superior clones
 - b) Multiplication of diseases free plants
 - c) Multiplication of sexually derived sterile hybrids
 - d) All of the above

20. Protoplasts can be produced from suspension culture, callus tissues or lritact fissues by enzgratic treatment with

- a) Cellulotyic enzmes b) pectolytic enzmes c) both cellulotytic &pectolytic enzmes
- d) Protelytic enzmes

Section B (Answer all the questions)

- 21. a)Photosynthetic apparatus (Or)
- b) Write a note on photosystem
- 22. a)Hatch-Slack pathway (Or)
- b) Write a note on starch biosynthesis
- 23.a)Describe the biochemistry of nitrogen fixation (Or)
- b) Explain the interaction between nitrate assimilation and carbon metabolism
- 24. a) Write about organization of plant chromatin (Or)
- b) List out the advantages and uses of transgenic plants
- 25. a) Write a short notes on media preparation(Or)
- b) Write the uses of haploids in plant breeding

Section-C(Answer any 3Questions)

- 26.Write in detail about photosynthetic pigment
- 27. Write a short notes on photorespiration
- 28.Explain the mechanism of symbiotic nitrogen fixation in legumes
- 29. Write in detail about development of chloroplast
- 30.Write a short notes somoclonal variation

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc., BIOCHEMISTRY YEAR I – SEMESTER II (2021-22) Core Practical - III

Paper: Core Practical – IIIExamination: ExternalTime: Six HoursPaper Code: 21P2BCP03

Maximum Marks : 60

(25 Marks)

(Answer all the questions)

- 1. a)Estimate the amount of chlorophyll from plant leave extracts. (25 Marks) (Or)
 - b) Estimate the amount of total alkaloids
- 2. a)Estimate the amount of Coffeine from Tea

(Or)

b) Determine the amount of alkaloids from lemon oil.

RECORD: 05

VIVA:05

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc., BIOCHEMISTRY YEAR I – SEMESTER II (2018-19) Core Practical - IV

Paper	: Core Practical – IV		
Examination	: External		
Time	: Six Hours		
Paper Code	: 21P2BCP04	Maximum Marks	: 60
	(Answer all the questions)		
1. a)Estimate th	e amount of DNA from Diphenylamine method (Or)	(25 Marks)	
b) Estimate th	e amount of RNA by orcinal method		
2. a) Determine	Restriction digestion of DNA	(25 Marks)	
(Or)			
b) Isolate the ge	enomic DNA from give unknown sample		

RECORD: 10

YEAR II – SEMESTER III ADVANCED CLINICAL BIOCHEMISTRY

Paper	: Core VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 21P3BC07	External	: 75
SUBJECT DESCRIPT	FION:		

Advanced Clinical Biochemistry deal with the diagnostic importance of various metabolic disorders and to know the clinical aspects of various metabolic disorders.

Course No	Course Outcome	Knowledge Level
CO1	Recognize the basic principles and practices of clinical laboratory-Automation, Laboratory safety	K1 & K2
CO2	Execute disorders of carbohydrate metabolism and lipid metabolism	К3
CO3	Distinguish about disorders of aminoacids and nucleic acid metabolism	K4
CO4	Interpret the Renal function test, Liver function test, Gastric function test, Cerebrospinal fluid	K3 & K4
CO5	Catagorize Porphyria, porphyrinuria and Disorders of erythrocyte metabolism	K4 & K6

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	S	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	S	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	S	М	L	М	L	Μ	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Basic principles and practices of clinical laboratory: Collection of specimens – Blood, Urine, CSF, Amniotic fluids. Laboratory safety –first aid in laboratory accident, Toxic chemicals and biohazards, Automation in clinical laboratory – Precision, Quality assurance, clinical validation. Automation and computerization water and electrolytes homeostatis.

Unit II – (15 Hrs.): Disorders of carbohydrate and lipid metabolism (Hyperglycemia and Hypoglycemia): Diabetes Mellitus, Diabetes incipitus, Renal Threshold Value, Insulin receptors Glycogen storage disease, Mucopolysaccharidosis, Lipids and lipoprotein abnormalities - Lipidosis, hypercholesterolemia, Plasma lipoproteins – albuminuria Taysach's and Niemann picks diseases, Atherosclerosis.

Unit III – (15 Hrs.): Disorders of aminoacids metabolism: Inborn errors of Branched chain amino acids-Maple Syrup Disease, Aromatic amino acids-Alkaptunuria, Tyrosinaemia, Aliphatic amino acids, Disorders of Purine and Pyrimidine metabolism-Gout, Lesch Nyhan syndrome.

Unit IV – (**15 Hrs.**): **Clinical Tests**: Renal function test - Osmolarity and free water clearance, acute and chronic renal failure, nephritic syndrome, dialysis, Liver function test - Clinical significance of AST, ALT, ALP and Gamma glutamyl transpeptidase, Jaundice, Pancreatic function test, Gastric function test- Peptic Ulcer, Cerebrospinal fluid – Blood-brain barrier, composition of CSF and chemical chages in CSF.

Unit V – (**15 Hrs.): Haemotological Tests**: Disorders of mineral metabolism- phosphorus, Potassium, Iron, Copper, Calcium, Sodium - Porphyria, porphyrinuria. Disorders of erythrocyte metabolism- hemoglobinopathies, thalassemia and anemia, Classification of anemia.

TEXT BOOKS

1.N.W.Teitz, (1994). Textbook of Clinical Chemistryand Molecular Diagnostics, Fifth

Edition W.B. Saunders company

2.Harold Varley (1988). Practical Clinical Biochemistry, volume I and II 4th Edition, CBS

Publishers New Delhi

3. Foye, O.W., Lemke, J.L. and William D.A. (1995). Medicinal Chemistry, B.I. Waverly

Pvt.Ltd., New Delhi.

REFERENCE BOOKS

1.Philip. D. Mayne (1994). Clinical Biochemistry in Diagnosis and Treatment 6th Edition ELBS Publication

2. A.C. Guyton & J.E.Hall, (2006). Text Book of Medical Physiology 11th Edition Harcourt

Asia.

3.Medical laboratory technology by Kanai L mukherjee and Swarajit gosh.2ND EDITION2014 PUBLISHED

BY mc.Graw hill education(India) Pvt ltd,Newdelhi.

WEB REFERENCE

- 1. www.medicinenet.com > ... > diabetes az list > diabetes mellitus index
- 2. www.mayoclinic.org/diseases-conditions/diabetes/basics/.../con-2003309...
- 3. www.niams.nih.gov>
- 4. www.nios.ac.in/media/documents/dmlt/Biochemistry/Lesson-25.pdf
- 5. www.arup.utah.edu/education/automation.php

PEDOGOGY: CHALK and Talk, PPT

YEAR II – SEMESTER III GENETIC ENGINEERING AND FERMENTATION TECHNOLOGY

Paper	: Core IX	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 21P3BC09	External	: 75
SUBJECT DESCRIPT	FION:		

Genetic Engineering and Fermentation technology deal with the basis of gene cloning, vectors, genetic engineering techniques and large scale production of biochemical by fermentation technology.

OBJECTIVE:

The objective of the course it to learn about the basics of genetic engineering, vectors, methods of gene cloning. Techniques and application of gene technology, Fermentation technology and its application in fermented food preparation .

COURSE OUTCOMES:

Course No	Course Outcome	Knowledge Level
CO1	Define the basics of gene cloning, enzymes involved in genetic engineering techniques and genomic DNA libraries.	K2
CO2	Outline the techniques involed in sequencing, molecular markers and gene transfer techniques	K2
CO3	Applications of genetic engineering and genome editing techniques	К3
CO4	Perceive fermentation screening, media preparation an knowledge about fermentors	K4
CO5	Production of products like antibiotics, enzymes and fermented foods	K4

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	S	S	Μ	S	S	Μ	L	S	М	L	L	L	L
CO2	S	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	S	М	S	М	L	L	S	S	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	S	S	L	М	S	S
CO5	S	М	L	М	L	М	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT: Unit I

15 Hours

Introduction to Genetic Engineering: Molecular tools of GE - Restriction endonucleases its types, and

applications, DNA ligases, Alkaline phosphatase, reverse transcriptase and Topoisomerase. Vectors plasmids, bacteriophage lambda, M13, cosmids, phagemids, bacterial and yeast artificial chromosome, plant viral vector - CaMV, animal viral vector - retroviral vector, shuttle vector, expression vector, Strategies and steps involved in Gene Cloning, cDNA and Genomic DNA library. Unit II 15 Hours

Techniques in Genetic engineering: DNA sequencing – DNA/RNA labelling, Maxam and Gibert method, Dideoxynucleotide method, next generation sequencing, Chromosome walking, Automated DNA sequencing, DNA fingerprinting, Molecular markers - RFLP, RAPD, AFLP, STR and SNP. In-situ hybridization, Sitedirected mutagenesis, PCR. Methods of gene transfer - transformation, conjugation, electroporation, liposome-mediated gene transfer, transduction, direct transfer of DNA.

Unit III

15 Hours

Applications of Genetic engineering: Production of recombinant therapeutic proteins – recombinant insulin, growth hormone, interferons, vaccine - hepatitis B surface antigen, GE of B.thuringiensis toxin genes and GE for improved biocontrol agent - baculovirus. Concept of gene therapy - types, applications - gene therapy for SCID, ADA, CF, Anti-sense therapy, Genome editing- CRISPR-Cas, gene targeting.

Unit IV

15 Hours

Zymology: Pasteur and fermentation, Strain - screening, development, preservation, storage. Inoculum preparation, production medium, sterilization -equipment, media and air. Fermentor - factors, configuration batch, semi continuous, continuous stirred – tank, tubular, fluidised bed, computer application in fermentation technology. Downstream processing - stages. **15 Hours**

Unit V

Application of fermentation technology: Production of antibiotics - penicillin, streptomycin, tetracyclin, organic acids - citric acid, lactic acid and vinegar, enzymes - extracellular amylase, proteases, pectinase, solvents - ethanol, glycerol, aminoacids - glutamic acid and lysine, vitamins - vitamin B12 and vitamin C, SCP, fermented food - Sauerkraut, yoghurt.

TEXT BOOKS

- Brown T.A., (2012), Gene cloning and DNA Analysis: An Introduction, 7th edition, Wiley-Blackwell. 1.
- 2. Watson, W.H.Freeman(1992). Recombianant DNA 2nd Edition. Freeman and Co., NY
- A.H.Patel (2008). Industrial Microbiology 11th Edition. Macmillan India Ltd, New Delhi 3.

REFERENCE BOOKS

1. Peter J.Russell., (2013) Genetics, 5th Edition, person Benjamin Cummings, New york

2. S.B. primrose and R.m.Twyman (2006) Principles of Gene Manipulation and

Genomics (2006) 7th Edition. Blackwell pub., NY.

3. SmitaRastogi and neelamPathak (2014) Genetic Engineering 6th Edition Oxford

University Press, New Delhi.

WEB REFERENCES

- 1. https://www.biologydiscussion.com/dna/recombinant-dna-technology/cloning-vectors-used-inrecombinant-dna-technology-3-cloning-vectors/12102
- 2. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/chromosome-walking
- 3. https://www.yourgenome.org/facts/what-is-crispr-cas9
- 4. https://www.biologydiscussion.com/industrial-microbiology-2/fermentor-bioreactor-history-designand-its-construction/55756

5. https://www.sciencedirect.com/topics/food-science/sauerkraut

PEDOGOGY: CHALK and Talk, PPT

YEAR II – SEMESTER III RESEARCH METHODOLOGY

Paper	: Core VIII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	:03
Credit	: 5	Internal	: 25
Paper Code	: 21P3BC08	External	: 75

SUBJECT DESCRIPTION:

Research Methodology deal with the knowledge on the basic concepts of research and its methodologies and identify appropriate research topics.

OBJECTIVE:

To understand basic concepts of research and its methodologies and identify appropriate research topics. Select and define appropriate research problem and parameters and prepare a project proposals.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Understood about basic concepts of research and its methodologies and identify appropriate research topics	K2
CO2	Provide the importance and need for research.	K2
CO3	Understood about basic concepts of research designs, ethics in scientific research.	K3
CO4	Understood about basic concepts of data collection and analysis of scientific data using software along with ethical issues in human gene therapy and human cloning.	K4
CO5	Select and define appropriate research problem and parameters	K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	S	S	S	Μ	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S	S	М
CO3	S	S	М	М	М	S	М	S	М	М	S	S	М	S	S
CO4	S	S	М	М	М	S	М	S	М	М	S	М	S	S	М
CO5	S	S	М	S	S	S	S	S	S	S	М	S	S	S	М

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Scientific Research and Writing: Importance and need for research, Ethics and scientific research, Plagiarism- Types of Plagiarism, Types and characteristic designing a research work, Formulation of hypothesis, Scientific writing – Characteristics, Logical format for writing thesis and papers, Essential features of abstract, introduction, review of literature, materials and methods, and discussion, Effective illustration - tables and figures, Reference styles - Harvard and Vancouver systems, citations and h-index

Unit II – (**15 Hrs.): Measures of central tendency**: Arithmetic mean, median, mode, quartiles, deciles and percentiles, Measures of variation - range, quartile and Quartile deviation, mean deviation, standard deviation, Correlation analysis - Scatter diagram, Karl Peason's coefficient of correlation and Spearman's rank method, Regression analysis- Regression line, Regression equation.

Unit III – (**15 Hrs.**): **Probability**- Definition, concepts, Addition and Multiplication theorems (proof of the theorems not necessary) and calculations of probability, Theoretical, distributions, Binomial,Poisson, Fit a Poisson distribution, Normal distribution - importance, properties, conditions and constants of the distribution (proof not necessary), Simple problems.

Unit IV – (**15 Hrs.**): **Sampling distribution and test of significance**: Testing of hypothesis, errors in hypothesis testing, standard error and sampling distribution, sampling of variables (large samples and small samples), Student's 't' distribution and its applications, Chi - square test & goodness of fit.

Unit V – (15 Hrs.): Bioethics and Patenting: The Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) guidelines - Animal care and technical personnel environment-Animal husbandry, feed, bedding, water, sanitation and cleanliness, waste disposal, anesthesia and euthanasia, Institutional Ethical Committee (IEC) - General ethical issues of human- Drugs, herbal remedies, Food and drug safety and human genetic research- Gnen Therapy and Cloning. Definition- Patent, Intellectual Property, Intellectual Property rights - Patents, Copy rights, Design, Trademark and Trade secrets, Geographical indication (GI), criteria for patentability, Declaration of Bologna.

TEXT BOOKS

1. R.A. Day, How to Write a Scientific Paper. Cambridge University Press.

2. Alley, Michael (1987). The Craft of Scientific Writing. Englewood Cliffs. N.N. Prentice

3. M.C. Sharma (1997). Desk Top Publishing on PC, BPB Publications,

REFERENCE BOOKS

1. Contemporary issues in Bioethics, Beauchamp & Leroy, 1999. Wardsworth Pub. Co. Belmont, California.

2. Ethical Guidelines for Biomedical Research on Human Subjects (2000). ICMR, New

Delhi.

3. Biostatistics – A foundation for analysis in health Science Danien.

WEB RESOURCES

- 1. www.newagepublishers.com/samplechapter/000896.pdf
- 2. www.wipo.int/wipo_magazine/en/2006/04/article_0003.html
- 3. www.ijme.in/182ar82.html
- 4. https://en.wikipedia.org/wiki/Database
- 5. www.tutorialspoint.com/database_tutorials.htm

PEDOGOGY: CHALK and Talk, PPT

YEAR II – SEMESTER III CORE PRACTICAL V

Paper	:Core Practical - V	Total Hours	: 45
Hours/Week	: 5	Exam Hours	:06
Credit	: 3	Internal	: 40
Paper Code	: 21P3BCP05	External	: 60
COURSE OUTCOME	2:		

Course No	Course Outcome	Knowledge Level
C01	Learn and understand the collection and storage of blood	K1 & K2
CO2	Estimate the amount of Glucose, Serum protein, urea, uric acid, Creatinine, Bilirubin	K1 & K2
CO3	Learn the qualitative analysis of normal and pathological constituents in urine.	K1,K2 & k3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	Μ	S	М	М	L	L	М	L	L	S	S
CO3	S	S	М	М	S	М	М	М	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

Analysis of Blood and Urine samples

- 1. Estimation of glucose by O-Toluidine Method.
- 2. Estimation of proteins by Lowry and Biuret Method.
- 3. Estimation of A/Gratio in serum.
- 4. Estimation of urea by DAM method.
- 5. Estimation of uric acid by Phosphotungstate Method.
- 6. Estimation of creatinine by Alkaline Picrate Method.
- 7. Estimation of cholesterol by Zlatkis, Zak and Boyle method.
- 8. Estimation of bilirubin by Evelyn Malloy method.
- 9. Qualitative analysis of normal and pathological constituents in urine.
- 10 .Estimation of Calcium in urine by Clark Method
- 11. Estimation of Chloride in urine by Schales & Schales Method

REFERENCES

1. David, T. Plummer, (1988). An Introduction to Practical Biochemistry. 3rd Edition. Tata

McGraw Hill Publishing Company Ltd. New Delhi.

2. Pattabiraman, T.N. (1998). Laboratory Manual in Biochemistry. 3rd Edition. All India

Publishers and Distributors. Chennai.

3. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry.2nd Edition. New Age

International (P) Limited. New Delhi

4. Sadasivam S and Manickam P. (2004) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

REFERENCES

- David, T. Plummer, (1988). An Introduction to Practical Biochemistry. 3rd Edition. Tata McGraw Hill Publishing Company Ltd. New Delhi.
- Pattabiraman, T.N. (1998). Laboratory Manual in Biochemistry. 3rd Edition. All India Publishers and Distributors. Chennai.
- 3. Jayaraman, S. (2003). Laboratory Mannual in Biochemistry.2nd Edition. New Age

International (P) Limited. New Delhi

4. Sadasivam S and Manickam P. (2004) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

YEAR II – SEMESTER III CORE PRACTICAL VI

Paper	:Core Practical - VI	Total Hours	: 45
Hours/Week	: 5	Exam Hours	:06
Credit	: 3	Internal	: 40
Paper Code	: 21P3BCP06	External	: 60
COURSE OUTCOM	E :		

Course No	Course Outcome	Knowledge Level
CO1	Learn and understand the gentic material	K1 & K2
CO2	Isolation and Estimation of DNA, RNA	K1 & K2
CO3	Learn the restriction digestion, PCR techniques	K1,K2 & k3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	М	S	S	S	S	М	М	L	М	М	М	М	М
CO2	S	М	М	S	Μ	S	М	Μ	L	L	М	L	L	S	S
CO3	S	S	М	М	S	М	М	Μ	L	L	М	L	L	S	М

S- Strong; M-Medium; L-Low

- 1. Estimation of DNA a) Diphenylamine method b) UV method
- 2. Estimation of RNA a) Orcinol method b) UV method
- 3. Comet Assay
- 4. Agarose Gel Electrophoresis
- 5. Isolation of plasmid DNA
- 6. Isolation of Genomic DNA
- 7. Isolation of RNA
- 8. Restriction digestion of DNA
- 9. Preparation of competent cell and Transformation
- 10. PCR Demonstration
- 11. Southern Blotting –Demonstration

REFERENCES

- 1.David, T. Plummer, (1988). **An Introduction to Practical Biochemistry**. 3rd Edition. Tata McGraw Hill Publishing Company Ltd. New Delhi.
- Pattabiraman, T.N. (1998). Laboratory Manual in Biochemistry. 3rd Edition. All India Publishers and Distributors. Chennai.
- Jayaraman, S. (2003). Laboratory Mannual in Biochemistry. 2nd Edition. New Age
 International (P) Limited. New Delhi

4. Sadasivam S and Manickam P. (2004) **Biochemical Methods**. 2nd Edition. New Age International (P) Limited. New Delhi.

NEUROSCIENCE

Paper	: Elective	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	:21P3BCE05	External	: 75

SUBJECT DESCRIPTION:

Neuroscience deal with the understanding of the functions of various sensory organs in human

system, biochemical aspects behind diseases associated with the nervous system and effect of drug therapy.

OBJECTIVE:

To enable the students to gain knowledge about the structure and functions of the nervous system and have basic understanding of the nervous system and effect of drug therapy

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Discuss the structure of nervous system, neurons and neurotransmitters receptors like cholinergic, exhibitory and inhibitory nerve impulse	K2
CO2	Understand a broad fundamentals neurohormones, neurotransmitters and neuronal behavior such as cognitive, movement and sleeping	K3
CO3	Analyses critical knowledge skills by a analyzing and evaluation of neuronal sensory and visual sensation	K4
CO4	Explain the knowledge of treated drugs action for neurological disease	K5
CO5	Hypothesis and evaluate the neurological diseases such as Dementia, Schizopherenia, Parkinson disease and Alzheimer's disease etc. and their clinical interpretation	K6

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	Μ	S	S	S	L	Μ	Μ	М	S	L	М	S	М
CO3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	Μ	L	М	L	Μ	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Introduction Nervous system- Classification, General functions of autonomic and somatic nervous system, Neuron – Structure and function, types of neurons, excitation and action potential, Neuroglia - structure and fuctions, olfactory signal transduction, Synapse- structure and functions.

Unit II - (15 Hrs.): Brain and Spinal cord-Structure and functions, Brain metabolism and metabolic adaptation, Neurohormones and neuromodulators, Neurotransmitters-structure and types, Receptors for

neurotransmitters - cholinergic, adrenergic, nicotinic and muscarinic, excitatory and inhibitory transmission, conduction of nerve impulse, acetylcholine mechanism.

Unit III – (15 Hrs.): Sensory systems and behavior -Somatic sensation -Perception of pain, Analgesia system in the brain and spinal cord, Special senses- Vision, photoreceptors, Visual cycle - Rod cell adaptation, Color vision - role of cone cell, Color blindness, Mechanism of hearing, Biochemical aspects of taste and olfactory, Neuronal behavior -sleep, learning and memory

Unit IV – (15 Hrs.): Neurodegenerative Diseases and action of Drugs -Dementia, Schizophrenia, Huntington's disease, amyotrophic lateral sclerosis, Parkinsonism disease and Alzhemier's disease, Neuromuscular diseases - Muscular dystrophy, tetanus and botulism. Magnetic resonance imaging, electroencephalogram, Positron emission tomography, CNS depressants (sedative, hypnotics), CNS stimulants, analgesics, antipsychotics and mood stabilizing drugs, Drug theraptic actions of Huntington's disease.

Unit V- (15 Hrs.): Pharmaceutical Biochemistry- Introduction to Pharmacology, Sources of drugs, Dosage forms and routes of administration, mechanism of action, Combined effect of drugs, Factors modifying drug action, tolerance and dependence, Pharmacogenetics. Absorption, Distribution, Metabolism and Excretion of drugs, Principles of Basic and Clinical pharmacokinetics, Adverse Drug Reactions and treatment of poisoning, Bioassay of Drugs and Biological Standardization, Discovery and development of new drugs.

TEXT BOOKS:

1. Arthur C.Guyton and John E. Hall. 2007. Text Book of Medical Physiology. [Eleventh

Edition]. Elsevier Publications, New Delhi. .

2. Gerald. J. Tortora and Sandra Reynolds. 2003. Principles of Anatomy and Physiology.

[Tenth Edition]. John Wiley and Sons. Inc. Pub. New York ..

3. Tripathi, K. D. 1999. Essentials of Medical Pharmacology. [Fourth Edition]. Jaypee

Brothers Medical Publishers. New Delhi

4.Gerard J Tortora and Bryan derrickson **Principles of anatomy and physiology,** 14 th Edition. **REFERENCE BOOKS:**

1.George I. Siegel, 2000. Basic Neurochemistry. [Seventh Edition]. Academic Press, New

Delhi.

2. Kathleen J. W. Wilson and Anne Waugh. 1998. Anatomy and Physiology in Health and

Illness. [Eighth Edition]. Churchchill Livingstone, New York.

WEB SOURCES

https://www.myvmc.com/anatomy/blood-function-and-composition/ https://en.wikipedia.org/wiki/Blood https://www.pjms.com.pk/issues/aprjun107/article/article4.html www.drive5.com/muscle/

PEDOGOGY: CHALK and Talk, PPT

YEAR II – SEMESTER IV BIOINFORMATICS & NANOTECHNOLOGY

Paper	: Core XI	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	:21P4BC11	External	: 75
ATTO TRAM DRA			

SUBJECT DESCRIPTION:

Bioinformatics and Nanotechnology deal with the understanding of Biological databases, Tools for database search, Protein structure analyses and prediction and drug design.

OBJECTIVE:

Analysis of gene and protein sequences to reveal protein evolution and alternative splicing, the development of computational approaches to study and predict protein structure to further understanding of function, the analysis of mass spectrometry data to understand the connection between phosphorylation and cancer, the development of computational methods to utilize expression data to reverse engineer gene networks in order to more completely model cellular biology, and the study of population genetics and its connection to human disease.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Students learn about Biological databases	K1 & K2
CO2	Tools for database search system.	K1 & K2
CO3	Protein structure analyses and prediction and drug design and nanoparticles	K1,K2 & k3
CO4	An ability to design and conduct experiments, as well as to analyze and interpret data	K3 & K4
CO5	Characterization methods for nanomaterials, understanding and critiquing nanomaterial safety and handling methods required during characterization	K4 & K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	S	М	S	L	S	М	S	S	М	S	L	М	М	S
CO2	S	S	S	S	S	S	S	S	М	S	S	М	М	М	S
CO3	S	S	S	S	S	S	S	S	М	S	S	М	М	М	S
CO4	S	S	М	М	S	М	М	S	М	М	М	М	М	М	S
CO5	S	S	S	S	М	S	М	S	S	L	М	М	S	М	S

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Introduction of Bioinformatics Database searches

Introduction of Bioinformatics –DNA sequences and their types (cDNA, ESTs, STS Sequence-Tagged Site (STS) and GSS Genome Survey Sequences) RNA sequencing method and their application. Protein sequencing of Sanger's method

Unit II (15 Hrs.): Biological Sequence and Databases

Sequence Databases : Nucleotide Sequence Databases –GenBank, EMBL,– Protein Sequence Databases – SWISS-PROT, UniProt PIR — Genome Databases – GOLD, TIGR - Structure databases – PDB, MMDB, – Protein Structure Visualization Tools: RasMol, Swiss PDB Viewer

UNIT III(15 Hours) : Modeling, Designing and Genome Analysis

Homology modeling, three-dimensional structure prediction, energy based prediction of protein structures, modeling software (Modeller). Design of ligands, drug-receptor interactions, automated structure construction methods, AUTODOCK. Human genome analysis, Whole genome analysis – shotgun sequencing. Genome identification Feature based approach – ORF's; Primer Designing; Vector designing; APE

UNIT IV (15 Hours) : Nanotechnology

Introduction of Nanotechnology, synthesis of nanoparticles- Top to bottom (Laser ablation and Ball milling method), Bottom to up (Sol-gel and Laser pyrolysis). Nanostructures (1 Dimension, 2 Dimension and 3 Dimension), Nanoscale Characterization- Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic force microscopy and X-Ray Diffraction delete

UNIT V (15 Hours): Applications of Nanotechnology

Application in Medicine, Agriculture, Environment (air and water pollution), Nanodevice, Cosmetics, Bioengineering, Nanofabrics, Nanofuels, Nanocomputers

TEXT BOOKS

1. Functional and computational Aspects Genomic and proteomics - sandarsunai

Bioinformatics-concepts,Skill and Application-S,C Rastogi ,Namitamendritta,Paragrastogi

(2000).

2. Protein Biochemistry and Proteomics(2006). Hubert Rehn, Acadamic press

3. Harshawaedhan .P.Bal Bioinformatics Principles and Application

4. JanuszM.Bujnicki (2008) Pratical Bioinformatics Springer Berlin.

REFERENCE BOOK

1. Nanotechnology -Fundamentals and Application -MansiKarKare

2. Liebler, Humana (2002) Introduction to proteomics: Tools for new biologyLiebler, Humana

W.CBS pub.,

WEB REFERENCE

https://en.wikipedia.org/wiki/Nanomaterials

https://gmwgroup.harvard.edu/pubs/pdf/936.pdf

www.crnano.org/whatis.html

www.metabolomicdiscoveries.com/

PEDOGOGY: CHALK and Talk , PPT

YEAR II – SEMESTER IV HUMAN PHYSIOLOGY

Paper	: Core X	Total Hours	: 75
Hours/Week	: 5	Exam Hours	:03
Credit	: 5	Internal	: 25
Paper Code	:21P4BC10	External	: 75
SUBJECT DESCRI	PTION:		

Human Physiology deal with the understanding of biological, physiological activities along with the mechanism of action of various organs and its anatomy.

OBJECTIVE:

The objective of the subject is to make the students learn about various parts of alimentary parts of human body. Learnt more specific on the nervous activities.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Distinguish the anatomy, biological, physiological activities along with the mechanism of action of eyes and muscles.	K1 & K2
CO2	Demonstrate about digestive system and its regulation alimentary parts of human and body fluids body.	K3
CO3	Discriminate respiratory system and excretory system.	K5
CO4	Assess the Sympathetic parasympathetic nervous system and synaptic transmission	K4
CO5	Interpret about male and female reproductive system and its physiological function, hormonal regulation	K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	М	L	М	L	М	S	L	S	S	М	М	S	L	L
CO2	М	L	М	S	S	S	L	М	М	М	S	L	М	S	М
CO3	L	М	L	М	L	L	S	L	S	S	М	М	L	L	L
CO4	S	L	М	S	S	L	L	S	L	L	S	L	М	S	S
CO5	М	М	L	М	L	М	S	L	S	S	М	М	L	L	L

S- Strong; M-Medium; L-Low

CONTENT:

Unit I – (15 Hrs.): Physiology of vision: Structure of eye, image formation and defects of the eye, Receptor mechanism of the eye, photopigments, Visual cycle and colour adaptation Muscle; Types of muscle. Structure of skeletal muscle. proteins - myosin, actin, troponin, tropomyosin and other proteins. Action potential, Reflex action, Mechanism and regulation of contraction and relaxation of skeletal muscle

Unit II – (15 Hrs.): Digestive and cardiovascular system: Digestive secretions - composition, functions and regulation of saliva, gastric, pancreatic, intestinal and bile secretions. Digestions and absorption of carbohydrates, lipids, proteins and nucleic acids. Circulatory system – structure and functions of heart, ECG, Cardiac Cycle

Unit III – (15 Hrs.): Respiratory system: Diffusion of gases in lungs, transport of oxygen from lungs to tissues through blood, factors influencing the transport of oxygen, Transport of CO_2 from tissues to lungs through blood, factors influencing the transport of CO_2 , Excretory System - Structure and functions of kidney, Nephron, Mechanism of urine formation, Renal Transplantation, Dialysis.

UNIT IV-(15 Hrs.): Nervous system: Structure of neuron, resting potential and action potential, Propagation of nerve – impulses, Structure of synapse, synaptic transmission (electrical and chemical theory), Structure of Neuro muscular junction and mechanism of neuro muscular transmission, neurotransmitters.

Unit V – (15 Hrs.): Reproductive biology: Structure of testis, Spermatogenesis, functions of testis, Female Reproductic system - Ovarian cycle, Structure and hormones of ovaries, menstrual cycle, menopause, pregnancy and lactation, Steroids as contraceptives.

TEXTBOOKS

1.Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi). ISBN: 978-1-4160-4574-8.

2.Chatterjee A.C (2004) **Human Physiology**, Volume I & II.11th Edition Medical agency allied, Calcutta

3. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York), ISBN: 978-0-07-128366-3.

4. M.M.Muthiah **Text book of biochemistry, Lecture notes on human physiology** Vol II 1991.

REFERENCE

1.William. F. Ganong, (2003) **Review of Medical Physiology**, 14th Edition, A Lange Medical book.

2. Murray, R.K., Granner, D.K., Mayes and P.A., Rodwell, V.W., (2012) **Harper's Biochemistry** 29th ed., Lange Medical Books/McGraw Hill. ISBN:978-0-07-176-576-3.4 **WEB SOURCES**

https://www.myvmc.com/anatomy/blood-function-and-composition/ https://en.wikipedia.org/wiki/Blood https://www.pjms.com.pk/issues/aprjun107/article/article4.html www.drive5.com/muscle/

PEDOGOGY: CHALK and Talk , PPT

Paper	: Elective VI	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	:21P3BCE06	External	: 75

MICROBIAL BIOCHEMISTRY

SUBJECT DESCRIPTION:

Microbial Biochemistry deal with the basic principles of metabolic processes within the cell and how these processes can be harnessed for biotechnology.

OBJECTIVES:

Basic knowledge regarding the structure and properties of micro-organisms, including those of clinical, environmental and industrial importance. A variety of laboratory exercises where students can apply their theoretical knowledge to Practical situations and demonstrations, in the above areas.

OUTCOME:

Students will be able to demonstrate an understanding of the major mechanisms of metabolism, energy exchanges and homeostasis in cells. Recognize the linkage between the structures, chemical properties and chemical processes of certain molecules and macromolecules, and their roles in cells and biological processes, and in certain diseases.

CONTENT:

Unit I – (15 Hrs.): Microbial world: Cellular organization of bacteria with special reference to molecular organisation of cell wall, flagella and pili, Identification and classification of bacteria, Handling and sterility maintenance in microbiological work, Methods of isolation and pure culture techniques, culture media preparation, enrichment culture, Microbial nutrition, bacterial growth and its kinetics, Cyanobacteria, Archeabacteria, Viruses - Structure, classification.

Unit II – (15 Hrs.): Microbial metabolism: overview, Role of chlorophylls, carotenoids and phycobilins, Chemolithotrophy, methanogenesis and acetogenesis, fermentations - diversity, syntrophy - role of anoxic decomposition, Entner - Doudoroff pathway, stickland reaction, pectin and aldo-hexuronate pathway, hydrocarbon transformation, Anaphlerotic reactions, Autotrophic metabolism, Amino acid synthesis in microbes.

Unit III – (15 Hrs.): Bioprocess Technology: Fermentation technology - Primary and secondary metabolites, Continuous and batch type culture techniques, Types and design of fermentors, fermentation processes, brewing, manufacture of penicillin, production of other antibiotics and organic compounds, single cell proteins, Isolation and screening of industrially important microbes, Inoculum preparation - primary and secondary strain improvement, Detection of Downstream processing.

Unit IV – (15 Hrs.): Industrial Production: Microbes in mineral recovery and petroleum recovery, Bioleaching and Biosorption, Production of Biomass, Production of Single cell protein and Mushrooms, Organic acids - Acetic acid, lactic acid, citric acid and gluconic acid, Solvent production - Ethanol and

Butanol, Antibiotics - Penicillin and streptomycin, Vitamins - B12 and riboflavin, Amino acid – Glutamic acid , Threonine and Phenylalanine, Fermented foods- Yoghurt, cheese, Production of beer, wine and vinegar.

Unit V – (15 Hrs.): Industrial Application: Wastewater treatment - physical, chemical and biological treatment processes, Effluent treatment, Bioremediation, oil spill clean-up, Microbial mining, Bio fertilizers - bacteria and blue-green algae, Biopesticides in integrated pest management - *Bascillus* and *Pseudomonas* as biocontrol agents, Soil microbiota, Biogeochemical role of soil microorganisms, Microbial degradation of xenobiotics in the environment.

TEXT BOOKS:

- 1. Microbial biotechnology Alexander et al., -W.H. Freeman Publishers, 1995
- 2. Biology of microorgansisms Madigan et al., Printice Hall, 2002
- 3. Biochemistry of bacterial growth Mandelstram, Blackwell Scientific Publishers
- Principles of fermentation technology, 2nd edition Stanbury *et al.*, Pergamon Publishers, 1995
- Basic Biotechnology, 2nd edition Ratledge, Kristiansen Cambridge University Press, 2001

REFERENCES BOOKS:

- 1. Elements of Biotechnology Gupta, Rastogi Publication, 1998
- Bioprocess Engineering basic concepts 2nd editon Schuler, Karg, Printice Hall, 2001
- Concepts in Biotechnology Balasubramanian *et al.*, Universities Press (India) Ltd., 2004
- 4. Animal Tissue Culture Freshney, IRL press
- Culture of animal cells: a manual of basic techniques, 4th edition Freshney, Wiley Liss, 2000

WEB SOURCES:

http://www.sigc.edu/department/microbiology/studymet/10markQuestionsonBioprocess.pdf https://en.wikipedia.org/wiki/Entner%E2%80%93Doudoroff_pathway

DIAGNOSTIC BIOCHEMISTRY

Paper	: EDC	Total Hours	: 75
Hours/Week	: 2	Exam Hours	: 03
Credit	: 1	Internal	: 25
Paper Code	:21P3BCED01	External	: 75

SUBJECT DESCRIPTION:

This course presents about the techniques, diagnostic values and significance and the interpretation of various

enzymes, bio-chemical parameters, hormones and immunoglobulins.

COURSE OUTCOME:

Course No	Course Outcome	Knowledge Level
CO1	Remember the approaches to clinical quality control, accuracy, collection and preservation of biological samples such as blood, urine and fluids	K1 & K2
CO2	Understand the blood cell and explain the different cell count such as PVC, ESR, RBC and WBC	K1 & K2
CO3	Apply the knowledge on abnormal constituents of urine such as protein, keton bodies, bile pigments and their clinical interpretation	K1,K2 & k3
CO4	Analyse and describe the to know about the critical based stool collection, preservation, and analyse the abnormal constituent of stools and microscopy studies.	K1 & K2
CO5	Evaluate and discuss clinical significance of the biochemical GTT, SGOT, SGPT and LDH etc	K1 & K2

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	S	L	L	S	М	Μ	М	М	L	S	L	М	S	М	L
CO2	L	М	М	S	L	L	L	М	М	S	S	М	L	S	М
CO3	S	М	М	М	М	S	L	М	S	L	L	М	L	S	М
CO4	S	М	L	М	S	М	L	М	S	S	L	М	L	М	М
CO5	S	L	М	М	М	S	S	L	S	М	L	L	S	М	S

S- Strong; M-Medium; L-Low

UNIT – I

15 Hours

Approaches to clinical biochemistry: Quality control: Concepts of accuracy, precision, sensitivity and reproducibility, Collection of clinical specimens, preservatives for blood and urine, transport of biological samples. Fid aid equipment in laboratory accident- Precausions and first aid equipment sensitivity, linearity, calibration, Biomedical waste disposals

M.Sc. Biochemistry-Syllabus 2021-22

15 Hours

Hematology: Composition and functions of blood, Haemoglobin, Differential count-PCV, ESR, RBC, WBC and Platelet count. Fully automated and semi automated analysers. UNIT - III 15 Hours

Physical examination of urine: Volume, colour, odour, appearance, specific gravity and pH. Chemical examination of urine: Qualitative tests for Reducing sugar, protein, ketone bodies, Bile pigment, bile salt, Urobilinogen, and mucin. Microscopic Examination of urine.

UNIT – IV

UNIT – II

15 Hours

15 Hours

Stool examination: Collection of fecal specimen, preservation, physical examination:- volume, colour, odour and appearance. Chemical examination:- reducing sugar, occult blood test, detection of steatorrhoea. Microscopic examination of stool.

$\mathbf{UNIT} - \mathbf{V}$

Estimation of Biochemical components in Blood: Glucose, GTT, Glycosylated

haemoglobin, Protein, cholesterol, Urea, Uric acid and Creatinine. Determination of

enzyme activity: SGOT, SGPT and LDH.

TEXT BOOK

1. Practical Clinical Biochemistry, Harold Varley, 4th edition, CBS Publication and Distributors, New Delhi.

2. Medical Biochemistry by MN Chatterjee, Rana Shinde, 8th edition, 2013, Jaypee publications.

3. Sabitri Sanyal, Clinical pathology, B.I.Churchill Livingstone(P)Ltd, New Delhi.2000.

3. Tietz Fundamentals of Clinical Chemistry- (5th edition) C.A. Burtis, E.R. Ashwood (eds) Saunders WB Co.

REFERENCE BOOK

1. Textbook of medical physiology by C. Guyton, John E. Hall.—12th ed, 2011, Saunders, an imprint of Elsevier Inc.

2. Medical Biochemistry by MN Chatterjee, Rana Shinde, 8th edition, 2013, Jaypee publications.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER III Advanced Clinical Biochemistry

Paper	: Core Paper VII		
Examination	: External	Section – A $(25X1)$: 25
Time	: Three Hours	Section $-B$ (5X5)	: 25
Paper Code	: 21P3BC07	Maximum Marks	: 75

Section A Answer all questions $(20 \times 1 = 20)$

1	Re	nal threshold for glucose is		?	Unit I	K1	CO-1
	Α	80 mg%	В	100 mg%			
	С	180 mg/ dl	D	200 mg%			
2	Un	treated diabetes may result in	all c	of the following except	Unit I	K1	CO-1
	Α	Blindness	В	Cardiovascular disease			
	С	Kidney disease	D	Tinnitus			
3	Ну	perinsulinemia may be cause	d by	all of the following except	Unit I	К2	CO-1
	Α	An insulinoma	В	Nesidioblastosis			
	С	Insulin resistance	D	Type 1 diabetes			
4	Ins	sulin deficiency is associated	with		Unit I	К2	CO-1
	Α	Reduced lipolysis	В	Increased ketogenesis			
	С	Reduced gluconeogenesis	D	Reduced proteolysis			
5		is responsible for the	yell	ow coloring in jaundice	Unit II	K1	CO-1
	Α	. Urobilinogen	В	Carotene			
	С	Bilirubin	D	AST			
6	Hi	ghest elevations with AST is	seen	in viral	Unit II	K1	CO-1
	Α	Hepatitis	В	Menengitis			
	С	Influenza	D	Pneumonia			
7	Ur	ea production occurs almost e	xclu	sively in	Unit II	K1	CO-1
	Α	Kidneys	В	Liver			
	С	Blood	D	Urine			

8	The carbon atom source while pro	odu	cing urea in the urea cycle is	Unit II	К1	CO-1
	A CO ₂	В	Glucose			
	C Aspartic acid	D	Arginine			
9	Which of the following lipid act a	ıs lu	ngs surfactant?	Unit III	К2	CO-1
	A Phosphatidylcholine	В	Phosphatidylethanolamine			
	C Ceramide	D	Phosphatidylinositol			
10	Which of the following disorder	is c	aused due to the high serum level of	Unit III	K1	CO-1
	urate?	R	Galectosemia			
	C Cystic fibrosis	ם	Maple syrup urine disease			
11	Which of the following is not the p	reci	ursor of a purine ring?	l Init III	к2	CO-1
	Glutamine	R	I vsine		112	
	C Glycine	ם	Aspartate			
12	Severe combined immunodeficie	nev	disease is caused by the deficiency	l Init III	кJ	CO-1
12	of the following enzymes?	iic y			ΝZ	CO-1
	A AMP deaminase	В	Adenosine deaminase			
	C PRPP synthetase	D	None of the above			
13	Function of stomach include all ex	xcej	pt	Unit IV	K1	CO-1
	A Stomach	В	mix food with gastric secretion			
	C emites content to the intestine D Swallowing					
14	Non-specific symptoms of chroni	c ki	dney disease include	Unit IV	К1	CO-1
	A increased urination at night	В	loss of appitite			
	C swallowing of hand and feet	D	all of the above		•	
15	which kidney disease known is to b	oe ir	herited	Unit IV	K1	CO-1
	A end stage renal disease	В	protein disease			
	C autoimmune kidney disease	D	polycystic kidney disease			
16	Uric acid is usually eliminated from	om t	he body by the ay of	Unit IV	K1	CO-1
	A Breathing	В	Urine			
	C Metabolism in the liver	D	Sweat			
17	The myocardial infarction is als	o k	nown as	Unit V	K1	CO-1
	A Diabetes	В	heart attack			
	C Cholesterol	D	hypertension			
18	The heart attack occurs when the	ere	is blood clotting in	Unit V	K1	CO-1
	A renal arteries	В	mesenteric arteries			
	C hepatic arteries	D	coronary arteries			
19	The best liver function tests		L	Unit V	K1	CO-1
	A AST/ALT	В	alkaline phosphatase			

	С	Bilirubin	D	INR			
20	Ac	eute pancreatitis is exclusively	diag	nosed by measuring serum levels of	Unit V	K1	CO-1
	Α	Amylase	В	Lipase			
	С	Acid phosphatase	D	Alkaline phosphatase			
	1		i	Section B	i		
24		Describe meridian According	<u>Ans</u>	wer All questions (5 x 5 = 25)	TI24 T	V)	CO 2
21	A	Describe precision, Accuracy	/		Unit – I	κ2	0-2
				OR			
	В	Summarize Automation in cl	inica	al bochemistry	Unit – I	K2	CO-2
22	Α	Write an short note on GTT			Unit – II	K2	CO-2
				OR			
	В	Explain about bilirubin metal	bolis	sm	Unit – II	K2	CO-2
23	Α	Write about atherosclerosis			Unit – III	K2	CO-2
				OR			
	В	Describe fatty Liver	Unit – III	K2	CO-2		
24	Α	Explain about tubeless gastrie	c an	alysis.	Unit – IV	K2	CO-2
•				OR			
	В	Give short note on Detoxifica	atior	and excretory function.	Unit – IV	K2	CO-2
25	Α	Write about Quality Control			Unit – V	K2	CO-2
				OR			
	В	Explain Clinical significance	of l	naemoglobinopathies	Unit – V	K2	CO-2
				Section C			
		<u> </u>	Ansv	ver ALL Questions (1 x 10 = 10)			
26	Α	Explain about Diabetes mel effects, complications	litus	-Types, Clinical features, metabolic	Unit – I	К5	CO-2
27	Α	Illustrate etiology and alkaptonuria, cystinuria, albin	clini nism	cal features of phenylketonuria, and tyrosinemia	Unit – II	K5	CO-2
28	A	Describe Disorders of nuclei and clinical features.	c ac	id metabolism: Gout, types,aetiology	Unit – III	К5	CO-2
29	Α	Write short note on Renal fur	nctio	on test	Unit – IV	К5	CO-2
30	Α	Summarize enzyme level or hepatobiliary diseases	the	e onset of myocardial infarction and	Unit – V	К5	CO-2

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Knowledge	K1	К2	К3	K4	К5	K6	Tatal
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	Total
I	2	4	0	0	1	0	7
II	4	2	0	0	1	0	7
III	1	5	0	0	1	0	7
IV	4	2	0	0	1	0	7
V	4	2	0	0	1	0	7
Total	15	15	0	0	5	0	35

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowledge	К1	К2	K3	K4	К5	K6	Total
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	TOLAT
I	2	12	0	0	10	0	24
II	4	10	0	0	10	0	24
III	1	13	0	0	10	0	24
IV	4	10	0	0	10	0	24
V	4	10	0	0	10	0	24
Total	15	55	0	0	50	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER III

Genetic Engineering and Fermentation Technology

	Pap	er : Core Paper IX				
	Exa	amination : External		Section – A $(25X1)$: 25	
	Tin	ne : Three Hours		Section $-B(5X5)$: 25	
	Pap	ber Code : 21P3BC09		Maximum Marks	: 75	
1	In enz	which one of the following way type II yme cuts the sequences ?	restriction	on endonuclease	CO1	K2
	A	Within the recognition sequence	В	At 100-1000 nucleotides away from the recognition sequence		
	С	At 27-30 nucleotides away from the recognition sequence	D	It cuts randomly		
2	Wh non	ich endonuclease cleaves both single and de-specific manner?	ouble str	randed DNA molecules, in a	CO1	K2
	А	S1	В	Bal31		
	С	DNase I	D	BamHI		
3	Lin	kers are often used in cloning. Choose the in	correct s	statement for linkers.	CO1	K2
	A	These are short chemically synthesized molecules that contain a particular restriction enzyme site within the sequence	В	They are blunt ended molecules		
	С	They are ligated to staggered ended insert molecules by T4 DNA ligase	D	After treatment with enzyme, both the ends of the linker are staggered		
4	If li	nkers are combined with other features such	as a sele	ectable marker, it is called as	CO1	K2
	Α	cassette	В	modified linker		
	С	adaptors	D	induced linker		
5	Wh	ich antibiotic resistance is present in pBR322	2?		CO2	K2
	Α	Ampicillin	В	Kanamycin		
	С	Lactase	D	Gentamycin		
6	Wh	at is the copy number of the pUC8 plasmid	vector?		CO2	K2
----	------------	--	-----------	--	-----	----
	A	5-10	В	50-100		
	С	100-200	D	500-700		
7	In g	enome southern blotting can be used to iden	tify		CO2	K2
	А	Sequences	В	number of sequences		
	С	DNA fragments	D	RNA sequence		
8	We	stern blotting is the technique for the detection	on of	•••••••••••••••••••••••••••••••••••••••	CO2	K2
	Α	specific DNA in a sample	В	specific RNA in a sample		
	С	specific protein in a sample	D	specific glycolipid in a sample		
9	The	ability of cells to take up DNA fragments fi	rom surr	ounding is called	CO3	K3
	Α	transfection	В	transduction		
	С	transformation	D	conjugation		
10	Che	emicals used for gene transfer methods inclu-	de		CO3	K3
	А	poly ethylene glycol	В	CaCl2		
	С	dextran	D	all of the above		
11	Inti	oduction of DNA into cells by exposing to h	nigh volt	age electric pulse is	CO3	K3
	Α	electrofusion	В	elctrofision		
	С	electrolysis	D	electroporation		
12	The call	injection of DNA into developing inflores ed	cence us	sing a hypodermic syringe is	CO3	K3
	Α	macroinjection	В	micromanipulator mediated DNA delivery		
	С	microfection	D	microinjection		
13	Pol	ymerase used for PCR is extracted from	+	r	CO4	K4
	A	Escherichia coli	В	Homo sapiens		
	С	Thermus aquaticus	D	Saccharomyces cerevisiae		
14	At v	what temperature do denaturation of DNA de	ouble he	lix takes place?	CO4	K4
	Α	60°	В	54°		
	С	74°	D	94°		
15	Luc for	iferase genes are also used at times for det them.	ection. (Choose the correct statement	CO4	K4
	A	They are obtained from fire flies only	В	The detection requires provision of substratewhich produces light		
	С	Enzymes such as beta-galactosidase	D	Lucifearse genes are		
		requires substrate X-gluc to produce light		preferred over fluorescent proteins		
16	A s	hort peptide region fused to a protein of inte	rest is k	nown as	CO4	K4
	Α	tag	В	oligonucleotide		
	С	fragment	D	dimer		
17	Sta	rt up expenses in a fermentation industry van	ries fron	1	CO5	K4
	Α	0-5% of the capital cost	В	10-15% of the capital cst		

18 The high yielding strain for antibiotic production could be achieved by CO: A Sequential genetic selection B Non sequential genetic selection CO: C Without genetic selection D Non mutants Non mutants	95 K4
ASequential genetic selectionBNon sequential genetic selectionCWithout genetic selectionDNon mutants	
C Without genetic selection Non mutants	
19Ammonium hydrogen phosphate is used for the production ofCO	95 K4
A Lactic acid B Acetic acid	
C Itacoic acid D Pyruvic acid	
20 Sauerkraut is rich source of vitamin CO3	95 K4
A A B C	
C D D K	
Section B	
$\begin{array}{c c} Answer All questions (5 x 5 = 25) \\ \hline \\ $	1 V)
21 A Define and classific respiration endonucleases. CO. B Describe about cosmide CO.	K_{1}
B Describe about cosmids.	01 K2
22 A Illesterte DNA companying her Manager and Cillest to chaire	- 170
22 A Inustrate DNA sequencing by Maxam and Gilbert technique.	12 K2
BSummarise about RFLP.CO2	62 K2
23 A How will you produce recombinant insulin?	13 K3
	-
BExplain about baculovirus and its biocontrol activity.CO:	3 K3
24 A Decord about correspond techniques in strain development	4 V2
24 A Record about screening techniques in strain development.	14 5
BWrite a detailed note on downstream processingCO4	64 K3
25AIllustrate on antibiotic production of penicillin.CO:	95 K4
BHow ethanol produced by fermentation technology?CO:	5 K4
Section C	
Answer ANY THREE Questions (3 x 10 = 30)	
26Explain in detail about genomic DNA library.CO	o1 K2
27 What are the gene transfer techniques available nad explain about direct gene CO2 transfer techniques.	2 K2
28Predict the methodology of genome editing by crisper cas techniques.CO:	3 K3
29Demonstrate on fermentation and explain its design.CO4	64 K3
30 Evaluate on Sauerkraut production. CO:	95 K4

TYPES OF SPECIFICATION (Question wise-no of questions)

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	0	7	0	0	0	0	07
II	0	7	0	0	0	0	07
III	0	0	7	0	0	0	07
IV	0	0	0	7	0	0	07
V	0	0	0	7	0	0	07
Total	0	14	7	14	0	0	35

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outcome	K1	K2	K3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit	_						
Ι	0	24	0	0	0	0	24
II	0	24	0	0	0	0	24
III	0	0	24	0	0	0	24
IV	0	0	0		0	0	24
				24			
V	0	0	0	24	0	0	24
Total	0	48	24	48	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER III Research Methodology

Core VIII		
External	Section $-A(25X1)$: 25
Three Hours	Section $-B(5X5)$: 25
21P3BC08	Maximum Marks	: 75
	Core VIII External Chree Hours 21P3BC08	Core VIIIExternalSection – A (25X1)Three HoursSection – B (5X5) 21P3BC08 Maximum Marks

1	A 1	research is generally expected to			CO1	K1
	A	Study the existing literature in a field	B	Generate new principles and theories		
	C	Synthesize the ideas given by others	D	Evaluate the findings of a study		
2	Th	e basic need of a research is			CO1	K1
	A	in preparation of a project	В	in guidance		
	C	in economic planning	D	in sitting in library.		
3	A 1	research should be	•	A	CO1	K 1
	Α	objective	В	valid		
	C	reliable	D	all the above		
4	Hy	Hypothesis is				K1
	A	a thoughtful statement	В) a forwarding statement		
	C	a temporary solution	D	all the above		
5	Va	riance of the population is denot	ed b	y	CO2	K2
	A	μ ²	В	Σ^2		
	C	β^2	D	σ^2		
6	Th	e standard deviation tends to incl	rease	e with the increase in	CO2	K2
•	A	regression	B	mean		
	C	correlaiton	D	variability		
7	Wł	nen the correlation between two	vai	iables is estimated by taking into	CO2	K1

	acc	count the effect of a third variable	e it i	s called		
	Α	partial correlation	В	regression		
	С	perfect relation	D	multiple correlation		
8	Re	gression is of how many types?	i	<u>k</u>	CO2	K1
	Α	2	В	4		•
	С	1	D	5		
9	Th	e probability of an event is	.	<u>k</u>	CO3	K2
	A	The average frequency of the event	В	frequency		
	C	sum of the events	D	independent event		
10	Wł cal	nen a random experiment is per led a	rfori	med repeatedly, each repetition is	CO3	K2
	A	trial	В	event		
	C	success	D	repeats		
11	A 1 on	andom variable X is said to folloy	OW 8	a Poisson distribution if it assumes	CO3	K3
	A	non-negative values	B	negative values		
	C	positive values	D	Non positive values		
12	No	rmal distribution was first discov	vere	d by	CO3	K1
	Α	James Bernoulli	В	De-Moivre		
	С	Morgan	D	Rutherford		
13	Wł	hat is the name of the statement occur under stated.	mak	ing a prediction that an event will	CO4	К3
	Α	null hypothesis	B	hypothesis		·
	С	significance	D	Probability		*
14	Sys	stematic sampling is	<u>.</u>	<u>]</u>	CO4	K4
	A	acomprehensice methodof sample selection	В	a simple method of sampleselection		
	C	am effective method of generalization of data	D	all the above		
15	Th	e t-distribution is used when sam	ple	size is	CO4	К3
	A	30	В	50		
	C	60	D	80		
16	In nec	order to test the "goodness or cessary to find	of fi	t" of the observed results, it is	CO4	K4
	A	The deviation between the observed an the expected results	В	the probability value correcsponding to the deviation		<u>.</u>

С	both a and b	D	none of the above		
WI	PO stands for		<u>I</u>	CO5	K5
A	World Industries Property	B	world Intellectual Property		
C	organization World Intellectual Protect	Л	Organization World Industrias Protect		
C	Organisation	D	Organizaiton		
Th	e un ethical practive of monopo	oliziı	ng a biodiversity based traditional	CO5	K5
kno	owledge is called	Б	histinger		
A	stolen	В			
C	unregister	D	loot.		
Th	e term which describes the sa	ife i	methods for managing infectious	CO5	K5
Α	practice	B	containment		
C	environment	D	safety		
C	chivitolinicht	ν	Sarety		
Wł	nich committee should take no	ote	of developments at national and	CO5	K5
inte	ernational levels in Biotechnol	logy	towards the currentness of the		
	Recombinant DNA Advisory	101na R	Institutional Biosafety		
11	Committee	U	Committee		
С	Review Committee on	D	Genetic Engineering approvan		
	Genetic Manipulation		Committee		
	Sec	tion	B		
	Answer All que	estio	$ns(5 \ge 5 = 25)$		
A	Describe about Ethics and scien	ntific	c research	CO1	K2
		0	R		
В	Explain about the review of lite	eratu	re	CO1	K1
A	Write about Student t test corre	latic	on	CO2	K1
		0	R		
В	Write about the standard devia	tion		CO2	K2
A	Write about the scope of bioinf	orm	atics	CO3	К3
	-		D		
а	Write about note on rale of	U	K	000	1/2
ъ	write short note on role of com	pute	ers in diology	CO3	K3
A	Explain about database system			CO4	K4
		0	R		
В	Give an account on CLUSTAL			CO4	K4
Α	Write about Ethics in food and	dru	g safety	CO5	K5
		0	R		
	C WI A C The kno A C The A C Wh inte safe A C Wh inte safe A B A B A B A B A	C both a and b WIPO stands for A World Industries Property organization C World Intellectual Protect Organisation The un ethical practive of monopoly knowledge is called A stolen C unregister The term which describes the sa agents in the laboratory environ A practice C environment Which committee should take mainternational levels in Biotechnol safety regulation for India on recom A Recombinant DNA Advisory Committee C Review Committee on Genetic Manipulation B Explain about the review of litter A Describe about Ethics and scier B Write about the standard devia A Write about the scope of bioinf B Write about the scope of bioinf B Give an account on CLUSTAL A Write about Ethics in food and	C both a and b D WIPO stands for A A World Industries Property organization B C World Intellectual Protect Organisation D The un ethical practive of monopolizin knowledge is called B A stolen B C unregister D A practice B C environment D A practice B C environment D Which committee should take noterinternational levels in Biotechnology safety regulation for India on recommittee B C Recombinant DNA Advisory B B C Review Committee on Genetic Manipulation D A Describe about Ethics and scientifier D A Describe about the review of literature O B Explain about the standard deviation O B Write about the standard deviation O B Write about the scope of bioinform O B Write about the scope of bioinform O B Write about the scope of bioinform O	C both a and b D none of the above WIPO stands for A World Industries Property organization B world Intellectual Property Organization C World Intellectual Protect Organisation D World Industries Property organization Property Organization The un ethical practive of monopolizing a biodiversity based traditional knowledge is called A stolen B biopiracy C unregister D loot. The term which describes the safe methods for managing infectious agents in the laboratory environment is A practice B containment C environment D safety Which committee should take note of developments at national and international levels in Biotechnology towards the currentness of the safety regulation for India on recombinant research use and applications? A Recombinant DNA Advisory Committee B Institutional Biosafety Committee C Review Committee on Genetic Manipulation D Genetic Engineering approvan Committee A bescribe about Ethics and scientific research OR B Explain about the review of literature A A Write about the standard deviation OR A	C C organizationD organizationnone of the aboveCO5AWorld organizationCO5CO5AWorld Intellectual Protect OrganizationDWorld OrganizationProtect OrganizationThe un ethical practive of monopulzationDWorld OrganizationCO5AstolenBbiopiracyCO5CurregisterDloot.CO5ApracticeBcontainmentCO5ApracticeBcontainmentCO5CenvironmentDsafetyCO5ApracticeBcontainmentCO5CenvironmentDsafetyCO5Arecombinant DNA Advisory CommitteeBInstitutional CommitteeCO5ARecombinant DNA Advisory CommitteeBInstitutional CommitteeCO1CReview Committee and splications?CO1CO1CO1ADescribe about Ethics and scientific research use and applications?CO1ADescribe about Ethics and scientific researchCO1Avrite about the standard deviationCRCO2AWrite about the standard deviationCO2AWrite short note on role of computers in biologyCO3AExplain about database systemCO3AExplain about database systemCO3BWrite short note on role of computers in biologyCO3AExplain about database system<

	B	Write a short note on gene therapy.	CO5	K5				
	Section C Answer ANY THREE Questions (3 x 10 = 30)							
26		Explain in detail about Formulation of hypothesis.	CO1	K2				
27		Explain about the Chi square test for independence of attributes	CO2	K2				
28		Write a short notes on PubMed.	CO3	K3				
29		Write in detail about FASTA and BLAST	CO4	K4				
30		Write an essay about Ethics in animal experimentation	CO5	K5				

TYPES OF SPECIFICATION (Question wise-no of questions)

Outcome	K1	K2	К3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	5	2	0	0	0	0	07
Π	3	4	0	0	0	0	07
III	1	2	4	0	0	0	07
IV	0	0	2	5	0	0	07
V	0	0	0	0	7	0	07
Total	9	8	6	5	7	0	35

TYPES OF SPECIFICATION (Marks wise-Total marks)

Outcome	K1	K2	К3	K4	K5	K6	Total
/	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Unit							
Ι	9	15	0	0	0	0	24
II	7	17	0	0	0	0	24
III	1	2	21	0	0	0	24
IV	0	0	2	22	0	0	24
V	0	0	0	0	24	0	24
Total	0	0	0	0	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER III (2021-22) Core Practical - V

Core Practical V		
: External		
: Six Hours		
: 21P3BCP05	Maximum Marks	: 60
	Core Practical V : External : Six Hours : 21P3BCP05	Core Practical V : External : Six Hours : 21P3BCP05 Maximum Marks

Answer all the questions

1 (a). Estimate the amount of glucose present in the given blood sample by Ortho Toluidine method.

20 Marks

(Or)

(b) Estimate the amount of Chloride in the given urine sample by Schales and Schales method.

2 (a). Estimate the amount of creatinine present in the given serum sample by alkaline picrate method.

20 Marks

(Or)

(b) Estimate the amount of urea present in the given urine sample by DAM method.

RECORD: 10

VIVA: 10

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER III Core Practical - VI

Paper	: Core Practical VI		
Examination	: External		
Time	: Six Hours		
Paper Code	: 21P3BCP06	Maximum Marks	: 60

Answer all the questions

1.A) Immunoelectrophoresis - Rocket or Counter Current immunoelectrophoresis

20 Marks

(Or)

B) Isolation of peripheral blood mononuclear cells.

2 (a). Identification of blood group & Rh typing

20 Marks

(Or)

(b) Immunodiffusion –Single radial and double diffusion

VIVA: 10 Record:10

VIVEKANAND HA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER IV (2018-19)

Neuroscience

Paper Examination Time Paper Code : ELECTIVE V : External : Three Hours : **21P3BCE05**

 Section – A (25X1)
 : 25

 Section – B (5X5)
 : 25

 Maximum Marks
 : 75

Section A

Answer all questions $(20 \times 1 = 20)$

1	Wł	nich vitamin is important fo	or vi	sion?	K1	CO-1
	Α	Vitamin A	B Vitamin B			
	С	Vitamin C	D	Vitamin D		
2	Wł	nich of the following is inc	orre	ct?	K2	CO-1
	A	Retina is made up of rods and cones	В	Cones are lesser in number as compared to rods		
	C	Rods are more sensitive than cones	D	Cones are responsible for vision in dim light		
3	Wł	nich scientist first discovere	ed th	hat rod cells contain rhodospin?	K2	CO-2
	Α	Franz Boll	В	Benjamin Franklin		
	С	Robert Lewis	D	Andrew Boll		
4	Wł	nich nerves are attached to	the	brain and emerge from the skull?	K1	CO-1
	Α	Cranial Nerves	В	Thoracic Nerves		
	С	Spinal Nerves	D	Sacral Nerves		
5	Wł	nat is the unit of Nervous s	yste	m?	K3	CO-2
	Α	Brain	В	Spinal Cord		
	С	Neuron	D	Nerves		
6	Sp	inal Cord originates from v	vhic	h part of the brain?	K1	CO-3
	Α	Cerebellum	В	Medulla		
	C	Pons	D	Cerebrum		

7	Wł	nich of the following helps	in n	naintaining the shape of the eye?	K2	CO-3
	Α	Neuroglia	В	Aqueous humor		
	С	Vitreous humor	D	Perikaryon		
8	Wł	nat is Sclera?			K1	CO-1
	Α	Cornea	В	White part of the eye		
	С	Red part of the eye	D	Lens		
9	Ho	w many sense organs in hu	imar	n body are?	K1	CO-2
	Α	2	В	5		
	С	4	D	7		
10	Wł	nich is the INCORRECT st	aten	nent in lens?	K2	CO-2
	A	Protein found in the lens are α , β , and γ crystalline	В	Composed of water and proteins		
	С	Mainly made up of water	D	It has a blood supply		
11	Wł dis	nich of the following are ease?	e th	e classic pathological of Alzheimer's	K1	CO-2
	Α	Lewy bodies	В	Hirano bodies		
	С	Neurofibrillary tangles and senile plaques	D	Neurofibrillary tangles		
12	Wł dis	nich neurotransmitter rece ease?	epto	rs are commonly lost in Alzheimer's	K1	CO-2
	Α	Acetylcholine	В	GABA		
	С	Dopamine	D	Serotonin		
13	Wł	nich of the following is not	true	e of dementia of the Alzheimer's disease	K1	CO-2
	A	There is a lack of recovery effort	В	Previously learned information does not interface with new material		
	C	Normal semantic memory	D	All of the above		
14	Wł	nich of the following is fou	nd i	n dementia?	K1	CO-2
	Α	Impairment in short term and long term memory	В	Abstract thinking Impairment		
	С	Personality change	D	All of the above		
15	Wł sch	nich of the following ar nizophrenia?	e n	ot included in the DSM criteria for	K1	CO-2
	Α	Disorganized speech	В	Delusions		
	С	Hallucinations	D	Catastrophic thinking		
16	Wł hui	nich part of the limbic system.	stem	n is involved in an animal's feeling of	K1	CO-4
	Α	Thalamus	В	Pons		
	С	Hippocampus	D	Hypothalamus		

17	Wł	nich lobe is primarily respo	nsit	ble for hearing and language?	K4	CO-2
	A	Temporal	В	Parietal		
	C	Frontal	D	Occipital		
18	Wł	nat part of a neuron is respo	onsil	ble for receiving information?	K1	CO-5
	Α	Axon	В	Terminal fibre		
	C	Dendrite	D	Myelin sheath		
19	Th	e effect of neurotransmitter	rs m	ay be:	K1	CO-2
	Α	Chemical or	В	Excitatory or inhibitory		
	C	electrical	ח	Active or pessive		
20		vich of the following is NO	л Та	lobe of the brain?	K 1	CO-2
20	Δ	Frontal	R	Dorsal	IX1	
		Parietal	ם ת	Temporal		
		T di lotai	ν	Section B		
			Ans	swer All questions (5x 5 = 25)		
21	Α	Elaborate the Dementia and	nd t	heir treatments?	K6	CO-4
				OR		
	В	Explain the Visual cycle a	and	their mechanism of action	K5	CO-3
		1 5				
22	A	Explain the schizophrenia	anc	d their treatments?	K5	CO-2
				ΛP		
	В	Evaluate the color vision		UN	K5	CO-3
23	Δ	Brief notes on structure a	and f	function of neurons	K/	<u> </u>
23	11		uiu I		174	CU-4
	R	Short notes on recentors f	or n	eurotransmitters	К5	CO-3
			01 11		N ./	
24	A	Explain the Huntington's	dise	ease and their treatments?	K6	CO-3
	-	1 0	-	OR	_	
	В	Explain the Alzhemier's of	lisea	ase and their treatments	K4	CO-4
25	A	Elaborate the Neurohorm	ones	s and neuromodulators	K5	CO-3
				OR		
	В	Brief notes on Neuronalb	eha	vior	K6	CO-3
				Section C		
		<u>A</u>	nsw	ver ALL Questions $(3 \times 10 = 30)$		

26	Explain the structure and function of brain	K5	CO-3
27	Discuss the neuromuscular diseases and their treatments?	K6	CO-3
20	Discuss the Darkinsonian discass and their treatments?	V5	CO 4
20		KJ	0-4
29	Brief account on Brain metabolism	K5	CO-2
30	Short notes on excitatory and inhibitory transmission	K6	CO-5

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Knowledg	K1	К2	K3	K4	К5	K6	Toto
e level /	(Rememberin	(Understandin	(Applyin	(Analyzin	(Evaluatin	(Creatin	TOLA
Unit	g)	g)	g)	g)	g)	g)	
I	0	7	0	0	0	0	7
II	0	7	0	0	0	0	7
III	0	0	7	0	0	0	7
IV	0	0	0	7	0	0	7
V	0	0	0	7	0	0	7
Total	0	14	7	14	0	0	35

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowledg	K1	К2	K3	K4	K5	K6	Tata
e level /	(Rememberin	(Understandin	(Applyin	(Analyzin	(Evaluatin	(Creatin	Tota
Unit	g)	g)	g)	g)	g)	g)	1
I	0	24	0	0	0	0	24
II	0	24	0	0	0	0	24
111	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	24	0	0	24
Total	0	48	24	48	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) **MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY** YEAR II - SEMESTER IV (2021-22) **Bioinformatics and Nanotechnology**

Paper	: Core Paper XI	
Examination	: External	Section – A (25X1
Time	: Three Hours	Section – B (5X5)
Paper Code	: 21P4BC11	Maximum Marks

Section A (Answer all the questions)

1. Which of these is nto a protein sequence database?

a)PIRb) Genbank c) PDB d) COGs

- 2. Global alignment uses _____ ___ algorithm
- a) Amith-Waterman algorithm b) Needleman-Wunsc algorithm c) Dot Plots d) DALI

3. FASTA program was first described by

a) Lipmann and Pearson b)Adachi and Hasegawa c) Fitch and Margoliash d) Kyte and Dolittle

4. BAC stans for

a) Bacteria Artifice Chromosome b) Bacterial Artifice Chromatid c) Bacterial Artificial Chromatid d) **Bacterial Artificial Chromosome**

5. TAP Tags are useful for

a) protein resolution b) genome sequencing c) peptide sequencing d) proteome exploration **6.**Bioinformaticscan not analyse

a)Mathematical analysis b) Statistical analysis c) Biomedical analysis d) Chemical analysis 7. URL for NCBI is

a) www.ncbi.nlm.nih.gov b) www.ncbi.govc) www.ncbi.nih.nlm.gov d) www.ncbi.nlm.gov

8.GCG is

a)Proeinswquencing tool b) Compare two DNA or protein sequences c) Compare multiple DNA or protein sequences d) Nucleic acid sequencing tool

9. Clastal W

:25

:25

:75

A (25X1) B (5X5)

- a) multiple sequence alignment tool b) Protein secondary structure predicting tool c) Data retrieving tool d) Nucleic acid sequence analysis tool
- 10. Which is data retrieving tool?
- a)KEGG b) EMBL c)ENTREZ d) PHD
- 11. Motifs of protein sequences are
- a) Secondary databases b) Relational databases c) Primary databases d)Objecti oriented databases

12. BLASTX program is used for

a)Translate DNA database b) Translate input sequence c)Translate both sequence d)Translate protein sequence

13. "There is a plenty of room at the bottom". This was stated by

- a)Issac Newton b) Albert Einstein c)Richard Feynman d)Eric Drexler
- **14.** I nanometre = ____ cm a)10⁻⁹ b)10⁻⁸c)10⁻⁷ d)10⁻⁶

15. The size of E.colibacteir a is _____ nm

a)75000 b) 2000 c) 200 d) 5

16. The most important property of nanomateirlas is

a) forceb) friction c)pressure d)temperature

17. Which one of these statemnets is not true?

a) Gold at the nanoscale is red b) copper at the nanoscale is transparent c) Silicon at the nanoscale is an insulator d) Aluminum at the nanoscale is highly combustible

18. What is grapheme?

- a) A new material made from carbon nanotubes b) a one-atom thich sheet of carbon c) Thin film made from fullerenes d)a software tool to measure and graphically represent nanoparticles.
- 19. Which of the following is the application of nanotechnology to food science and technology?
- a) Agriculture b) Food safety and biosecurity c) Produdct development d)all the above

20. The nanoparticles from iron and palladium are used to produdce

a)magnets b) magnetic lens c)magneto meters d)magnetic storage devices.

Section B (Answer all the questions)

- 21. a) Write about the Bioinformatics (Or)
- b) Explain about FASTA formet
- 22. a) Write about the Bioinformatics (Or) b) Explain about FASTA formet
- 23. a)How to search the sequences (Or) b)How to do the substitude Matrix
- 24. a)Define Nanotechnology & Length scales (Or) b) Write short on applications of Nanotechnology
- 25. a) Short note on florescence (Or)
 - b) Write about Carbon Nano tubes

Section-C(Answer all the Questions)

- 26. Explain the Multiple Sequence alignment
- 27. Briefly explain the Bioinfomatics tool
- 28. Describe the drug discovery & development
- 29. Explain the history of Nanotechnology
- 30. Explain Gold Nanoparticles

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER M.Sc. BIOCHEMISTRY YEAR II – SEMESTER IV (2021-22) HUMAN PHYSIOLOGY

Pa Ez Ti	aper kamii me	natio	: Core Paper X : External : Three Hours			Section – A (25X1) Section – B (5X5)	: 25 : 25	5	
Pa	aper (Code	: 21P4BC10			Maximum Marks	: 75	5	
An	swei	r all	questions	PARTA		(20X1=20)		~~ ·	
	1	Wł	hich of these can cause h	eartburn?				CO1	K2
		A	Being overweight		В	Lying down soon af eating a large meal	ter		
		С	Eating high-fat foods		D	All of the above			
	2	Wł	at is the enzyme that broad	eaks down lactose?		•		CO2	K2
		Α	Lipase enzymes		В	Pepsin			
		С	Lactase		D	Amylase			
	3	Wł	nich of these best mainta	ins intestinal health?		k		CO3	K1
		Α	Vitamins		В	Fiber			
		С	Starches		D	Fat			
	4	Wł	nich is the readily available	ble source of energy in the	boc	ly?		CO2	K1
		Α	Protein		В	Vitamins			
		С	Carbohydrates		D	Lipids			
	5	Но	w is Na+ reabsorbed?		.i	<u>i</u>		CO2	K2
		L							i

	A	By diffusion	B	By active transport using ATP		
	С	By facilitated diffusion	D	By receptor-mediated endocytosis		
6	Wł	nich substance would NOT normally be expected i	n ur	ine?	CO2	K2
	Α	Chloride	В	Sodium		
	С	Protein	D	Nitrogenous waste		
7	Wł	nich of the following controls the normal breathing	g pro	cess?	CO1	K2
	Α	Amino acids	В	Ventral respiratory group		•
	С	Cholesterol	D	Dorsal respiratory group		
8	Ho	w many oxygen molecules bound to hemoglobin t	o gi	ve 50% saturation?	CO1	K1
	Α	6	В	7		
	С	2	D	4		•
9	Wł	nich of the following is NOT the function of the re	spira	atory system?	CO1	K1
	Α	Regulate blood pH	В	Protection against blood loss		
	С	Helps in gaseous exchange	D	Contains receptors for the sense of smell		
10	Wł	nich of the following is NOT associated with prima	ary 1	nocturnal enuresis?		K3
	Α	Females over the age of 60 years	В	Inadequate nocturnal ADH production	CO3	
	С	A small bladder capacity	D	Unusually sound sleep		
11	Wł	nich of the following does NOT occur during skele	etal 1	nuscle contraction?	CO3	K3
	Α	Calcium binds to myosin heads	В	Myosin heads bind to actin		
	С	Calcium concentration in the sarcoplasm increases	D	ATP is hydrolyzed		•
12	Wł GF	hich of the following substances is the standard R?	sub	stance used to measure the	CO3	K3
	Α	Inulin	В	Glucose		
	С	Urea	D	Creatinine		•
13	Wł	nich of the following statements about smooth mus	scle	is true?	CO3	K3
	A	Fibers are small and spindle-shaped.	В	Smooth muscle is striated and involuntary.		
	С	It has branching fibers	D	Nuclei are peripherally located in the fibers		
14	Wł	here the heart is specifically located?			CO4	K4
	Α	Thoracic cavity	В	Pleural cavity		
	С	Mediastinum	D	Ventral cavity		
15	Wł	hich fiber system is the first to depolarize in a card	iac c	cycle?	CO4	K2
	Α	Atrioventricular node	В	Purkinje fibers		
	С	Sinoatrial node	D	Bundle of His		
16	Wł	hat is a common neurotransmitter?	i		CO4	K5

	A	Acetylcholine	В	All of the above		
	С	GABA	D	Serotonin		-
17	Но	w do neurons communicate with one another?	<u>.</u>		CO4	K2
	A Electrically B Chemically					
	С	A and B	D	Through weak, radio- wave-like impulses		
18	Which of the following is a genetic disease that causes neurons in the brain to waste					
	aw A	Multiple sclerosis	В	Encephalitis		
	С	Polio	D	Huntington's disease		
19	Wł	nich of the following statement is correct about Ce	rebe	llum?	CO5	K5
	A	It regulates the muscular movement for locomotion.	B	It is a part of brain.		
	С	Both A and B	D	Neither A nor B		
20	Wł	nich nerves are attached to the brain and emerge fr	omt	he skull?	CO5	K2
	A	Cranial Nerves	В	Sacral Nerves		
	С	Spinal Nerves	D	Thoracic Nerves		
21	A	Answer All questions (5 x Write a detailed account on Gastrointestinal tract OR	5 = 2	25)	CO2	K4
	B	Write a detailed note on accessory organs			CO4	К3
22	A	Brief a note on structure and function of red blog	od co	ells	CO5	K4
		OR				
	В	Write a detailed account on structure and functio	n of	lung	CO2	K2
23	A	Brief a detailed account on heart and significance	e of	felectrocardiogram	CO4	K3
		OR				
	В	What is nephron? Brief a detailed note on kidney	7		CO2	K4
24	A	What is neuron? Give a detailed note on central	nerv	ous system	CO1	K6
		OR				
	В	What are neurotransmitters? Brief a detailed note	e on	synaptic transmission	CO1	K5
25	A	Brief a detailed note on female reproductive orga	ns		CO1	K2
		OR				
	В	Brief a detailed note on menstrual cycle			CO3	K4
		Section C Answer ANY THREE Questions (3	3 x 1	0 = 30)		

26	Α	What is a secretion? brief a detailed note on digestive system	CO1	K5
27	Α	Brief a detailed note on blood composition and function	CO4	K3
28	Α	Write a detailed note on cardiac cycle and it regulation	CO2	K4
29	Α	What is synapes? Brief a detailed note on nerve impulses	CO4	K2
30	A	What is meant by pregnancy? Given briefly note on mechanism of urine formation	CO5	K1

Table of specifications – Unit wise - Knowledge level – Number of questions (Including Choice)

Knowledge	K1	К2	К3	K4	К5	K6	Total
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	Total
I	0	7	0	0	0	0	7
II	0	7	0	0	0	0	7
	0	0	7	0	0	0	7
IV	0	0	0	7	0	0	7
V	0	0	0	7	0	0	7
Total	0	14	7	14	0	0	35

Table of specifications - Marks wise - Knowledge level - (Including Choice)

Knowledge	K1	К2	К3	К4	К5	K6	Total
level / Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	Total
Ι	0	24	0	0	0	0	24
II	0	24	0	0	0	0	24
	0	0	24	0	0	0	24
IV	0	0	0	24	0	0	24
V	0	0	0	24	0	0	24
Total	0	48	24	48	0	0	120

M.Sc., BIOCHEMISTRY QUESTION PAPER PATTERN MAXIMUM MARKS – 75 marks DURATION – 3 hours

PART - A (20X 1=20 marks)

Multiple Choice Questions

PART – B (5 X 05 = 25 marks)

1. Either or Type

2. From each unit two questions

PART – C $(3 \times 10 = 30 \text{ marks})$

Answer any 3 Question